1887
Volume 36, Issue 6
  • E-ISSN: 1365-2117
PDF

Abstract

[

First detrital zircon provenance study of the Billefjorden Group on Bjørnøya, Svalbard. The East Greenland Caledonides formed a long‐lived source terrain in northeast Greenland. Syn‐sedimentary faulting, drainage shifts and changing fluvial styles have little influence on detrital zircon age spectrum.

, ABSTRACT

In this contribution, we document changes in detrital zircon ages in the upper Devonian (Famennian) to lower Carboniferous (Mississippian) Billefjorden Group on Bjørnøya, the southernmost island of Svalbard. This alluvial, coal‐bearing clastic succession is widely distributed across the archipelago and the Barents Shelf. The sediments were deposited in subsidence‐induced lowlands that formed just after regional post‐Caledonian collapse‐related extension, which created the classical ‘Old Red Sandstone’ basins during the Devonian, and prior to localised rift‐basin development in the middle Carboniferous (Serpukhovian–Moscovian). Moreover, the succession is little affected by Ellesmerian compressional deformation, which occurred in the latest Devonian. However, little is known of the provenance and regional sediment routing in this tectonically transitional period between the post‐Caledonian structuring events in the Devonian and the middle Carboniferous rifting. It has previously been invoked that a regional fault running parallel to the western Barents Shelf margin, the West Bjørnøya Fault, controlled sedimentation in the area. Here, we combine detrital zircon U–Pb ages and sedimentological data to investigate stratigraphic provenance variations and test whether tectonics controlled deposition of the Billefjorden Group on Bjørnøya. Sedimentological investigations demonstrate changes in fluvial style with intercalations between successions dominated by meandering channel fills and abundant overbank fines to sandstone‐dominated sheet‐like successions of braided stream origin. Palaeocurrent data show that two competing drainage directions accompany the changes in fluvial architecture. Northeasterly transport directions, recorded in the braided stream deposits, indicate possible fault‐transverse drainage. The detrital zircon content in these deposits indicates sourcing from Caledonian terranes in Northeast Greenland. Northwest‐oriented transport directions, measured in the meandering channel deposits, are inferred to represent axially positioned drainage systems. These may have been sourced from either Northeast Greenland, a more localised source, or Baltica. The latter would require long‐distance sourcing, which, given the tectonic setting of the region, seems unlikely. Although our sedimentological observations point to syn‐tectonic deposition, this is not clearly captured in the detrital zircon data, suggesting a common source for the Late Devonian–Mississippian fluvial systems of Bjørnøya. Thus, combined with previously published provenance data from Svalbard and Greenland, we demonstrate that the East Greenland Caledonides formed a long‐lived and significant source area which provided sediments to nearby basins from the Devonian to the Early Cretaceous.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70009
2024-12-13
2025-01-24
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/6/bre70009.html?itemId=/content/journals/10.1111/bre.70009&mimeType=html&fmt=ahah

References

  1. Agyei‐Dwarko, N. Y., L. E.Augland, and A.Andresen. 2012. “The Heggmovatn Supracrustals, North Norway—A Late Mesoproterozoic to Early Neoproterozoic (1050–930 ma) Terrane of Laurentian Origin in the Scandinavian Caledonides.” Precambrian Research212–213: 245–262. https://doi.org/10.1016/j.precamres.2012.06.008.
    [Google Scholar]
  2. Åhäll, K. I., and C. F.Gower. 1997. “The Gothian and Labradorian Orogens: Variations in Accretionary Tectonism Along a Late Paleoproterozoic Laurentia‐Baltica Margin.” GFF119: 181–191. https://doi.org/10.1080/11035899709546475.
    [Google Scholar]
  3. Åhäll, K.‐I., and S. Å.Larson. 2000. “Growth‐Related 1.85–1.55 Ga Magmatism in the Baltic Shield; a Review Addressing the Tectonic Characteristics of Svecofennian, TIB 1‐Related, and Gothian Events.” GFF122: 193–206. https://doi.org/10.1080/11035890001222193.
    [Google Scholar]
  4. Andersen, T., H.van Niekerk, M. A.Elburg, and X.Hu. 2022. “Detrital Zircon in an Active Sedimentary Recycling System: Challenging the ‘Source‐To‐Sink’ Approach to Zircon‐Based Provenance Analysis.” Sedimentology69: 2436–2462. https://doi.org/10.1111/sed.12996.
    [Google Scholar]
  5. Anfinson, O. A., A. L.Leier, A. F.Embry, and K.Dewing. 2012. “Detrital Zircon Geochronology and Provenance of the Neoproterozoic to Late Devonian Franklinian Basin, Canadian Arctic Islands.” Geological Society of America Bulletin124: 415–430. https://doi.org/10.1130/b30503.1.
    [Google Scholar]
  6. Anfinson, O. A., A. L.Leier, R.Gaschnig, A. F.Embry, K.Dewing, and M.Colpron. 2012. “U–Pb and Hf Isotopic Data from Franklinian Basin Strata: Insights into the Nature of Crockerland and the Timing of Accretion, Canadian Arctic Islands.” Canadian Journal of Earth Sciences49: 1316–1328. https://doi.org/10.1139/e2012‐067.
    [Google Scholar]
  7. Anfinson, O. A., M. L.Odlum, K.Piepjohn, et al. 2022. “Provenance Analysis of the Andrée Land Basin and Implications for the Paleogeography of Svalbard in the Devonian.” Tectonics41: 1–28. https://doi.org/10.1029/2021tc007103.
    [Google Scholar]
  8. Augland, L. E., A.Andresen, F.Corfu, N. Y.Agyei‐Dwarko, and A. N.Larionov. 2014. “The Bratten–Landegode Gneiss Complex: A Fragment of Laurentian Continental Crust in the Uppermost Allochthon of the Scandinavian Caledonides.” Geological Society, London, Special Publications390: 633–654. https://doi.org/10.1144/sp390.1.
    [Google Scholar]
  9. Augland, L. E., A.Andresen, F.Corfu, and H. K.Daviknes. 2011. “Late Ordovician to Silurian Ensialic Magmatism in Liverpool Land, East Greenland: New Evidence Extending the Northeastern Branch of the Continental Laurentian Magmatic Arc.” Geological Magazine149: 561–577. https://doi.org/10.1017/s0016756811000781.
    [Google Scholar]
  10. Augland, L. E., A.Andresen, F.Corfu, S. L.Simonsen, and T.Andersen. 2012. “The Beiarn Nappe Complex: A Record of Laurentian Early Silurian Arc Magmatism in the Uppermost Allochthon, Scandinavian Caledonides.” Lithos146–147: 233–252. https://doi.org/10.1016/j.lithos.2012.05.016.
    [Google Scholar]
  11. Balašov, J. A., A. M.Teben'kov, Y.Ohta, et al. 1995. “Grenvillian U‐Pb Zircon Ages of Quartz Porphyry and Rhyolite Clasts in a Metaconglomerate at Vimsodden, Southwestern Spitsbergen.” Polar Research14: 291–302. https://doi.org/10.3402/polar.v14i3.6669.
    [Google Scholar]
  12. Baltybaev, S. K.2013. “Svecofennian Orogen of the Fennoscandian Shield: Compositional and Isotopic Zoning and Its Tectonic Interpretation.” Geotectonics47: 452–464. https://doi.org/10.1134/s0016852113060022.
    [Google Scholar]
  13. Barnes, C. G., C. D.Frost, A. S.Yoshinobu, et al. 2007. “Timing of Sedimentation, Metamorphism, and Plutonism in the Helgeland Nappe Complex, North‐Central Norwegian Caledonides.” Geosphere3: 683–703. https://doi.org/10.1130/ges00138.1.
    [Google Scholar]
  14. Bea, F., G. B.Fershtater, and P.Montero. 2002. “Granitoids of the Uralides: Implications for the Evolution of the Orogen.” In Mountain Building in the Uralides: Pangea to the Present, edited by D. Brown, C. Juhlin and V. Puchkov, 132, 211–232. Washington, DC: American Geophysical Union. https://doi.org/10.1029/132gm11.
    [Google Scholar]
  15. Beranek, L. P., D. G.Gee, and C. M.Fisher. 2020. “Detrital Zircon U‐Pb‐Hf Isotope Signatures of Old Red Sandstone Strata Constrain the Silurian to Devonian Paleogeography, Tectonics, and Crustal Evolution of the Svalbard Caledonides.” GSA Bulletin132: 1987–2003. https://doi.org/10.1130/b35318.1.
