1887
Volume 37, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

The proportions of sediments derived from the Central Tibetan Watershed Mountains changed during the Jurassic. The well‐defined watershed formed in the Late Jurassic.

, ABSTRACT

The Central Tibet Watershed Mountains (CTWMs) are located in the hinterland of the Tibetan Plateau, extending over 1000 km from west to east. These mountains currently function as a drainage divide, separating Tibet's rivers into eastward‐ and southward‐flowing systems to the north and the south of the mountains, respectively. The timing of watershed formation remains contentious, which hinders a comprehensive understanding of the geomorphic evolution of the Tibetan Plateau. The Qiangtang basin, where the CTWMs are situated, preserves critical geological records essential for deciphering landscape evolution. The age distributions of new detrital zircon U–Pb data from the Middle and Upper Jurassic sandstones in the northern Qiangtang sub‐basin are consistent with a published data set, with age clusters at 200–300, 500–700, 800–1000, 1800–2000 and 2400–2600 Ma. Qualitative provenance analysis identifies the major source rocks as the Palaeozoic and Upper Triassic strata in the CTWMs, as well as the Triassic turbidites in the Hoh Xil‐Songpan Ganze terrane (HSG), which bound the northern Qiangtang sub‐basin to the south and north, respectively. Minor contributions come from Late Triassic intrusive and volcanic rocks, as well as Jurassic granitoids. The abundant detrital zircon data from the Qiangtang basin offers an opportunity to investigate the formation of the CTWMs through a quantified interpretation of the source‐to‐sink system. The combination of inverse and forward modelling of large detrital data sets facilitates the creation of provenance maps and avoids laborious descriptions of individual age modes. Integrated with sandstone petrographic analysis and paleocurrent data, the provenance of the Jurassic sediments can be quantitatively constrained. The CTWMs within the Qiangtang basin consistently served as significant sources throughout the Jurassic, while younger zircon grains were contributed by local sources, including the Triassic and Jurassic magmatic rocks. The proportion of the HSG source in the north increased throughout the basin in the Middle Jurassic but decreased dramatically in the southern Qiangtang sub‐basin during the Late Jurassic. We interpret that the embryonic stage of the CTWMs, which did not fully prevent sediment transport from the HSG to the southern Qiangtang sub‐basin, persisted from the Early to Middle Jurassic. The formation of a well‐defined watershed occurred in central Tibet in the Late Jurassic, probably triggered by the trench‐parallel mid‐ocean ridge subduction of the Bangong‐Nujing oceanic lithosphere.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70017
2025-01-18
2025-03-24
Loading full text...

Full text loading...

References

  1. Cohen, K. M., S. C.Finney, P. L.Gibbard, and J. X.Fan. 2013. “The ICS International Chronostratigraphic Chart.” International Union of Geological Sciences36: 199–204. https://doi.org/10.18814/epiiugs/2013/v36i3/002.
    [Google Scholar]
  2. Dai, J., X.Zhao, C.Wang, L.Zhu, Y.Li, and D.Finn. 2012. “The Vast Proto‐Tibetan Plateau: New Constraints From Paleogene Hoh Xil Basin.” Gondwana Research22: 434–446. https://doi.org/10.1016/j.gr.2011.08.019.
    [Google Scholar]
  3. Dan, W., Q.Wang, X.‐Z.Zhang, and G.‐J.Tang. 2020. “Early Paleozoic S‐Type Granites as the Basement of Southern Qiantang Terrane, Tibet.” Lithos356‐357: 105395. https://doi.org/10.1016/j.lithos.2020.105395.
    [Google Scholar]
  4. Dewey, J. F., R. M.Shackleton, C.Chengfa, and S.Yiyin. 1988. “The Tectonic Evolution of the Tibetan Plateau.” Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences327: 379–413. https://doi.org/10.1098/rsta.1988.0135.
    [Google Scholar]
  5. Dickinson, W. R.1985. “Interpreting Provenance Relations From Detrital Modes of Sandstones.” In Provenance of Arenites, edited by G. G.Zuffa, 333–361. Dordrecht, the Netherlands: Springer. https://doi.org/10.1007/978‐94‐017‐2809‐6_15.
    [Google Scholar]
  6. Dickinson, W. R., and G. E.Gehrels. 2009. “Use of U‐Pb Ages of Detrital Zircons to Infer Maximum Depositional Ages of Strata: A Test Against a Colorado Plateau Mesozoic Database.” Earth and Planetary Science Letters288: 115–125. https://doi.org/10.1016/j.epsl.2009.09.013.
    [Google Scholar]
  7. Ding, L., P.Kapp, F.Cai, et al. 2022. “Timing and Mechanisms of Tibetan Plateau Uplift.” Nature Reviews Earth and Environment3: 652–667. https://doi.org/10.1038/s43017‐022‐00318‐4.
