1887
Volume 37, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

, ABSTRACT

Downstream changes of fluvial styles and related grain size triggered by localised tectonically‐induced changes in riverbed gradient are still poorly understood, especially in terms of their impact on the accumulation of alluvial successions. In this study, we analyse the morpho‐sedimentary response of rivers crossing multiple fault‐controlled subsiding areas, by using field data from the age‐constrained, fluvial deposits of the Pleistocene Dandiero Basin (Eritrea) to create scaled, controlled laboratory experiments performed at the Eurotank Stratigraphic Analogue Modelling Facility (Utrecht University, NL). With this experimental series, we quantified the impacts of degradational/aggradational fluvial dynamics showing that stream bed degradation occurs upstream of subsiding depocenters following the localised increase in river slope. Following a tectonic‐induced decrease in river slope, aggradation occurs downstream of the fault zones, and marked in‐channel aggradation promotes the branching of major river trunks into minor channels and the development of unchannelised tabular bodies. Experiments also show that highly subsiding areas promote the accumulation of fine‐grained deposits, but their accumulation zones shift downstream following localised bed aggradation. We show that where multiple subsiding areas occur along a river, localised depocenters separated by degradational areas occur, causing general starvation in the downstream subsiding reaches, where lacustrine deposition became common. These findings suggest that the role of active faults could have been significantly overlooked when studying how changes in allogenic forcings impact alluvial strata. The results obtained in this study offer a solid basis for creating a predictive model for facies distribution in river dynamics, providing insights into detecting neotectonic signatures in active rivers and identifying tectonic imprints on ancient fluvial successions.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70020
2025-02-08
2025-03-21
Loading full text...

Full text loading...

/deliver/fulltext/bre/37/1/bre70020.html?itemId=/content/journals/10.1111/bre.70020&mimeType=html&fmt=ahah