    [Google Scholar]
  16. Bibikova, E. V., S. V.Bogdanova, V. A.Glebovitsky, S.Claesson, and T.Skiold. 2004. “Evolution of the Belomorian Belt: NORDSIM U–Pb Zircon Dating of the Chupa Paragneisses, Magmatism, and Metamorphic Stages.” Petrology12: 195–210.
    [Google Scholar]
  17. Bingen, B., Ø.Skår, M.Marker, et al. 2005. “Timing of Continental Building in the Sveconorweigan Orogen, SW Scandinavia.” Norwegian Journal of Geology85: 87–116.
    [Google Scholar]
  18. Bingen, B., G.Viola, C.Möller, J.Vander Auwera, A.Laurent, and K.Yi. 2021. “The Sveconorwegian Orogeny.” Gondwana Research90: 273–313. https://doi.org/10.1016/j.gr.2020.10.014.
    [Google Scholar]
  19. Blakey, R.2021. “Paleotectonic and Paleogeographic History of the Arctic Region.” Atlantic Geology57: 007–039. https://doi.org/10.4138/atlgeol.2021.002.
    [Google Scholar]
  20. Braathen, A., H. D.MaherJr., T. E.Haabet, S. E.Kristensen, B. O.Tørudbakken, and D.Worsley. 1999. “Caledonian Thrusting on Bjørnøya: Implications for Palaeozoic and Mesozoic Tectonism of the Western Barents Shelf.” Norwegian Journal of Geology79: 57–68.
    [Google Scholar]
  21. Brekke, H., H. I.Sjulstad, C.Magnus, and R. W.Williams. 2001. “Sedimentary Environments Offshore Norway — An Overview.” In Sedimentary Environments Offshore Norway — Palaeozoic to Recent, Proceedings of the Norwegian Petroleum Society Conference, edited by O. J.Martinsen and T.Dreyer, vol. 10, 7–37. Bergen, Norway: Elsevier. https://doi.org/10.1016/s0928‐8937(01)80006‐0.
    [Google Scholar]
  22. Bridge, J. S.2006. “Fluvial Facies Models: Recent Developments.” In Facies Models Revisited. SEPM Society for Sedimentary Geology, 84, edited by H. W.Posamentier and R. G.Walker. Tulsa, Oklahoma: SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.06.84.0085.
    [Google Scholar]
  23. Bridge, J. S., and S. D.Mackey. 1993. “A Revised Alluvial Stratigraphy Model.” In Alluvial Sedimentation, edited by M.Marzo, and C.Puigdefábregas, 317–336. UK: Oxford. https://doi.org/10.1002/9781444303995.ch22.
    [Google Scholar]
  24. Cohen, K. M., S. C.Finney, P. L.Gibbard, and J. X.Fan. 2013. “Updated. The ICS International Chronostratigraphic Chart.” Episodes36: 199–204. https://doi.org/10.18814/epiiugs/2013/v36i3/002.
    [Google Scholar]
  25. Corfu, F.2004a. “U‐Pb Age, Setting and Tectonic Significance of the Anorthosite‐Mangerite‐Charnockite‐Granite Suite, Lofoten‐Vesteralen, Norway.” Journal of Petrology45: 1799–1819. https://doi.org/10.1093/petrology/egh034.
    [Google Scholar]
  26. Corfu, F.2004b. “U–Pb Geochronology of the Leknes Group: An Exotic Early Caledonian Metasedimentary Assemblage Stranded on Lofoten Basement, Northern Norway.” Journal of the Geological Society161: 619–627. https://doi.org/10.1144/0016‐764903‐066.
    [Google Scholar]
  27. Corfu, F., S. G.Bergh, K.Kullerud, and P. E. B.Armitage. 2003. “Preliminary U‐Pb Geochronology in the West Troms Basement Complex, North Norway: Archean and Palaeoproterozoic Events and Younger Overprints.” Geological Survey of Norway Bulletin441: 61–72.
    [Google Scholar]
  28. Corfu, F., D.Gasser, and D. M.Chew. 2014. “New Perspectives on the Caledonides of Scandinavia and Related Areas: Introduction.” Geological Society, London, Special Publications390: 1–8. https://doi.org/10.1144/sp390.28.
    [Google Scholar]
  29. Corfu, F., J. M.Hanchar, P. W. O.Hoskin, and P. D.Kinny. 2003. “Atlas of Zircon Textures.” Reviews in Mineralogy and Geochemistry53: 469–500. https://doi.org/10.2113/0530469.
    [Google Scholar]
  30. Corfu, F., and E. H.Hartz. 2011. “U–Pb Geochronology in Liverpool Land and Canning Land, East Greenland — The Complex Record of a Polyphase Caledonian Orogeny.” Canadian Journal of Earth Sciences48: 473–494. https://doi.org/10.1139/e10‐066.
    [Google Scholar]
  31. Corfu, F., E. J. K.Ravna, and K.Kullerud. 2003. “A Late Ordovician U‐Pb Age for the Troms? Nappe Eclogites, Uppermost Allochthon of the Scandinavian Caledonides.” Contributions to Mineralogy and Petrology145: 502–513. https://doi.org/10.1007/s00410‐003‐0466‐x.
    [Google Scholar]
  32. Dalhoff, F., and L.Stemmerik. 2000. “Depositional History of the Fluvial Lower Carboniferous Sortebakker Formation, Wandel Sea Basin, Eastern North Greenland.” Geology of Greenland Survey Bulletin187: 64–77.
    [Google Scholar]
  33. Dallmann, W. K.1999. Lithostratigraphic Lexicon of Svalbard. Tromsø, Norway: Norwegian Polar Institute.
    [Google Scholar]
  34. Dallmann, W. K.2019. Geoscience Atlas of Svalbard. 2nd ed. Tromsø, Norway: Norwegian Polar Institute.
    [Google Scholar]
  35. Dallmann, W. K., and A. A.Krasil'Shchikov. 1996. Geological Map of Svalbard. 1: 50 000, Sheet D20G. Bjørnøya. Norwegian Polar Institute 27.
  36. Dallmann, W. K., and K.Piepjohn. 2020. The Architecture of Svalbard's Devonian Basins and the Svalbardian Orogenic Event. Trondheim, Norway: Geological Survey of Norway.
    [Google Scholar]
  37. Dallmann, W. K., and K.Piepjohn. 2024. “Some Issues Related to the Svalbardian Tectonic Event (Ellesmerian Orogeny) in Svalbard.” Polar Research43: 10291. https://doi.org/10.33265/polar.v43.10291.
    [Google Scholar]
  38. Daly, J. S., V. V.Balagansky, M. J.Timmerman, et al. 2001. “Ion Microprobe U‐Pb Zircon Geochronology and Isotopic Evidence for a Trans‐Crustal Suture in the Lapland–Kola Orogen, Northern Fennoscandian Shield.” Precambrian Research105: 289–314. https://doi.org/10.1016/s0301‐9268(00)00116‐9.
    [Google Scholar]
  39. Dobbs, S. C., M. A.Malkowski, T. M.Schwartz, Z. T.Sickmann, and S. A.Graham. 2022. “Depositional Controls on Detrital Zircon Provenance: An Example From Upper Cretaceous Strata, Southern Patagonia.” Frontiers in Earth Science10: 1–25. https://doi.org/10.3389/feart.2022.824930.
    [Google Scholar]
  40. Domeier, M., and T. H.Torsvik. 2014. “Plate Tectonics in the Late Paleozoic.” Geoscience Frontiers5: 303–350. https://doi.org/10.1016/j.gsf.2014.01.002.
    [Google Scholar]
  41. Doré, A. G., E. R.Lundin, A.Gibbons, T. O.Sømme, and B. O.Tørudbakken. 2015. “Transform Margins of the Arctic: A Synthesis and Re‐Evaluation.” Geological Society, London, Special Publications431: 63–94. https://doi.org/10.1144/sp431.8.
    [Google Scholar]
  42. Elling, F. J., C.Spiegel, S.Estrada, et al. 2016. “Origin of Bentonites and Detrital Zircons of the Paleocene Basilika Formation.” Svalbard. Frontiers in Earth Science4: 1–23. https://doi.org/10.3389/feart.2016.00073.