    [Google Scholar]
  8. Ding, L., P.Kapp, Y.Yue, and Q.Lai. 2007. “Postcollisional Calc‐Alkaline Lavas and Xenoliths From the Southern Qiangtang Terrane, Central Tibet.” Earth and Planetary Science Letters254: 28–38. https://doi.org/10.1016/j.epsl.2006.11.019.
    [Google Scholar]
  9. Ding, L., Q.Xu, Y.Yue, H.Wang, F.Cai, and S.Li. 2014. “The Andean‐Type Gangdese Mountains: Paleoelevation Record From the Paleocene–Eocene Linzhou Basin.” Earth and Planetary Science Letters392: 250–264. https://doi.org/10.1016/j.epsl.2014.01.045.
    [Google Scholar]
  10. Ding, L., Q.Xu, L.Zhang, et al. 2009. “Regional Variation of River Water Oxygen Isotope and Empirical Elevation Prediction Models in Tibetan Plateau.” Quaternary Sciences29: 1–12. (in Chinese with English abstract).
    [Google Scholar]
  11. Ding, L., D.Yang, F. L.Cai, et al. 2013. “Provenance Analysis of the Mesozoic Hoh‐Xil‐Songpan‐Ganzi Turbidites in Northern Tibet: Implications for the Tectonic Evolution of the Eastern Paleo‐Tethys Ocean.” Tectonics32: 34–48. https://doi.org/10.1002/tect.20013.
    [Google Scholar]
  12. Fan, J.‐J., C.Li, H.Wu, et al. 2016. “Late Jurassic Adakitic Granodiorite in the Dong co Area, Northern Tibet: Implications for Subduction of the Bangong–Nujiang Oceanic Lithosphere and Related Accretion of the Southern Qiangtang Terrane.” Tectonophysics691: 345–361. https://doi.org/10.1016/j.tecto.2016.10.026.
    [Google Scholar]
  13. Fang, X., C.Song, M.Yan, et al. 2016. “Mesozoic Litho‐ and Magneto‐Stratigraphic Evidence From the Central Tibetan Plateau for Megamonsoon Evolution and Potential Evaporites.” Gondwana Research37: 110–129. https://doi.org/10.1016/j.gr.2016.05.012.
    [Google Scholar]
  14. Fielding, E., B.Isacks, M.Barazangi, and C.Duncan. 1994. “How Flat Is Tibet?” Geology22: 163–167. https://doi.org/10.1130/0091‐7613(1994)022<0163:HFIT>2.3.CO;2.
    [Google Scholar]
  15. Garzanti, E., T.Capaldi, A.Tripaldi, M.Zárate, M.Limonta, and G.Vezzoli. 2022. “Andean Retroarc‐Basin Dune Fields and Pampean Sand Sea (Argentina): Provenance and Drainage Changes Driven by Tectonics and Climate.” Earth‐Science Reviews231: 104077. https://doi.org/10.1016/j.earscirev.2022.104077.
    [Google Scholar]
  16. Gehrels, G., P.Kapp, P.DeCelles, et al. 2011. “Detrital Zircon Geochronology of Pre‐Tertiary Strata in the Tibetan‐Himalayan Orogen.” Tectonics30: TC5016. https://doi.org/10.1029/2011TC002868.
    [Google Scholar]
  17. Gong, N., H.Qi, J.Li, et al. 2023. “A Late Jurassic Magmatic Flare‐Up Triggered by Break‐Off of the Bangong‐Nujiang Meso‐Tethyan Slab: Insights From Jurassic Arc Magmatism in South Qiangtang, Central Tibet.” Lithos438‐439: 107009. https://doi.org/10.1016/j.lithos.2022.107009.
    [Google Scholar]
  18. Guynn, J. H., P.Kapp, A.Pullen, M.Heizler, G.Gehrels, and L.Ding. 2006. “Tibetan Basement Rocks Near Amdo Reveal “Missing” Mesozoic Tectonism Along the Bangong Suture, Central Tibet.” Geology34: 505–508. https://doi.org/10.1130/G22453.1.
    [Google Scholar]
  19. He, H.‐Y., Y.‐L.Li, S.‐Q.Xiao, et al. 2022. “Triassic Paleo‐Tethyan Slab Break‐Off Constrained by a Newly Discovered 211 Ma Dacite–Rhyolite Suite in the Qiangtang Terrane, Central Tibet.” Journal of Asian Earth Sciences240: 105444. https://doi.org/10.1016/j.jseaes.2022.105444.
    [Google Scholar]
  20. Hu, X., A.Ma, W.Xue, et al. 2022. “Exploring a Lost Ocean in the Tibetan Plateau: Birth, Growth, and Demise of the Bangong‐Nujiang Ocean.” Earth‐Science Reviews229: 104031. https://doi.org/10.1016/j.earscirev.2022.104031.