References

  1. Abbate, E., A.Albianelli, A.Awad, et al. 2010. “Pleistocene Environments and Human Presence in the Middle Atbara Valley (Khashm El Girba, Eastern Sudan).” Palaeogeography, Palaeoclimatology, Palaeoecology292, no. 1–2: 12–34.
    [Google Scholar]
  2. Abbate, E., B.Woldehaimanot, P.Bruni, et al. 2004. “Geology of the Homo‐Bearing Pleistocene Dandiero Basin (Buia Region, Eritrean Danakil Depression).” Rivista Italiana di Paleontologia e Stratigrafia110: 5–34.
    [Google Scholar]
  3. Aldinucci, M., M.Ghinassi, and F.Sandrelli. 2007. “Climatic and Tectonic Signature in the Fluvial Infill of a Late Pliocene Valley (Siena Basin, Northern Apennines, Italy).” Journal of Sedimentary Research77, no. 5: 398–414. https://doi.org/10.2110/jsr.2007.039.
    [Google Scholar]
  4. Alexander, J., and M. R.Leeder. 1987. “Active Tectonic Control on Alluvial Architecture.” In Recent Developments in Fluvial Sedimentology, 243–252. SEPM (Society for Sedimentary Geology). https://doi.org/10.2110/pec.87.39.0243.
    [Google Scholar]
  5. Andrie, J. R., K. A.Giles, T. F.Lawton, and M. G.Rowan. 2012. “Halokinetic‐Sequence Stratigraphy, Fluvial Sedimentology and Structural Geometry of the Eocene Carroza Formation Along La Popa Salt Weld, La Popa Basin, Mexico.” Geological Society, London, Special Publications363, no. 1: 59–79. https://doi.org/10.1144/SP363.4.
    [Google Scholar]
  6. Banham, S. G., and N. P.Mountney. 2013. “Evolution of Fluvial Systems in Salt‐Walled Mini‐Basins: A Review and New Insights.” Sedimentary Geology296: 142–166. https://doi.org/10.1016/j.sedgeo.2013.08.010.
    [Google Scholar]
  7. Benvenuti, M.2003. “Facies Analysis and Tectonic Significance of Lacustrine Fan‐Deltaic Successions in the Pliocene–Pleistocene Mugello Basin, Central Italy.” Sedimentary Geology157, no. 3–4: 197–234. https://doi.org/10.1016/S0037‐0738(02)00234‐8.
    [Google Scholar]
  8. Bianchi, V., M.Ghinassi, M.Aldinucci, J.Boaga, A.Brogi, and R.Deiana. 2015. “Tectonically Driven Deposition and Landscape Evolution Within Upland Incised Valleys: Ambra Valley Fill, Pliocene–Pleistocene, Tuscany, Italy.” Sedimentology62, no. 3: 897–927. https://doi.org/10.1111/sed.12165.
    [Google Scholar]
  9. Bijkerk, J. F., J. T.Eggenhuisen, I. A.Kane, et al. 2016. “Fluvio‐Marine Sediment Partitioning as A Function of Basin Water Depth.” Journal of Sedimentary Research86, no. 3: 217–235. https://doi.org/10.2110/jsr.2016.9.
    [Google Scholar]
  10. Bijkerk, J. F., J.ten Veen, G.Postma, D.Mikeš, W.van Strien, and J.de Vries. 2014. “The Role of Climate Variation in Delta Architecture: Lessons From Analogue Modelling.” Basin Research26, no. 3: 351–368. https://doi.org/10.1111/bre.12034.
    [Google Scholar]
  11. Blair, T. C., and W. L.Bilodeau. 1988. “Development of Tectonic Cyclothems in Rift, Pull‐Apart, and Foreland Basins: Sedimentary Response to Episodic Tectonism.” Geology16, no. 6: 517. https://doi.org/10.1130/0091‐7613(1988)016<0517:DOTCIR>2.3.CO;2.
    [Google Scholar]
  12. Blum, M. D., and T. E.Törnqvist. 2000. “Fluvial Responses to Climate and Sea‐Level Change: A Review and Look Forward.” Sedimentology47, no. s1: 2–48. https://doi.org/10.1046/j.1365‐3091.2000.00008.x.
    [Google Scholar]
  13. Breda, A., D.Mellere, F.Massari, and A.Asioli. 2009. “Vertically Stacked Gilbert‐Type Deltas of Ventimiglia (NW Italy): The Pliocene Record of an Overfilled Messinian Incised Valley.” Sedimentary Geology219, no. 1–4: 58–76. https://doi.org/10.1016/j.sedgeo.2009.04.010.
    [Google Scholar]
  14. Bridgland, D. R., and R.Westaway. 2014. “Quaternary Fluvial Archives and Landscape Evolution: A Global Synthesis.” Proceedings of the Geologists' Association125: 600–629.
    [Google Scholar]
  15. Bridgland, D. R., R.Westaway, and Z.Hu. 2020. “Basin Inversion: A Worldwide Late Cenozoic Phenomenon.” Global and Planetary Change193: 103260.
    [Google Scholar]
  16. Cain, S. A., and N. P.Mountney. 2009. “Spatial and Temporal Evolution of a Terminal Fluvial Fan System: The Permian Organ Rock Formation, South‐East Utah, USA.” Sedimentology56, no. 6: 1774–1800. https://doi.org/10.1111/j.1365‐3091.2009.01057.x.
    [Google Scholar]