    [Google Scholar]
  43. Embry, A., and B.Beauchamp. 2019. “Sverdrup Basin.” In The Sedimentary Basins of the United States and Canada, 559–592. Amsterdam: Elsevier. https://doi.org/10.1016/b978‐0‐444‐63895‐3.00014‐0.
    [Google Scholar]
  44. Embry, A. F.1988. MIddle‐Upper Devonian Sedimentation in the Canadian Arctic Islands and the Ellesmerian Orogeny, Devonian of the World: Proceedings of the 2nd International Symposium on the Devonian System – Memoir 14, Pp. 15–28.
  45. Ernst, R., and W.Bleeker. 2010. “Large Igneous Provinces (LIPs), Giant Dyke Swarms, and Mantle Plumes: Significance for Breakup Events Within Canada and Adjacent Regions From 2.5 Ga to the Present This Article Is One of a Selection of Papers Published in This Special Issue on the Theme Lithoprobe—Parameters, Processes, and the Evolution of a Continent.Lithoprobe Contribution 1482. Geological Survey of Canada Contribution 20100072.” Canadian Journal of Earth Sciences47: 695–739. https://doi.org/10.1139/e10‐025.
    [Google Scholar]
  46. Ernst, R., and K. L.Buchan. 2001. Mantle Plumes: Their Identification Through Time. Boulder, CO: Geological Society of America.
    [Google Scholar]
  47. Ernst, R. E.2014. Introduction, Definition, and General Characteristics, Large Igneous Provinces, 1–39. Cambridge: Cambridge University Press. https://doi.org/10.1017/cbo9781139025300.001.
    [Google Scholar]
  48. Faleide, J. I., E.Vågnes, and S. T.Gudlaugsson. 1993. “Late Mesozoic‐Cenozoic Evolution of the South‐Western Barents Sea in a Regional Rift‐Shear Tectonic Setting.” Marine and Petroleum Geology10: 186–214. https://doi.org/10.1016/0264‐8172(93)90104‐z.
    [Google Scholar]
  49. Fedo, C. M., K. N.Sircomebe, and R. H.Rainbrid. 2003. “Detrital Zircon Analysis of the Sedimentary Record.” Reviews in Mineralogy and Geochemistry53: 277–303. https://doi.org/10.2113/0530277.
    [Google Scholar]
  50. Flowerdew, M. J., E. J.Fleming, D. M.Chew, et al. 2023. “The Importance of Eurekan Mountains on Cenozoic Sediment Routing on the Western Barents Shelf.” Geosciences13: 1–25. https://doi.org/10.3390/geosciences13030091.
    [Google Scholar]
  51. Flowerdew, M. J., E. J.Fleming, A. C.Morton, D.Frei, D. M.Chew, and J. S.Daly. 2019. “Assessing Mineral Fertility and Bias in Sedimentary Provenance Studies: Examples From the Barents Shelf.” Geological Society, London, Special Publications484: 255–274. https://doi.org/10.1144/sp484.11.
    [Google Scholar]
  52. Fonneland, H. C., T.Lien, O. J.Martinsen, R. B.Pedersen, and J.Košler. 2004. “Detrital Zircon Ages: A Key to Understanding the Deposition of Deep Marine Sandstones in the Norwegian Sea.” Sedimentary Geology164: 147–159. https://doi.org/10.1016/j.sedgeo.2003.09.005.
    [Google Scholar]
  53. Foster‐Baril, Z. S., and D. F.Stockli. 2023. “Detrital Zircon and Apatite U‐Pb Provenance and Drainage Evolution of the Newark Basin During Progressive Rifting and Continental Breakup Along the Eastern North American Margin, USA.” Geosphere19: 1452–1475. https://doi.org/10.1130/ges02610.1.
    [Google Scholar]
  54. Friend, P. F., and B. P. J.Williams. 2000. New Perspectives on the Old Red Sandstone, Special Publications, 180. London: Geological Society. https://doi.org/10.1144/GSL.SP.2000.180.
    [Google Scholar]
  55. Frisch, T., and P. A.Hunt. 1988. “U‐Pb Zircon and Monazite Ages From the Precambrian Shield of Ellesmere and Devon Islands, Arctic Archipelago.” Geological Survey of Canada Paper88: 117–125.
    [Google Scholar]
  56. Fyhn, M. B. W., and J. R.Hopper. 2021. “NE Greenland Composite Tectono‐Sedimentary Element, Northern Greenland Sea and Fram Strait.” Geological Society, London, Memoirs57: M57–2017. https://doi.org/10.1144/m57‐2017‐12.
    [Google Scholar]
  57. Gaál, G., and R.Gorbatschev. 1987. “An Outline of the Precambrian Evolution of the Baltic Shield.” Precambrian Research35: 15–52. https://doi.org/10.1016/0301‐9268(87)90044‐1.
    [Google Scholar]
  58. Gasser, D., and A.Andresen. 2013. “Caledonian Terrane Amalgamation of Svalbard: Detrital Zircon Provenance of Mesoproterozoic to Carboniferous Strata From Oscar II Land, Western Spitsbergen.” Geological Magazine150: 1103–1126. https://doi.org/10.1017/s0016756813000174.
    [Google Scholar]
  59. Gawthorpe, R. L., and M. R.Leeder. 2000. “Tectono‐Sedimentary Evolution of Active Extensional Basins.” Basin Research12: 195–218. https://doi.org/10.1111/j.1365‐2117.2000.00121.x.
    [Google Scholar]
  60. Gee, D. G., P.‐G.Andréasson, H.Lorenz, D.Frei, and J.Majka. 2015. “Detrital Zircon Signatures of the Baltoscandian Margin Along the Arctic Circle Caledonides in Sweden: The Sveconorwegian Connection.” Precambrian Research265: 40–56. https://doi.org/10.1016/j.precamres.2015.05.012.
    [Google Scholar]
  61. Gee, D. G., and V.Pease. 2004. “The Neoproterozoic Timanide Orogen of Eastern Baltica: Introduction.” Geological Society, London, Memoirs30: 1–3. https://doi.org/10.1144/gsl.Mem.2004.030.01.01.
    [Google Scholar]
  62. Gernigon, L., M.Brönner, D.Roberts, O.Olesen, A.Nasuti, and T.Yamasaki. 2014. “Crustal and Basin Evolution of the Southwestern Barents Sea: From Caledonian Orogeny to Continental Breakup.” Tectonics33: 347–373. https://doi.org/10.1002/2013tc003439.
    [Google Scholar]
  63. Gilmullina, A., T. G.Klausen, N. W.Paterson, A.Suslova, and C. H.Eide. 2021. “Regional Correlation and Seismic Stratigraphy of Triassic Strata in the Greater Barents Sea: Implications for Sediment Transport in Arctic Basins.” Basin Research33: 1546–1579. https://doi.org/10.1111/bre.12526.
    [Google Scholar]
  64. Gilotti, J. A., W. C.McClelland, K.Piepjohn, and W.von Gosen. 2018. “U–Pb Geochronology of Paleoproterozoic Gneiss from Southeastern Ellesmere Island: Implications for Displacement Estimates on the Wegener Fault.” Arktos4: 1–18. https://doi.org/10.1007/s41063‐018‐0047‐x.
    [Google Scholar]
  65. Gilotti, J. A., A. P.Nutman, and H. K.Brueckner. 2004. “Devonian to Carboniferous Collision in the Greenland Caledonides: U‐Pb Zircon and Sm‐Nd Ages of High‐Pressure and Ultrahigh‐Pressure Metamorphism.” Contributions to Mineralogy and Petrology148: 216–235. https://doi.org/10.1007/s00410‐004‐0600‐4.
    [Google Scholar]
  66. Gilotti, J. A., and W. C.McClelland. 2005. “Leucogranites and the Time of Extension in the East Greenland Caledonides.” Journal of Geology113: 399–417. https://doi.org/10.1086/430240.
    [Google Scholar]
  67. Gjelberg, J. G.1978. The Upper Devonian (Famennian)/Middle Carboniferous (?Muscovian) Strata on Bjørnøya (Svalbard) – A Study in Alluvial and Coastal Marine Sedimentology, Sedimentology. Bergen, Norway: University of Bergen.
    [Google Scholar]
  68. Gjelberg, J. G.1981. Upper Devonian (Famennian)‐Middle Carboniferous Succession of Bjørnøya: A Study of Ancient Alluvial and Coastal Marine Sedimentation. Vol. 174. Oslo, Norway: Norsk Polarinstitut Skrifter.