    [Google Scholar]
  21. Hu, Z., X.‐H.Li, T.Luo, et al. 2021. “Tanz Zircon Megacrysts: A New Zircon Reference Material for the Microbeam Determination of U–pb Ages and Zr–O Isotopes.” Journal of Analytical Atomic Spectrometry36: 2715–2734. https://doi.org/10.1039/D1JA00311A.
    [Google Scholar]
  22. Huang, T.‐T., J.‐F.Xu, J.‐L.Chen, J.‐B.Wu, and Y.‐C.Zeng. 2017. “Sedimentary Record of Jurassic Northward Subduction of the Bangong–Nujiang Ocean: Insights From Detrital Zircons.” International Geology Review59: 166–184. https://doi.org/10.1080/00206814.2016.1218801.
    [Google Scholar]
  23. Ibarra, D. E., J.Dai, Y.Gao, et al. 2023. “High‐Elevation Tibetan Plateau Before India–Eurasia Collision Recorded by Triple Oxygen Isotopes.” Nature Geoscience16: 810–815. https://doi.org/10.1038/s41561‐023‐01243‐x.
    [Google Scholar]
  24. Jian, X., A.Weislogel, and A.Pullen. 2019. “Triassic Sedimentary Filling and Closure of the Eastern Paleo‐Tethys Ocean: New Insights From Detrital Zircon Geochronology of Songpan‐Ganzi, Yidun, and West Qinling Flysch in Eastern Tibet.” Tectonics38: 767–787. https://doi.org/10.1029/2018TC005300.
    [Google Scholar]
  25. Kapp, P., P. G.DeCelles, G. E.Gehrels, M.Heizler, and L.Ding. 2007. “Geological Records of the Lhasa‐Qiangtang and Indo‐Asian Collisions in the Nima Area of Central Tibet.” Geological Society of America Bulletin119: 917–933. https://doi.org/10.1130/B26033.1.
    [Google Scholar]
  26. Kapp, P., A.Yin, T. M.Harrison, and L.Ding. 2005. “Cretaceous‐Tertiary Shortening, Basin Development, and Volcanism in Central Tibet.” Geological Society of America Bulletin117: 865–878. https://doi.org/10.1130/B25595.1.
    [Google Scholar]
  27. Kapp, P., A.Yin, C. E.Manning, T. M.Harrison, M. H.Taylor, and L.Ding. 2003. “Tectonic Evolution of the Early Mesozoic Blueschist‐Bearing Qiangtang Metamorphic Belt, Central Tibet.” Tectonics22: 1043. https://doi.org/10.1029/2002tc001383.
    [Google Scholar]
  28. Kapp, P., A.Yin, C. E.Manning, et al. 2000. “Blueschist‐Bearing Metamorphic Core Complexes in the Qiangtang Block Reveal Deep Crustal Structure of Northern Tibet.” Geology28: 19–22. https://doi.org/10.1130/0091‐7613(2000)28<19:BMCCIT>2.0.CO;2.
    [Google Scholar]
  29. Leeder, M. R., A. B.Smith, and J.Yin. 1988. “Sedimentology, Palaeoecology and Palaeoenvironmental Evolution of the 1985 Lhasa to Golmud Geotraverse.” Philosophical Transactions of the Royal Society, B: Biological Sciences327: 107–143. https://doi.org/10.1098/rsta.1988.0123.
    [Google Scholar]
  30. Li, L., M.Fan, N.Davila, et al. 2019. “Carbonate Stable and Clumped Isotopic Evidence for Late Eocene Moderate to High Elevation of the East‐Central Tibetan Plateau and Its Geodynamic Implications.” GSA Bulletin131: 831–844. https://doi.org/10.1130/B32060.1.
    [Google Scholar]
  31. Li, L., C. N.Garzione, M.Fan, X.Li, and X.Li. 2019. “Jurassic Sedimentation in the South‐Central Qiangtang Terrane Reveals Successive Terrane Collisions in Central Tibet.” Geosphere15: 433–449. https://doi.org/10.1130/GES01649.1.
    [Google Scholar]
  32. Li, L., C. N.Garzione, A.Pullen, P.Zhang, and Y.Li. 2018. “Late Cretaceous‐Cenozoic Basin Evolution and Topographic Growth of the Hoh Xil Basin, Central Tibetan Plateau.” Geological Society of America Bulletin130: 499–521. https://doi.org/10.1130/B31769.1.
    [Google Scholar]
  33. Li, S., L.Ding, C.Guilmette, et al. 2017. “The Subduction‐Accretion History of the Bangong‐Nujiang Ocean: Constraints From Provenance and Geochronology of the Mesozoic Strata Near Gaize, Central Tibet.” Tectonophysics702: 42–60. https://doi.org/10.1016/j.tecto.2017.02.023.
    [Google Scholar]
  34. Li, S.‐M., Q.Wang, D.‐C.Zhu, et al. 2020. “Reconciling Orogenic Drivers for the Evolution of the Bangong‐Nujiang Tethys During Middle‐Late Jurassic.” Tectonics39: e2019TC005951. https://doi.org/10.1029/2019TC005951.
    [Google Scholar]
  35. Li, S.‐M., D.‐C.Zhu, Q.Wang, et al. 2016. “Slab‐Derived Adakites and Subslab Asthenosphere‐Derived Oib‐Type Rocks at 156±2ma From the North of Gerze, Central Tibet: Records of the Bangong–Nujiang Oceanic Ridge Subduction During the Late Jurassic.” Lithos262: 456–469. https://doi.org/10.1016/j.lithos.2016.07.029.
    [Google Scholar]
  36. Li, Y., J.He, Z.Han, et al. 2016. “Late Jurassic Sodium‐Rich Adakitic Intrusive Rocks in the Southern Qiangtang Terrane, Central Tibet, and Their Implications for the Bangong–Nujiang Ocean Subduction.” Lithos245: 34–46. https://doi.org/10.1016/j.lithos.2015.10.014.
    [Google Scholar]
  37. Li, Y., C.Wang, and H.Yi. 2002. “Filled Sequence and Evolution of the Mesozoic Qiangtang Composite Foreland Basin in the Qinghai‐Tibet Plateau.” Journal of Stratigraphy26: 62–67. (in Chinese with English abstract).
    [Google Scholar]
  38. Liang, X., G.Wang, J.Gao, et al. 2021. “A Late Permian–Triassic Trench‐Slope Basin in the Central Qiangtang Metamorphic Belt, Northern Tibet: Stratigraphy, Sedimentology, Syndepositional Deformation and Tectonic Implications.” Basin Research33: 2383–2410. https://doi.org/10.1111/bre.12561.
    [Google Scholar]
  39. Lin, J., J.‐G.Dai, G.Zhuang, et al. 2020. “Late Eocene–Oligocene High Relief Paleotopography in the North Central Tibetan Plateau: Insights From Detrital Zircon U–pb Geochronology and Leaf Wax Hydrogen Isotope Studies.” Tectonics39: e2019TC005815. https://doi.org/10.1029/2019TC005815.
    [Google Scholar]
  40. Liu, D., R.Shi, L.Ding, et al. 2017. “Zircon U–pb Age and hf Isotopic Compositions of Mesozoic Granitoids in Southern Qiangtang, Tibet: Implications for the Subduction of the Bangong–Nujiang Tethyan Ocean.” Gondwana Research41: 157–172. https://doi.org/10.1016/j.gr.2015.04.007.
    [Google Scholar]
  41. Liu‐Zeng, J., P.Tapponnier, Y.Gaudemer, and L.Ding. 2008. “Quantifying Landscape Differences Across the Tibetan Plateau: Implications for Topographic Relief Evolution.” Journal of Geophysical Research: Earth Surface113: F04018. https://doi.org/10.1029/2007JF000897.
    [Google Scholar]
  42. Lu, L., K.‐J.Zhang, L.‐L.Yan, X.Jin, and Y.‐X.Zhang. 2017. “Was Late Triassic Tanggula Granitoid (Central Tibet, Western China) a Product of Melting of Underthrust Songpan‐Ganzi Flysch Sediments?” Tectonics36: 902–928. https://doi.org/10.1002/2016TC004384.
    [Google Scholar]
  43. Ma, A., X.Hu, E.Garzanti, et al. 2023. “Paleogeographic and Tectonic Evolution of Mesozoic Qiangtang Basins (Tibet).” Tectonophysics862: 229957. https://doi.org/10.1016/j.tecto.2023.229957.
    [Google Scholar]
  44. Ma, A., X.Hu, E.Garzanti, Z.Han, and W.Lai. 2017. “Sedimentary and Tectonic Evolution of the Southern Qiangtang Basin: Implications for the Lhasa‐Qiangtang Collision Timing. Journal of Geophysical Research: Solid.” Earth122: 2017JB014211. https://doi.org/10.1002/2017JB014211.
    [Google Scholar]
  45. Ma, A., X.Hu, P.Kapp, Z.Han, W.Lai, and M.BouDagher‐Fadel. 2018. “The Disappearance of a Late Jurassic Remnant Sea in the Southern Qiangtang Block (Shamuluo Formation, Najiangco Area): Implications for the Tectonic Uplift of Central Tibet.” Palaeogeography, Palaeoclimatology, Palaeoecology506: 30–47. https://doi.org/10.1016/j.palaeo.2018.06.005.