    [Google Scholar]
  69. Gjelberg, J. G., and R. J.Steel. 1981. “An Outline of Lower‐Middle Carboniferous Sedimentation on Svalbard: Effects of Tectonic, Climatic and Sea Level Changes in Rift Basin Sequences.” In Geology of the North Atlantic Borderlands, edited by J. W.Kerr, 543–563. Calgary: Canadian Society of Petroleum Geology.
    [Google Scholar]
  70. Gjelberg, J. G., and R. J.Steel. 1983. “Middle Carboniferous Marine Transgression, Bjørnøya, Svalbard: Facies Sequences From an Interplay of Sea Level Changes and Tectonics.” Geological Journal18: 1–19.
    [Google Scholar]
  71. Golonka, J.2020. “Late Devonian Paleogeography in the Framework of Global Plate Tectonics.” Global and Planetary Change186: 103129. https://doi.org/10.1016/j.gloplacha.2020.103129.
    [Google Scholar]
  72. Goodarzi, F., and Q.Goodbody. 1990. “Nature and Depositional Environment of Devonian Coals From Western Melville Island, Arctic Canada.” International Journal of Coal Geology14: 175–196. https://doi.org/10.1016/0166‐5162(90)90002‐g.
    [Google Scholar]
  73. Gresseth, J. L. S., A.Braathen, C. S.Serck, J. I.Faleide, and P. T.Osmundsen. 2021. “Late Paleozoic Supradetachment Basin Configuration in the Southwestern Barents Sea—Intrabasement Seismic Facies of the Fingerdjupet Subbasin.” Basin Research34: 570–589. https://doi.org/10.1111/bre.12631.
    [Google Scholar]
  74. Grundvåg, S.‐A., M. E.Jelby, K. K.Sliwinska, et al. 2019. “Sedimentology and Palynology of the Lower Cretaceous Succession of Central Spitsbergen: Integration of Subsurface and Outcrop Data.” Norwegian Journal of Geology99: 1–32. https://doi.org/10.17850/njg006.
    [Google Scholar]
  75. Grundvåg, S.‐A., and J.Skorgenes. 2022. “Sedimentology of Neoproterozoic Storm‐Influenced Braid Deltas, Varanger Peninsula, North Norway.” Norwegian Journal of Geology102: 1–49. https://doi.org/10.17850/njg102‐4‐4.
    [Google Scholar]
  76. Grundvåg, S.‐A., M. S.Strand, C.Paulsen, et al. 2023. “The Hambergfjellet Formation on Bjørnøya – Sedimentary Response to Early Permian Tectonics on the Stappen High.” Norwegian Journal of Geology103: 1–38. https://doi.org/10.17850/njg103‐1‐2.
    [Google Scholar]
  77. Gudlaugsson, S. T., J. I.Faleide, S. E.Johansen, and A. J.Breivik. 1998. “Late Palaeozoic Structural Development of the South‐Western Barents Sea.” Marine and Petroleum Geology15: 73–102. https://doi.org/10.1016/s0264‐8172(97)00048‐2.
    [Google Scholar]
  78. Hadlari, T., W. J.Davis, and K.Dewing. 2014. “A Pericratonic Model for the Pearya Terrane as an Extension of the Franklinian Margin of Laurentia, Canadian Arctic.” Geological Society of America Bulletin126: 182–200. https://doi.org/10.1130/b30843.1.
    [Google Scholar]
  79. Harland, W. B.1997. “Proto‐Basement in Svalbard.” Polar Research16: 123–147.
    [Google Scholar]
  80. Harstad, T. S., T.Slagstad, C. L.Kirkland, and M. B. E.Mørk. 2023. “Detrital Zircons of the Vast Triassic Snadd and De Geerdalen Formations, Barents Shelf, Reveal Temporal Changes in Sediment Source.” Norwegian Journal of Geology103: 1–26. https://doi.org/10.17850/njg103‐2‐3.
    [Google Scholar]
  81. Hassaan, M., J. I.Faleide, R. H.Gabrielsen, and F.Tsikalas. 2020. “Carboniferous Graben Structures, Evaporite Accumulations and Tectonic Inversion in the Southeastern Norwegian Barents Sea.” Marine and Petroleum Geology112: 104038. https://doi.org/10.1016/j.marpetgeo.2019.104038.
    [Google Scholar]
  82. Hellman, F. J., D. G.Gee, and P.Witt‐Nilsson. 2001. “Late Archean Basement in the Bangenhuken Complex of the Nordbreen Nappe, Western Ny‐Friesland, Svalbard.” Polar Research20: 49–59. https://doi.org/10.3402/polar.v20i1.6499.
    [Google Scholar]
  83. Henriksen, E., A. E.Ryseth, G. B.Larssen, et al. 2011. “Chapter 10 – Tectonostratigraphy of the Greater Barents Sea: Implications for Petroleum Systems.” In Arctic Petroleum Geology, edited by A. M.Spencer, A. F.Embry, D. L.Gautier, A. V.Stoupakova, and K.Sørensen, vol. 35, no. 1: 163–195. London, UK: Geological Society of London. https://doi.org/10.1144/M35.10.
    [Google Scholar]
  84. Henriksen, N., A. K.Higgins, F.Kalsbeek, and T. C. R.Pulvertaft. 2009. “Greenland From Archaean to Quaternary. Descriptive Text to the 1995 Geological Map of Greenland, 1:2 500 000. 2nd Edition.” Geological Survey of Denmark and Greenland Bulletin18: 1–126. https://doi.org/10.34194/geusb.v18.4993.
    [Google Scholar]
  85. Higgins, A. K., N. J.Soper, and A. G.Leslie. 2000. “The Ellesmerian and Caledonian Orogenic Belts of Greenland.” Polarforschung68: 141–151.
    [Google Scholar]
  86. Hölttä, P., V.Balagansky, A. A.Garde, et al. 2008. “Archean of Greenland and Fennoscandia.” Episodes31: 13–19. https://doi.org/10.18814/epiiugs/2008/v31i1/003.
    [Google Scholar]
  87. Horn, G., and A. K.Orvin. 1928. “Geology of Bear Island: With Special Reference to the Coal Deposits, and With an Account of the History of the Island.” In Skrifter Om Svalbard Og Ishavet Nr.15. Oslo, Norway: Norges Svalbard‐ og Ishav‐ Undersøkelser. https://hdl.handle.net/11250/173572.
    [Google Scholar]
  88. Jakobsson, M., L.Mayer, B.Coakley, et al. 2012. “The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0.” Geophysical Research Letters39: L052219. https://doi.org/10.1029/2012gl052219.
    [Google Scholar]
  89. Janocha, J., F.Wesenlund, O.Thießen, S.‐A.Grundvåg, J.‐B.Koehl, and E. P.Johannessen. 2024. “Depositional Environments and Source Rock Potential of Some Upper Palaeozoic (Devonian) Coals on Bjørnøya, Western Barents Shelf.” Marine and Petroleum Geology163: 106768. https://doi.org/10.1016/j.marpetgeo.2024.106768.
    [Google Scholar]
  90. Johannessen, E. P., and R. J.Steel. 1992. “Mid‐Carboniferous Extension and Rift‐Infill Sequences in the Billefjorden Trough, Svalbard.” Norwegian Journal of Geology72: 35–48.
    [Google Scholar]
  91. Johansson, Å.2001. “The Eskolabreen Granitoids Revisited – An Ion Microprobe Study of Complex Zircons From Late Palaeoproterozoic Granitoids Within the Ny Friesland Caledonides, Svalbard.” GFF123: 1–5. https://doi.org/10.1080/11035890101231001.
    [Google Scholar]
  92. Johansson, Å., A. N.Larionov, D. G.Gee, Y.Ohta, A. M.Tebenkov, and S.Sandelin. 2004. “Grenvillian and Caledonian Tectono‐Magmatic Activity in Northeasternmost Svalbard.” Geological Society, London, Memoirs30: 207–232. https://doi.org/10.1144/gsl.Mem.2004.030.01.17.
    [Google Scholar]
  93. Johansson, Å., A. N.Larionov, A. M.Tebenkov, D. G.Gee, M. J.Whitehouse, and J.Vestin. 2000. “Grenvillian Magmatism of Western and Central Nordaustlandet, Northeastern Svalbard.” Transactions of the Royal Society of Edinburgh: Earth Sciences90: 221–254. https://doi.org/10.1017/s0263593300002583.
    [Google Scholar]
  94. Johansson, Å., A. N.Larionov, A. M.Tebenkov, Y.Ohta, and D. G.Gee. 2002. “Caledonian Granites of Western and Central Nordaustlandet, Northeast Svalbard.” GFF124: 135–148. https://doi.org/10.1080/11035890201243135.
    [Google Scholar]
  95. Kaiser, H.1970. “Die Oberdevon‐Flora der Bäreninsel: 3.Mikroflora des höheren Oberdevons und des Unterkarbons.” Palaeontographica129: 71–124.
    [Google Scholar]
  96. Kalsbeek, F., and H. F.Jepsen. 1984. “The Late Proterozoic Zig‐Zag dal Basalt Formation of Eastern North Greenland.” Journal of Petrology25: 644–664. https://doi.org/10.1093/petrology/25.3.644.
    [Google Scholar]
  97. Kalsbeek, F., A. P.Nutman, J. C.Escher, et al. 1999. “Geochronology of Granitic and Supracrustal Rocks from the Northern Part of the East Greenland Caledonides: Ion Microprobe U–Pb Zircon Ages.” Geology of Greenland Survey Bulletin184: 31–48. https://doi.org/10.34194/ggub.v184.5228.
    [Google Scholar]
  98. Kalsbeek, F., A. P.Nutman, and P. N.Taylor. 1993. “Palaeoproterozoic Basement Province in the Caledonian Fold Belt of North‐East Greenland.” Precambrian Research63: 163–178. https://doi.org/10.1016/0301‐9268(93)90010‐y.
    [Google Scholar]
  99. Kirkland, C. L., J. S.Daly, and M. J.Whitehouse. 2005. “Early Silurian Magmatism and the Scandian Evolution of the Kalak Nappe Complex, Finnmark, Arctic Norway.” Journal of the Geological Society162: 985–1003. https://doi.org/10.1144/0016‐764904‐124.
    [Google Scholar]
  100. Kirkland, C. L., J. S.Daly, and M. J.Whitehouse. 2008. “Basement–Cover Relationships of the Kalak Nappe Complex, Arctic Norwegian Caledonides and Constraints on Neoproterozoic Terrane Assembly in the North Atlantic Region.” Precambrian Research160: 245–276. https://doi.org/10.1016/j.precamres.2007.07.006.
    [Google Scholar]
  101. Kirkland, C. L., V.Pease, M. J.Whitehouse, and J. R.Ineson. 2009. “Provenance Record From Mesoproterozoic‐Cambrian Sediments of Peary Land, North Greenland: Implications for the Ice‐Covered Greenland Shield and Laurentian Palaeogeography.” Precambrian Research170: 43–60. https://doi.org/10.1016/j.precamres.2008.11.006.
    [Google Scholar]
  102. Kirkland, C. L., J.Stephen Daly, and M. J.Whitehouse. 2007. “Provenance and Terrane Evolution of the Kalak Nappe Complex, Norwegian Caledonides: Implications for Neoproterozoic Paleogeography and Tectonics.” Journal of Geology115: 21–41. https://doi.org/10.1086/509247.
    [Google Scholar]
  103. Klitzke, P., D.Franke, A.Ehrhardt, et al. 2019. “The Paleozoic Evolution of the Olga Basin Region, Northern Barents Sea: A Link to the Timanian Orogeny.” Geochemistry, Geophysics, Geosystems20: 614–629. https://doi.org/10.1029/2018gc007814.
    [Google Scholar]
  104. Koshnaw, R. I., B. K.Horton, D. F.Stockli, D. E.Barber, and M. Y.Tamar‐Agha. 2019. “Sediment Routing in the Zagros Foreland Basin: Drainage Reorganization and a Shift From Axial to Transverse Sediment Dispersal in the Kurdistan Region of Iraq.” Basin Research32: 688–715. https://doi.org/10.1111/bre.12391.
    [Google Scholar]
  105. Kuznetsov, N. B., L. M.Natapov, E. A.Belousova, S. Y.O'Reilly, and W. L.Griffin. 2010. “Geochronological, Geochemical and Isotopic Study of Detrital Zircon Suites From Late Neoproterozoic Clastic Strata Along the NE Margin of the East European Craton: Implications for Plate Tectonic Models.” Gondwana Research17: 583–601. https://doi.org/10.1016/j.gr.2009.08.005.
    [Google Scholar]
  106. Lahtinen, R., A. A.Garde, and V. A.Melezhik. 2008. “Paleoproterozoic Evolution of Fennoscandia and Greenland.” Episodes31: 20–28. https://doi.org/10.18814/epiiugs/2008/v31i1/004.
    [Google Scholar]
  107. Larsen, P.‐H., and H.‐J.Bengaard. 1991. “Devonian Basin Initiation in East Greenland: A Result of Sinistral Wrench Faulting and Caledonian Extensional Collapse.” Journal of the Geological Society148: 355–368. https://doi.org/10.1144/gsjgs.148.2.0355.
    [Google Scholar]
  108. Larsen, P.‐H., H.Olsen, and J. A.Clack. 2008. “The Devonian Basin in East Greenland—Review of Basin Evolution and Vertebrate Assemblages.” In Memoir 202: The Greenland Caledonides: Evolution of the Northeast Margin of Laurentia, edited by A. K.Higgins, J. A.Gilotti, and M. P.Smith, 273–292. Boulder, Colorado: Geological Society of America. https://doi.org/10.1130/2008.1202(11).
    [Google Scholar]
  109. Lawrence, R. L., R.Cox, R. W.Mapes, and D. S.Coleman. 2011. “Hydrodynamic Fractionation of Zircon Age Populations.” Geological Society of America Bulletin123: 295–305. https://doi.org/10.1130/b30151.1.
    [Google Scholar]
  110. Levchenkov, O. A., L. K.Levsky, Ø.Nordgulen, et al. 1995. “U‐Pb zircon ages from Sørvaranger, Norway, and the western part of the Kola Peninsula, Russia.” In Geology of the Eastern Finnmark – Western Kola Peninsula Region: Proceedings of the 1st International Barents Symposium, “Geology and Minerals in the Barents Region”, Kirkenes, Norway, October 1993, edited by D.Roberts and Ø.Nordgulen. Trondheim: Geological Survey of Norway.
    [Google Scholar]
  111. Li, Z. X., S. V.Bogdanova, A. S.Collins, et al. 2008. “Assembly, Configuration, and Break‐Up History of Rodinia: A Synthesis.” Precambrian Research160: 179–210. https://doi.org/10.1016/j.precamres.2007.04.021.
    [Google Scholar]
  112. Lopes, G., G.Mangerud, G.Clayton, and J. O.Vigran. 2021. “Palynostratigraphic Reassessment of the Late Devonian of Bjørnøya, Svalbard.” Review of Palaeobotany and Palynology286: 104376. https://doi.org/10.1016/j.revpalbo.2020.104376.
    [Google Scholar]
  113. Lorenz, H., D. G.Gee, E.Korago, et al. 2013. “Detrital Zircon Geochronology of Palaeozoic Novaya Zemlya – A Key to Understanding the Basement of the Barents Shelf.” Terra Nova25: 496–503. https://doi.org/10.1111/ter.12064.
    [Google Scholar]
  114. Lorenz, H., D. G.Gee, A. N.Larionov, and J.Majka. 2012. “The Grenville–Sveconorwegian Orogen in the High Arctic.” Geological Magazine149: 875–891. https://doi.org/10.1017/s0016756811001130.
    [Google Scholar]
  115. Lowey, G. W.2024. “Bias in Detrital Zircon Geochronology: A Review of Sampling and Non‐Sampling Errors.” International Geology Review66: 1259–1279. https://doi.org/10.1080/00206814.2023.2233017.
    [Google Scholar]
  116. Malone, S. J., W. C.McClelland, W. v.Gosen, and K.Piepjohn. 2019. “Detrital Zircon U‐Pb and Lu‐Hf Analysis of Paleozoic Sedimentary Rocks From the Pearya Terrane and Ellesmerian Fold Belt (northern Ellesmere Island): A Comparison With Circum‐Arctic Datasets and Their Implications on Terrane Tectonics.” In Circum‐Arctic Structural Events: Tectonic Evolution of the Arctic Margins and Trans‐Arctic Links with Adjacent Orogens, edited by K.Piepjohn, J. V.Strauss, L.Reinhardt, and W. C.McClelland, 231–254. Boulder, Colorado: Geological Society of America. https://doi.org/10.1130/2018.2541(12).