    [Google Scholar]
  46. Pullen, A., P.Kapp, G. E.Gehrels, L.Ding, and Q.Zhang. 2011. “Metamorphic Rocks in Central Tibet: Lateral Variations and Implications for Crustal Structure.” Geological Society of America Bulletin123: 585–600. https://doi.org/10.1130/b30154.1.
    [Google Scholar]
  47. Pullen, A., P.Kapp, G. E.Gehrels, J. D.Vervoort, and L.Ding. 2008. “Triassic Continental Subduction in Central Tibet and Mediterranean‐Style Closure of the Paleo‐Tethys Ocean.” Geology36: 351–354. https://doi.org/10.1130/g24435a.1.
    [Google Scholar]
  48. Qian, X., Y.Li, J.Dai, et al. 2021. “Apatite and Zircon (U–Th)/He Thermochronological Evidence for Mesozoic Exhumation of the Central Tibetan Mountain Range.” Geological Journal56: 599–611. https://doi.org/10.1002/gj.3979.
    [Google Scholar]
  49. Raterman, N. S., A. C.Robinson, and E. S.Cowgill. 2014. “Structure and Detrital Zircon Geochronology of the Domar Fold‐Thrust Belt: Evidence of Pre‐Cenozoic Crustal Thickening of the Western Tibetan Plateau.” In Toward an Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau, edited by J.Nie, B. K.Horton, and G. D.Hoke, vol. 507. Boulder: Geological Society of America. https://doi.org/10.1130/2014.2507(05).
    [Google Scholar]
  50. Roger, F., M.Jolivet, R.Cattin, and J.Malavieille. 2011. “Mesozoic‐Cenozoic Tectonothermal Evolution of the Eastern Part of the Tibetan Plateau (Songpan‐Garzê, Longmen Shan Area): Insights From Thermochronological Data and Simple Thermal Modelling.” Geological Society, London, Special Publications353: 9–25. https://doi.org/10.1144/SP353.2.
    [Google Scholar]
  51. Rossignol, C., E.Hallot, S.Bourquin, et al. 2019. “Using Volcaniclastic Rocks to Constrain Sedimentation Ages: To What Extent Are Volcanism and Sedimentation Synchronous?” Sedimentary Geology381: 46–64. https://doi.org/10.1016/j.sedgeo.2018.12.010.
    [Google Scholar]
  52. Saylor, J. E., and K. E.Sundell. 2016. “Quantifying Comparison of Large Detrital Geochronology Data Sets.” Geosphere12: 203–220. https://doi.org/10.1130/GES01237.1.
    [Google Scholar]
  53. Saylor, J. E., K. E.Sundell, and G. R.Sharman. 2019. “Characterizing Sediment Sources by Non‐Negative Matrix Factorization of Detrital Geochronological Data.” Earth and Planetary Science Letters512: 46–58. https://doi.org/10.1016/j.epsl.2019.01.044.
    [Google Scholar]
  54. Sharman, G. R., J. P.Sharman, and Z.Sylvester. 2018. “Detritalpy: A Python‐Based Toolset for Visualizing and Analysing Detrital Geo‐Thermochronologic Data.” Depositional Record4: 202–215. https://doi.org/10.1002/dep2.45.
    [Google Scholar]
  55. Sláma, J., J.Košler, D. J.Condon, et al. 2008. “Plešovice Zircon — A New Natural Reference Material for U–pb and hf Isotopic Microanalysis.” Chemical Geology249: 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005.
    [Google Scholar]
  56. Smith, T. M., J. E.Saylor, T. J.Lapen, R. J.Leary, and K. E.Sundell. 2023. “Large Detrital Zircon Data Set Investigation and Provenance Mapping: Local Versus Regional and Continental Sediment Sources Before, During, and After Ancestral Rocky Mountain Deformation.” GSA Bulletin135: 2901–2921. https://doi.org/10.1130/B36285.1.
    [Google Scholar]
  57. Song, S.‐W., D.‐C.Zhu, Q.Wang, et al. 2022. “Generation of Syn‐Collisional S‐Type Granites in Collision Zones: An Example From the Late Triassic Tanggula Batholith in Northern Tibet.” Gondwana Research104: 185–198. https://doi.org/10.1016/j.gr.2020.12.023.
    [Google Scholar]
  58. Spicer, R. A., N. B. W.Harris, M.Widdowson, et al. 2003. “Constant Elevation of Southern Tibet Over the Past 15 Million Years.” Nature421: 622–624. https://doi.org/10.1038/nature01356.
    [Google Scholar]
  59. Stern, R. J., M.Reagan, O.Ishizuka, Y.Ohara, and S.Whattam. 2012. “To Understand Subduction Initiation, Study Forearc Crust: To Understand Forearc Crust, Study Ophiolites.” Lithosphere4: 469–483. https://doi.org/10.1130/L183.1.