    [Google Scholar]
  117. Malone, S. J., W. C.McClelland, W.von Gosen, and K.Piepjohn. 2014. “Proterozoic Evolution of the North Atlantic–Arctic Caledonides: Insights From Detrital Zircon Analysis of Metasedimentary Rocks From the Pearya Terrane, Canadian High Arctic.” Journal of Geology122: 623–647. https://doi.org/10.1086/677902.
    [Google Scholar]
  118. Malone, S. J., W. C.McClelland, W.von Gosen, and K.Piepjohn. 2017. “The Earliest Neoproterozoic Magmatic Record of the Pearya Terrane, Canadian High Arctic: Implications for Caledonian Terrane Reconstructions.” Precambrian Research292: 323–349. https://doi.org/10.1016/j.precamres.2017.01.006.
    [Google Scholar]
  119. Malusà, M. G., A.Carter, M.Limoncelli, I. M.Villa, and E.Garzanti. 2013. “Bias in Detrital Zircon Geochronology and Thermochronometry.” Chemical Geology359: 90–107. https://doi.org/10.1016/j.chemgeo.2013.09.016.
    [Google Scholar]
  120. Malusà, M. G., A.Resentini, and E.Garzanti. 2016. “Hydraulic Sorting and Mineral Fertility Bias in Detrital Geochronology.” Gondwana Research31: 1–19. https://doi.org/10.1016/j.gr.2015.09.002.
    [Google Scholar]
  121. Marsh, J. H., and D. F.Stockli. 2015. “Zircon U–Pb and Trace Element Zoning Characteristics in an Anatectic Granulite Domain: Insights From LASS‐ICP‐MS Depth Profiling.” Lithos239: 170–185. https://doi.org/10.1016/j.lithos.2015.10.017.
    [Google Scholar]
  122. Marshall, J. E. A., O. P.Tel'nova, and C. M.Berry. 2019. “Devonian and Early Carboniferous Coals and the Evolution of Wetlands.” Vestnik of Institute of Geology of Komi Science Center of Ural Branch RAS10: 12–15. https://doi.org/10.19110/2221‐1381‐2019‐10‐12‐15.
    [Google Scholar]
  123. Martin, A. P., D. J.Condon, A. R.Prave, V. A.Melezhik, A.Lepland, and A. E.Fallick. 2013. “Dating the Termination of the Palaeoproterozoic Lomagundi‐Jatuli Carbon Isotopic Event in the North Transfennoscandian Greenstone Belt.” Precambrian Research224: 160–168. https://doi.org/10.1016/j.precamres.2012.09.010.
    [Google Scholar]
  124. Martinsen, O. J., A. L. F.Ryseth, W.Helland‐Hansen, H.Flesche, G.Torkildsen, and S.Idil. 1999. “Stratigraphic Base Level and Fluvial Architecture: Ericson Sandstone (Campanian), rock Springs Uplift, SW Wyoming, USA.” Sedimentology46: 235–263. https://doi.org/10.1046/j.1365‐3091.1999.00208.x.
    [Google Scholar]
  125. McClelland, W. C., J. A.Gilotti, T.Ramarao, L.Stemmerik, and F.Dalhoff. 2016. “Carboniferous Basin in Holm Land Records Local Exhumation of the North‐East Greenland Caledonides: Implications for the Detrital Zircon Signature of a Collisional Orogen.” Geosphere12: 925–947. https://doi.org/10.1130/ges01284.1.
    [Google Scholar]
  126. McClelland, W. C., J. V.Strauss, J. A.Gilotti, and M.Colpron. 2023. “Paleozoic Evolution of the Northern Laurentian Margin: Evaluating Links Between the Caledonian, Ellesmerian, and Cordilleran Orogens.” In Laurentia: Turning Points in the Evolution of a Continent: Geological Society of America Memoir 220, edited by S. J.Whitmeyer, M. L.Williams, D. A.Kellett, and B.Tikoff, 605–633. Boulder, Colorado: Geological Society of America. https://doi.org/10.1130/2022.1220(30).
    [Google Scholar]
  127. McKerrow, W. S., C.Mac Niocaill, and J. F.Dewey. 2000. “The Caledonian Orogeny Redefined.” Journal of the Geological Society157: 1149–1154. https://doi.org/10.1144/jgs.157.6.1149.
    [Google Scholar]
  128. Möller, C., and J.Andersson. 2018. “Metamorphic Zoning and Behaviour of an Underthrusting Continental Plate.” Journal of Metamorphic Geology36: 567–589. https://doi.org/10.1111/jmg.12304.
    [Google Scholar]
  129. Mørk, A., J. G.Gjelberg, and D.Worsley. 2014. Bjørnøya: An Upper Paleozoic‐Triassic Window Into the Barents Shelf. Trondheim, Norway: Geological Society of Norway.
    [Google Scholar]
  130. Myhre, P. I., F.Corfu, and A.Andresen. 2009. “Caledonian Anatexis of Grenvillian Crust: A U/Pb Study of Albert I Land, NW Svalbard.” Norwegian Journal of Geology89: 173–191.
    [Google Scholar]
  131. Nutman, A. P., P. R.Dawes, F.Kalsbeek, and M. A.Hamilton. 2008. “Palaeoproterozoic and Archaean Gneiss Complexes in Northern Greenland: Palaeoproterozoic Terrane Assembly in the High Arctic.” Precambrian Research161: 419–451. https://doi.org/10.1016/j.precamres.2007.09.006.
    [Google Scholar]
  132. Nutman, A. P., and F.Kalsbeek. 1994. “Search for Archaean Basement in the Caledonian Fold Belt of North‐East Greenland.” Report, Geological Survey of Greenland162: 129–133. https://doi.org/10.34194/rapggu.v162.8254.
    [Google Scholar]
  133. Olaussen, S., S.‐A.Grundvåg, K.Senger, et al. 2024. “Svalbard Composite Tectono‐Sedimentary Element, Barents Sea.” Geological Society, London, Memoirs57: 1–24. https://doi.org/10.1144/m57‐2021‐36.
    [Google Scholar]
  134. Olsen, H.1990. “Astronomical Forcing of Meandering River Behaviour: Milankovitch Cycles in Devonian of East Greenland.” Palaeogeography, Palaeoclimatology, Palaeoecology79: 99–115. https://doi.org/10.1016/0031‐0182(90)90107‐i.
    [Google Scholar]
  135. Olsen, H.1993. “Sedimentary Basin Analysis of the Continental Devonian Basin in North‐East Greenland.” Bulletin. Grønlands Geologiske Undersøgelse168: 1–80. https://doi.org/10.34194/bullggu.v168.6724.
    [Google Scholar]
  136. Olsen, H., and P. H.Larsen. 1993. “Structural and Climatic Controls on Fluvial Depositional Systems: Devonian, North‐East Greenland.” In Alluvial Sedimentation, edited by M.Marzo and C.Puigdefábregas, 401–423. Oxford, UK: Blackwell Scientific Publications. https://doi.org/10.1002/9781444303995.ch26.
    [Google Scholar]
  137. Oordt, A. J., G. S.Soreghan, L.Stemmerik, and L. A.Hinnov. 2020. “A Record of Dust Deposition in Northern, Mid‐Latitude Pangaea During Peak Icehouse Conditions of the Late Paleozoic Ice Age.” Journal of Sedimentary Research90: 337–363. https://doi.org/10.2110/jsr.2020.15.
    [Google Scholar]
  138. Osmundsen, P. T., and T. B.Andersen. 2001. “The Middle Devonian Basins of Western Norway: Sedimentary Response to Large‐Scale Transtensional Tectonics?” Tectonophysics332: 51–68. https://doi.org/10.1016/s0040‐1951(00)00249‐3.
    [Google Scholar]
  139. Paulsson, O., and P.‐G.Andréasson. 2002. “Attempted Break‐up of Rodinia at 850 Ma: Geochronological Evidence From the Seve–Kalak Superterrane, Scandinavian Caledonides.” Journal of the Geological Society159: 751–761. https://doi.org/10.1144/0016‐764901‐156.
    [Google Scholar]
  140. Pease, V., J. H.Scarrow, I. G. N.Silva, and A.Cambeses. 2016. “Devonian Magmatism in the Timan Range, Arctic Russia — Subduction, Post‐Orogenic Extension, or Rifting?” Tectonophysics691: 185–197. https://doi.org/10.1016/j.tecto.2016.02.002.
    [Google Scholar]
  141. Petersen, T. G., T. B.Thomsen, S.Olaussen, and L.Stemmerik. 2016. “Provenance Shifts in an Evolving Eurekan Foreland Basin: The Tertiary Central Basin, Spitsbergen.” Journal of the Geological Society173: 634–648. https://doi.org/10.1144/jgs2015‐076.
    [Google Scholar]
  142. Pettersson, C. H., V.Pease, and D.Frei. 2009. “U–Pb Zircon Provenance of Metasedimentary Basement of the Northwestern Terrane, Svalbard: Implications for the Grenvillian–Sveconorwegian Orogeny and Development of Rodinia.” Precambrian Research175: 206–220. https://doi.org/10.1016/j.precamres.2009.09.010.
    [Google Scholar]
  143. Pettersson, C. H., V.Pease, and D.Frei. 2010. “Detrital Zircon U–Pb Ages of Silurian–Devonian Sediments From NW Svalbard: A Fragment of Avalonia and Laurentia?” Journal of the Geological Society167: 1019–1032. https://doi.org/10.1144/0016‐76492010‐062.
    [Google Scholar]
  144. Peucat, J. J., Y.Ohta, D. G.Gee, and J.Bernard‐Griffiths. 1989. “U‐Pb, Sr and Nd Evidence for Grenvillian and Latest Proterozoic Tectonothermal Activity in the Spitsbergen Caledonides, Arctic Ocean.” Lithos22: 275–285. https://doi.org/10.1016/0024‐4937(89)90030‐3.
    [Google Scholar]
  145. Piepjohn, K., L.Brinkmann, A.Grewing, and H.Kerp. 2000. “New Data on the Age of Th Uppermost ORS and the Lowermost Post‐ORS Strata in Dickson Land (Spitsbergen) and Implications for the Age of the Svalbardian Deformation.” In New Perspectives on the Old Red Sandstone, edited by P. F.Friend and B. P. J.Williams. London: Geological Society. https://doi.org/10.1144/GSL.SP.2000.180.01.32.
    [Google Scholar]
  146. Piepjohn, K., W.von Gosen, F.Tessensohn, et al. 2015. Tectonic Map of the Ellesmerian and Eurekan Deformation Belts on Svalbard, North Greenland, and the Queen Elizabeth Islands (Canadian Arctic). Arktos 1https://doi.org/10.1007/s41063‐015‐0015‐7.
  147. Pirkle, F. L., and D. A.Podmeyer. 1993. “Zircon: Origin and Uses.” Transactions292: 1–20.
    [Google Scholar]
  148. Plaziat, J.‐C., B.Purser, and E.Philobbos. 1988. “Diversity of Neogene Seismites of the Northwest Red Sea (Egypt): A Characteristic Sedimentary Expression of Rifting.” Tectonophysics153: 295–297. https://doi.org/10.1016/0040‐1951(88)90021‐2.
    [Google Scholar]
  149. Pózer Bue, E., and A.Andresen. 2013. “Constraining Depositional Models in the Barents Sea Region Using Detrital Zircon U–Pb Data From Mesozoic Sediments in Svalbard.” Geological Society, London, Special Publications386: 261–279. https://doi.org/10.1144/sp386.14.
    [Google Scholar]
  150. Puchkov, V. N.1997. “Structure and Geodynamics of the Uralian Orogen.” Geological Society, London, Special Publications121: 201–236. https://doi.org/10.1144/gsl.Sp.1997.121.01.09.
    [Google Scholar]
  151. Puchkov, V. N.2009. “The Evolution of the Uralian Orogen.” Geological Society, London, Special Publications327: 161–195. https://doi.org/10.1144/sp327.9.
    [Google Scholar]
  152. Rehnström, E. F., and F.Corfu. 2004. “Palaeoproterozoic U–Pb Ages of Autochthonous and Allochthonous Granites From the Northern Swedish Caledonides—Regional and Palaeogeographic Implications.” Precambrian Research132: 363–378. https://doi.org/10.1016/j.precamres.2004.03.005.
    [Google Scholar]
  153. Roberts, D.2011. “Age of the Hamningberg Dolerite Dyke, Varanger Peninsula, Finnmark: Devonian Rather Than Vendian – A Revised Interpretation.” NGU Bulletin451: 32–36.
    [Google Scholar]
  154. Roberts, D., and A.Siedlecka. 2002. “Timanian Orogenic Deformation Along the Northeastern Margin of Baltica, Northwest Russia and Northeast Norway, and Avalonian–Cadomian Connections.” Tectonophysics352: 169–184. https://doi.org/10.1016/s0040‐1951(02)00195‐6.
    [Google Scholar]
  155. Roberts, D., and A.Siedlecka. 2012. “Provenance and Sediment Routing of Neoproterozoic Formations on the Varanger, Nordkinn, Rybachi and Sredni Peninsulas, North Norway and Northwest Russia: A Review.” Geoloigcal Survey of Norway Bulletin452: 1–19.
    [Google Scholar]
  156. Roberts, N. M. W., and T.Slagstad. 2015. “Continental Growth and Reworking on the Edge of the Columbia and Rodinia Supercontinents; 1.86–0.9 Ga Accretionary Orogeny in Southwest Fennoscandia.” International Geology Review57: 1582–1606. https://doi.org/10.1080/00206814.2014.958579.
    [Google Scholar]
  157. Røhr, T. S., T.Andersen, and H.Dypvik. 2008. “Provenance of Lower Cretaceous Sediments in the Wandel Sea Basin, North Greenland.” Journal of the Geological Society165: 755–767. https://doi.org/10.1144/0016‐76492007‐102.
    [Google Scholar]
  158. Rosa, D., J.Majka, K.Thrane, and P.Guarnieri. 2016. “Evidence for Timanian‐Age Basement Rocks in North Greenland as Documented Through U‐Pb Zircon Dating of Igneous Xenoliths From the Midtkap Volcanic Centers.” Precambrian Research275: 394–405. https://doi.org/10.1016/j.precamres.2016.01.005.
    [Google Scholar]
  159. Rossetti, D. D. F.2002. “Soft‐Sediment Deformation Structures in Late Albian to Cenomanian Deposits, São Luís Basin, Northern Brazil: Evidence for Palaeoseismicity.” Sedimentology46: 1065–1081. https://doi.org/10.1046/j.1365‐3091.1999.00265.x.
    [Google Scholar]
  160. Rotevatn, A., T. B.Kristensen, A. K.Ksienzyk, et al. 2018. “Structural Inheritance and Rapid Rift‐Length Establishment in a Multiphase Rift: The East Greenland Rift System and Its Caledonian Orogenic Ancestry.” Tectonics37: 1858–1875. https://doi.org/10.1029/2018tc005018.
    [Google Scholar]
  161. Rubatto, D., I. S.Williams, and I. S.Buick. 2001. “Zircon and Monazite Response to Prograde Metamorphism in the Reynolds Range, Central Australia.” Contributions to Mineralogy and Petrology140: 458–468. https://doi.org/10.1007/pl00007673.
    [Google Scholar]
  162. Ryan, E. J., B. E.Sørensen, C.Fichler, R. B.Larsen, J. L.Gresseth, and A.Bjørlykke. 2023. “Fault Linkage on Southeastern Bjørnøya: Implications for Structural Interpretations Surrounding Fertile Ore‐Forming Fault Systems Offshore.” Norwegian Journal of Geology102: 1–25. https://doi.org/10.17850/njg102‐4‐5.
    [Google Scholar]
  163. Ryseth, A.2000. “Differential Subsidence in the Ness Formation (Bajocian), Oseberg Area, Northern North Sea: Facies Variation, Accommodation Space Development and Sequence Stratigraphy in a Deltaic Distributary System.” Norsk Geologisk Tidsskrift80: 9–26. https://doi.org/10.1080/002919600750042645.
    [Google Scholar]
  164. Schumm, S. A., J. M.Holbrook, and J. F.Dumont. 2000. Active Tectonics and Alluvial Rivers. Cambridge: Cambridge University Press.