    [Google Scholar]
  60. Sundell, K. E., G. E.Gehrels, M. D.Blum, J. E.Saylor, M. E.Pecha, and B. P.Hundley. 2024. “An Exploratory Study of “Large‐N” Detrital Zircon Geochronology of the Book Cliffs, Ut via Rapid (3 S/Analysis) U–Pb Dating.” Basin Research36: e12840. https://doi.org/10.1111/bre.12840.
    [Google Scholar]
  61. Sundell, K. E., and J. E.Saylor. 2017. “Unmixing Detrital Geochronology Age Distributions.” Geochemistry, Geophysics, Geosystems18: 2872–2886. https://doi.org/10.1002/2016GC006774.
    [Google Scholar]
  62. Tang, Y., A.Yin, X.Xu, K.An, and Y.Zhang. 2023. “Tectonic Evolution of the Triassic Songpan‐Ganzi Basin as Constrained by a Synthesis of Multi‐Proxy Provenance Data.” Basin Research35: 28–60. https://doi.org/10.1111/bre.12703.
    [Google Scholar]
  63. Tang, Y., Q.Zhai, P.Hu, X.Xiao, and H.Wang. 2018. “Petrology, Geochemistry and Geochronology of the Zhongcang Ophiolite, Northern Tibet: Implications for the Evolution of the Bangong‐Nujiang Ocean.” Geoscience Frontiers9: 1369–1381. https://doi.org/10.1016/j.gsf.2018.05.007.
    [Google Scholar]
  64. Tian, L., V.Masson‐Delmotte, M.Stievenard, T.Yao, and J.Jouzel. 2001. “Tibetan Plateau Summer Monsoon Northward Extent Revealed by Measurements of Water Stable Isotopes.” Journal of Geophysical Research: Atmospheres106: 28081–28088. https://doi.org/10.1029/2001JD900186.
    [Google Scholar]
  65. Vermeesch, P.2012. “On the Visualisation of Detrital Age Distributions.” Chemical Geology312‐313: 190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021.
    [Google Scholar]
  66. Vermeesch, P.2013. “Multi‐Sample Comparison of Detrital Age Distributions.” Chemical Geology341: 140–146. https://doi.org/10.1016/j.chemgeo.2013.01.010.
    [Google Scholar]
  67. Vermeesch, P.2018. “Isoplotr: A Free and Open Toolbox for Geochronology.” Geoscience Frontiers9: 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001.
    [Google Scholar]
  68. Wang, C. S., X. X.Zhao, Z. F.Liu, et al. 2008. “Constraints on the Early Uplift History of the Tibetan Plateau.” Proceedings of the National Academy of Sciences of the United States of America105: 4987–4992. https://doi.org/10.1073/pnas.0703595105.
    [Google Scholar]
  69. Wang, D., H.Kang, Y.Chen, et al. 2024. “Timeframe of Eastern Paleo‐Tethys Closure: Constraint on the Songpan‐Ganzi Complex by Big Data‐Based Multiproxy Provenance Analysis.” Lithos466‐467: 107457. https://doi.org/10.1016/j.lithos.2023.107457.
    [Google Scholar]
  70. Wang, J., J.Ding, C.Wang, and F.Tan. 2009. Survey and Evaluation on Tibet Oil and Gas Resources. Beijing: Geological publishing House.
    [Google Scholar]
  71. Wang, J., and X.Fu. 2018. “Sedimentary Evolution Ofthe Qiangtang Basin.” Geology in China45: 237–259. (in Chinese with English abstract).
    [Google Scholar]
  72. Wang, J.‐G., F.‐Y.Wu, E.Garzanti, et al. 2016. “Upper Triassic Turbidites of the Northern Tethyan Himalaya (Langjiexue Group): The Terminal of a Sediment‐Routing System Sourced in the Gondwanide Orogen.” Gondwana Research34: 84–98. https://doi.org/10.1016/j.gr.2016.03.005.
    [Google Scholar]
  73. Wang, Q., D. A.Wyman, J. F.Xu, et al. 2008. “Eocene Melting of Subducting Continental Crust and Early Uplifting of Central Tibet: Evidence From Central‐Western Qiangtang High‐K Calc‐Alkaline Andesites, Dacites and Rhyolites.” Earth and Planetary Science Letters272: 158–171. https://doi.org/10.1016/j.epsl.2008.04.034.
    [Google Scholar]
  74. Wang, Q., D. A.Wyman, J. F.Xu, et al. 2008. “Triassic Nb‐Enriched Basalts, Magnesian Andesites, and Adakites of the Qiangtang Terrane (Central Tibet): Evidence for Metasomatism by Slab‐Derived Melts in the Mantle Wedge.” Contributions to Mineralogy and Petrology155: 473–490. https://doi.org/10.1007/s00410‐007‐0253‐1.