    [Google Scholar]
  165. Shanley, K. W., and P. J.McCabe. 1992. “Alluvial Architecture in a Sequence Stratigraphic Framework: A Case History From the Upper Cretaceous of Southern Utah, USA.” In The Geological Modelling of Hydrocarbon Reservoirs and Outcrop Analogues: International Association of Sedimentologists, Special Publication, edited by S.Flint and I. D.Bryant,  vol. 15, 21–55. Oxford, UK: Blackwell Scientific Publications. https://doi.org/10.1002/9781444303957.ch2.
    [Google Scholar]
  166. Sharman, G. R., J. P.Sharman, and Z.Sylvester. 2018. “detritalPy: A Python‐Based Toolset for Visualizing and Analysing Detrital Geo‐Thermochronologic Data.” Depositional Record4: 202–215. https://doi.org/10.1002/dep2.45.
    [Google Scholar]
  167. Shumlyanskyy, L., A.Nosova, K.Billström, U.Söderlund, P.‐G.Andréasson, and O.Kuzmenkova. 2016. “The U–Pb Zircon and Baddeleyite Ages of the Neoproterozoic Volyn Large Igneous Province: Implication for the Age of the Magmatism and the Nature of a Crustal Contaminant.” GFF138: 17–30. https://doi.org/10.1080/11035897.2015.1123289.
    [Google Scholar]
  168. Slagstad, T., N. M. W.Roberts, M.Marker, T. S.Røhr, and H.Schiellerup. 2013. “A Non‐collisional, Accretionary Sveconorwegian Orogen.” Terra Nova25: 30–37. https://doi.org/10.1111/ter.12001.
    [Google Scholar]
  169. Slama, J., O.Walderhaug, H.Fonneland, J.Kosler, and R. B.Pedersen. 2011. “Provenance of Neoproterozoic to Upper Cretaceous Sedimentary Rocks, Eastern Greenland: Implications for Recognizing the Sources of Sediments in the Norwegian Sea.” Sedimentary Geology238: 254–267. https://doi.org/10.1016/j.sedgeo.2011.04.018.
    [Google Scholar]
  170. Smelror, M., O.Petrov, G. B.Larssen, and S.Werner. 2009. The Geological History of the Barents Sea. Trondheim, Norway: Geological Survey of Norway.
    [Google Scholar]
  171. Smelror, M., and O. V.Petrov. 2018. “Geodynamics of the Arctic: From Proterozoic Orogens to Present Day Seafloor Spreading.” Journal of Geodynamics121: 185–204. https://doi.org/10.1016/j.jog.2018.09.006.
    [Google Scholar]
  172. Smyrak‐Sikora, A., E. P.Johannessen, S.Olaussen, G.Sandal, and A.Braathen. 2018. “Sedimentary Architecture During Carboniferous Rift Initiation – The Arid Billefjorden Trough, Svalbard.” Journal of the Geological Society176: 225–252. https://doi.org/10.1144/jgs2018‐100.
    [Google Scholar]
  173. Smyrak‐Sikora, A., J. B.Nicolaisen, A.Braathen, E. P.Johannessen, S.Olaussen, and L.Stemmerik. 2021. “Impact of Growth Faults on Mixed Siliciclastic‐Carbonate‐Evaporite Deposits During Rift Climax and Reorganisation—Billefjorden Trough, Svalbard, Norway.” Basin Research33: 2643–2674. https://doi.org/10.1111/bre.12578.
    [Google Scholar]
  174. Stemmerik, L., and D.Worsley. 2005. “30 Years on – Arctic Upper Palaeozoic Stratigraphy, Depositional Evolution and Hydrocarbon Prospectivity.” Norwegian Journal of Geology85: 151–168.
    [Google Scholar]
  175. Strachan, R. A., A. P.Nutman, and J. D.Friderichsen. 1995. “SHRIMP U‐Pb Geochronology and Metamorphic History of the Smallefjord Sequence, NE Greenland Caledonides.” Journal of the Geological Society152: 779–784. https://doi.org/10.1144/gsjgs.152.5.0779.
    [Google Scholar]
  176. Thrane, K.2002. “Relationships Between Archaean and Palaeoproterozoic Crystalline Basement Complexes in the Southern Part of the East Greenland Caledonides: An Ion Microprobe Study.” Precambrian Research113: 19–42. https://doi.org/10.1016/s0301‐9268(01)00198‐x.
    [Google Scholar]
  177. Thrane, K., J.Baker, J.Connelly, and A.Nutman. 2005. “Age, Petrogenesis and Metamorphism of the Syn‐Collisional Prøven Igneous Complex, West Greenland.” Contributions to Mineralogy and Petrology149: 541–555. https://doi.org/10.1007/s00410‐005‐0660‐0.
    [Google Scholar]
  178. Trench, A., and T. H.Torsvik. 1992. “The Closure of the Iapetus Ocean and Tornquist Sea: New Palaeomagnetic Constraints.” Journal of the Geological Society149: 867–870. https://doi.org/10.1144/gsjgs.149.6.0867.
    [Google Scholar]
  179. Trettin, H. P., R.Parrish, and W. D.Loveridge. 1987. “U–Pb Age Determinations on Proterozoic to Devonian Rocks From Northern Ellesmere Island, Arctic Canada.” Canadian Journal of Earth Sciences24: 246–256. https://doi.org/10.1139/e87‐026.
    [Google Scholar]
  180. Tucker, R. D., R. D.Dallmeyer, and R. A.Strachan. 1993. “Age and Tectonothermal Record of Laurentian Basement, Caledonides of NE Greenland.” Journal of the Geological Society150: 371–379. https://doi.org/10.1144/gsjgs.150.2.0371.
    [Google Scholar]
  181. Upton, B. G. J., O. T.Rämö, L. M.Heaman, et al. 2005. “The Mesoproterozoic Zig‐Zag dal Basalts and Associated Intrusions of Eastern North Greenland: Mantle Plume–Lithosphere Interaction.” Contributions to Mineralogy and Petrology149: 40–56. https://doi.org/10.1007/s00410‐004‐0634‐7.
    [Google Scholar]
  182. Vermeesch, P.2004. “How Many Grains Are Needed for a Provenance Study?” Earth and Planetary Science Letters224: 441–451. https://doi.org/10.1016/j.epsl.2004.05.037.
    [Google Scholar]
  183. Watt, G. R., P. D.Kinny, and J. D.Friderichsen. 2000. “U–Pb Geochronology of Neoproterozoic and Caledonian Tectonothermal Events in the East Greenland Caledonides.” Journal of the Geological Society157: 1031–1048. https://doi.org/10.1144/jgs.157.5.1031.
    [Google Scholar]
  184. Whitchurch, A. L., A.Carter, H. D.Sinclair, R. A.Duller, A. C.Whittaker, and P. A.Allen. 2011. “Sediment Routing System Evolution Within a Diachronously Uplifting Orogen: Insights From Detrital Zircon Thermochronological Analyses From the South‐Central Pyrenees.” American Journal of Science311: 442–482. https://doi.org/10.2475/05.2011.03.
    [Google Scholar]
  185. Worsley, D.2016. “The Post‐Caledonian Development of Svalbard and the Western Barents Sea.” Polar Research27: 298–317. https://doi.org/10.1111/j.1751‐8369.2008.00085.x.
    [Google Scholar]
  186. Worsley, D., T.Agdestein, J. G.Gjelberg, et al. 2001. “The Geological Evolution of Bjørnøya, Arctic Norway: Implications for the Barents Shelf.” Norwegian Journal of Geology81: 195–234.
    [Google Scholar]
  187. Worsley, D., and M. B.Edwards. 1976. “The Upper Palaeozoic Succession of Bjørnøya.” Norsk Polarinstitutt Årbok1974: 17–34.
    [Google Scholar]
  188. Worsley, D., and A.Mørk. 2008. Bjørnøya – A Window Into the Barents Shelf, 33rd International Geological Congress. Trondheim, Norway: Geological Society of Norway.
    [Google Scholar]
  189. Zhang, W., D.Roberts, and V.Pease. 2016. “Provenance of Sandstones From Caledonian Nappes in Finnmark, Norway: Implications for Neoproterozoic–Cambrian Palaeogeography.” Tectonophysics691: 198–205. https://doi.org/10.1016/j.tecto.2015.09.001.
    [Google Scholar]
/content/journals/10.1111/bre.70009
Loading
/content/journals/10.1111/bre.70009
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error