    [Google Scholar]
  75. Wang, Y., X.Liang, G.Wang, G.Yuan, and P. D.Bons. 2018. “Mayer Kangri Metamorphic Complexes in Central Qiangtang (Tibet, Western China): Implications for the Triassic–Early Jurassic Tectonics Associated With the Paleo‐Tethys Ocean.” International Journal of Earth Sciences107: 757–776. https://doi.org/10.1007/s00531‐017‐1526‐1.
    [Google Scholar]
  76. Wang, Z., J.Wang, X.Fu, et al. 2018. “Provenance and Tectonic Setting of the Quemoco Sandstones in the North Qiangtang Basin, North Tibet: Evidence From Geochemistry and Detrital Zircon Geochronology.” Geological Journal53: 1465–1481. https://doi.org/10.1002/gj.2967.
    [Google Scholar]
  77. Weislogel, A. L., S. A.Graham, E. Z.Chang, J. L.Wooden, and G. E.Gehrels. 2010. “Detrital Zircon Provenance From Three Turbidite Depocenters of the Middle–Upper Triassic Songpan‐Ganzi Complex, Central China: Record of Collisional Tectonics, Erosional Exhumation, and Sediment Production.” GSA Bulletin122: 2041–2062. https://doi.org/10.1130/B26606.1.
    [Google Scholar]
  78. Weislogel, A. L., S. A.Graham, E. Z.Chang, J. L.Wooden, G. E.Gehrels, and H.Yang. 2006. “Detrital Zircon Provenance of the Late Triassic Songpan‐Ganzi Complex: Sedimentary Record of Collision of the North and South China Blocks.” Geology34: 97–100. https://doi.org/10.1130/G21929.1.
    [Google Scholar]
  79. Wu, H., X.‐J.Liu, J.‐W.Chen, C.Li, R.Yang, and Z.‐Q.Jiang. 2024. “Tectono‐Magmatic Response to the Geometric Evolution of Slab Breakoff in the Paleo‐Tethys Ocean: Constraints From Late Triassic Granites in the Qiangtang Block, Northern Tibet.” GSA Bulletin136: 447–460. https://doi.org/10.1130/B36456.1.
    [Google Scholar]
  80. Xie, C., C.Li, J.Fan, and L.Su. 2017. “Ordovician Sedimentation and Bimodal Volcanism in the Southern Qiangtang Terrane of Northern Tibet: Implications for the Evolution of the Northern Gondwana Margin.” International Geology Review1‐28: 2078–2105. https://doi.org/10.1080/00206814.2017.1309584.
    [Google Scholar]
  81. Xiong, Z., L.Ding, R. A.Spicer, et al. 2020. “The Early Eocene Rise of the Gonjo Basin, se Tibet: From Low Desert to High Forest.” Earth and Planetary Science Letters543: 116312. https://doi.org/10.1016/j.epsl.2020.116312.
    [Google Scholar]
  82. Xiong, Z., X.Liu, L.Ding, et al. 2022. “The Rise and Demise of the Paleogene Central Tibetan Valley. Science.” Advances8: eabj0944. https://doi.org/10.1126/sciadv.abj0944.
    [Google Scholar]
  83. Xu, Q., L.Ding, Y.Cao, et al. 2023. “Late Cretaceous−Early Paleogene Rise of the Gangdese Magmatic Arc (South Tibet) From Sea Level to High Mountains.” GSA Bulletin135: 1939–1954. https://doi.org/10.1130/B36438.1.
    [Google Scholar]
  84. Xu, Q., L.Ding, L. Y.Zhang, et al. 2013. “Paleogene High Elevations in the Qiangtang Terrane, Central Tibetan Plateau.” Earth and Planetary Science Letters362: 31–42. https://doi.org/10.1016/j.epsl.2012.11.058.
    [Google Scholar]
  85. Xu, W., W.Zhang, and F.Liu. 2023. “Detrital Zircon Populations of the South Qiangtang Terrane, Central Tibetan Plateau, and Their Implications for Tethyan Evolution.” International Geology Review65: 1696–1718. https://doi.org/10.1080/00206814.2022.2103848.
    [Google Scholar]
  86. Xue, W., X.Hu, E.Garzanti, A.Ma, W.Lai, and C.Li. 2023. “Discriminating Qiangtang, Lhasa, and Himalayan Sediment Sources in the Tibetan Plateau by Detrital‐Zircon U‐Pb Age and hf Isotope Facies.” Earth‐Science Reviews236: 104271. https://doi.org/10.1016/j.earscirev.2022.104271.
    [Google Scholar]
  87. Xue, W., X.Hu, A.Ma, E.Garzanti, and J.Li. 2020. “Eustatic and Tectonic Control on the Evolution of the Jurassic North Qiangtang Basin, Northern Tibet, China: Impact on the Petroleum System.” Marine and Petroleum Geology120: 104558. https://doi.org/10.1016/j.marpetgeo.2020.104558.
    [Google Scholar]
  88. Yin, A., and T. M.Harrison. 2000. “Geologic Evolution of the Himalayan‐Tibetan Orogen.” Annual Review of Earth and Planetary Sciences28: 211–280. https://doi.org/10.1146/annurev.earth.28.1.211.
    [Google Scholar]
  89. Zeng, M., R.Zhang, S.Chen, et al. 2021. “Reconstructing Ocean‐Plate Stratigraphy (Ops) to Understand Accretionary Style and Mélange Fabric: Insights From the Bangong‐Nujiang Suture (Tibet, China).” Geophysical Research Letters48: e2021GL094457. https://doi.org/10.1029/2021GL094457.
    [Google Scholar]
  90. Zeng, M., X.Zhang, H.Cao, F. R.Ettensohn, W.Cheng, and X.Lang. 2016. “Late Triassic Initial Subduction of the Bangong‐Nujiang Ocean Beneath Qiangtang Revealed: Stratigraphic and Geochronological Evidence From Gaize, Tibet.” Basin Research28: 147–157. https://doi.org/10.1111/bre.12105.
    [Google Scholar]
  91. Zeng, Y.‐C., J.‐L.Chen, J.‐F.Xu, B.‐D.Wang, and F.Huang. 2016. “Sediment Melting During Subduction Initiation: Geochronological and Geochemical Evidence From the Darutso High‐Mg Andesites Within Ophiolite Melange, Central Tibet.” Geochemistry, Geophysics, Geosystems17: 4859–4877. https://doi.org/10.1002/2016GC006456.
    [Google Scholar]
  92. Zhai, Q.‐G., B.‐M.Jahn, J.Wang, et al. 2016. “Oldest Paleo‐Tethyan Ophiolitic Mélange in the Tibetan Plateau.” Geological Society of America Bulletin128: 355–373. https://doi.org/10.1130/b31296.1.
    [Google Scholar]
  93. Zhai, Q.‐G., J.Wang, P.‐Y.Hu, et al. 2018. “Late Paleozoic Granitoids From Central Qiangtang, Northern Tibetan Plateau: A Record of Paleo‐Tethys Ocean Subduction.” Journal of Asian Earth Sciences167: 139–151. https://doi.org/10.1016/j.jseaes.2017.07.030.
    [Google Scholar]
  94. Zhang, J., Y.Li, M.Xu, et al. 2021. “New Apatite Fission Track Evidence From the Northern Qiangtang Terrane Reveal Two‐Phase Evolution of Central Tibet.” Terra Nova33: 95–108. https://doi.org/10.1111/ter.12494.
    [Google Scholar]
  95. Zhang, J., Y.Li, H.Zhang, X.Zhao, K.Liu, and Q.Shang. 2021. “Provenance of Middle Jurassic Sequences in the Northern Qiangtang: Implications for Mesozoic Exhumation of the Central Tibetan Mountain Range.” International Geology Review63: 1969–1989. https://doi.org/10.1080/00206814.2020.1818299.
    [Google Scholar]
  96. Zhang, J., H. D.Sinclair, Y.Li, et al. 2019. “Subsidence and Exhumation of the Mesozoic Qiangtang Basin: Implications for the Growth of the Tibetan Plateau.” Basin Research31: 754–781. https://doi.org/10.1111/bre.12343.
    [Google Scholar]
  97. Zhao, Z., P. D.Bons, K.Stübner, G.‐H.Wang, and T. A.Ehlers. 2017. “Early Cretaceous Exhumation of the Qiangtang Terrane During Collision With the Lhasa Terrane, Central Tibet.” Terra Nova29: 382–391. https://doi.org/10.1111/ter.12298.
    [Google Scholar]
  98. Zhao, Z. B., P. D.Bons, C.Li, G. H.Wang, X. X.Ma, and G. W.Li. 2020. “The Cretaceous Crustal Shortening and Thickening of the South Qiangtang Terrane and Implications for Proto‐Tibetan Plateau Formation.” Gondwana Research78: 141–155. https://doi.org/10.1016/j.gr.2019.09.003.
    [Google Scholar]
  99. Zhu, D. C., S. M.Li, P. A.Cawood, et al. 2016. “Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction.” Lithos245: 7–17. https://doi.org/10.1016/j.lithos.2015.06.023.
    [Google Scholar]
/content/journals/10.1111/bre.70017
Loading
/content/journals/10.1111/bre.70017
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): detrital zircon; DZmix; DZnmf; provenance mapping; Qiangtang; sediment modelling

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error