  17. Clark, J. D., Y.Beyene, G.Wolde Gabriel, et al. 2003. “Stratigraphic, Chronological and Behavioural Contexts of Pleistocene Homo Sapiens From Middle Awash, Ethiopia.” Nature423, no. 6941: 747–752.
    [Google Scholar]
  18. Currie, B. S.1997. “Sequence Stratigraphy of Nonmarine Jurassic–Cretaceous Rocks, Central Cordilleran Foreland‐Basin System.” Geological Society of America Bulletin109, no. 9: 1206–1222. https://doi.org/10.1130/0016‐7606(1997)109<1206:SSONJC>2.3.CO;2.
    [Google Scholar]
  19. Dalrymple, R. W., R.Boyd, and B. A.Zaitlin. 1994. “History of Research, Types and Internal Organization of Incised‐Valley Systems: Introduction to the Volume.” In Incised‐ Valley Systems: Origin and Sedimentary Sequences, edited by R. W.Dalrymple, R.Boyd, and B. A.Zaitlin, vol. 51, 3–10. SEPM Spec. Publ.
    [Google Scholar]
  20. Demoulin, A., A.Mather, and A.Whittaker. 2017. “Fluvial Archives, a Valuable Record of Vertical Crustal Deformation.” Quaternary Science Reviews166: 10–37. https://doi.org/10.1016/j.quascirev.2016.11.011.
    [Google Scholar]
  21. Doornkamp, J. C., and P. H.Temple. 1966. “Surface, Drainage and Tectonic Instability in Part of Southern Uganda.” Geographical Journal132, no. 2: 238. https://doi.org/10.2307/1792339.
    [Google Scholar]
  22. Einsele, G.2000. Sedimentary Basins: Evolution, Facies, and Sediment Budget. Springer Science.
    [Google Scholar]
  23. Ethridge, F. G.1985. Modern Alluvial Fans and Fan Deltas. Special Publications of SEPM.
    [Google Scholar]
  24. Fidolini, F., M.Ghinassi, M.Aldinucci, et al. 2013. “Fault‐Sourced Alluvial Fans and Their Interaction With Axial Fluvial Drainage: An Example From the Plio‐Pleistocene Upper Valdarno Basin (Tuscany, Italy).” Sedimentary Geology289: 19–39. https://doi.org/10.1016/j.sedgeo.2013.02.004.
    [Google Scholar]
  25. Fisher, J. A., G. J.Nichols, and D. A.Waltham. 2007. “Unconfined Flow Deposits in Distal Sectors of Fluvial Distributary Systems: Examples From the Miocene Luna and Huesca Systems, Northern Spain.” Sedimentary Geology195, no. 1–2: 55–73. https://doi.org/10.1016/j.sedgeo.2006.07.005.
    [Google Scholar]
  26. Germanoski, D., and S. A.Schumm. 1993. “Changes in Braided River Morphology Resulting From Aggradation and Degradation.” Journal of Geology101, no. 4: 451–466. https://doi.org/10.1086/648239.
    [Google Scholar]
  27. Ghinassi, M., P.Billi, Y.Libsekal, M.Papini, and L.Rook. 2014. “Inferring Fluvial Morphodynamics and Overbank Flow Control From 3D Outcrop Sections of A Pleistocene Point Bar, Dandiero Basin, Eritrea.” Journal of Sedimentary Research83, no. 12: 1065–1083. https://doi.org/10.2110/jsr.2013.80.
    [Google Scholar]
  28. Ghinassi, M., Y.Libsekal, M.Papini, and L.Rook. 2009. “Palaeoenvironments of the Buia Homo Site: High‐Resolution Facies Analysis and Non‐Marine Sequence Stratigraphy in the Alat Formation (Pleistocene Dandiero Basin, Danakil Depression, Eritrea).” Palaeogeography, Palaeoclimatology, Palaeoecology280, no. 3–4: 415–431. https://doi.org/10.1016/j.palaeo.2009.06.029.
    [Google Scholar]
  29. Ghinassi, M., O.Oms, M.Cosma, A.Finotello, and G.Munari. 2021. “Reading Tidal Processes Where Their Signature Is Cryptic: The Maastrichtian Meandering Channel Deposits of the Tremp Formation (Southern Pyrenees, Spain).” Sedimentology68, no. 5: 2009–2042. https://doi.org/10.1111/sed.12840.
    [Google Scholar]
  30. Ghinassi, M., O.Oms, M.Papini, et al. 2015. “An Integrated Study of the Homo ‐Bearing Aalat Stratigraphic Section (Eritrea): An Expanded Continental Record at the Early–Middle Pleistocene Transition.” Journal of African Earth Sciences112: 163–185. https://doi.org/10.1016/j.jafrearsci.2015.09.012.
    [Google Scholar]
  31. Gibling, M. R., C. R.Fielding, and R.Sinha. 2011. “Alluvial Valleys and Alluvial Sequences: Towards a Geomorphic Assessment.” In In From River to Rock Record the Preservation of Fluvial Sediments and Their Subsequent Interpretation. Society for Sedimentary Geology. https://doi.org/10.2110/sepmsp.097.423.
    [Google Scholar]
  32. Gilbert, W. H., and B.Asfaw, eds. 2008. Homo Erectus: Pleistocene Evidence From the Middle Awash, Ethiopia. Vol. 1. Univ of California Press.
    [Google Scholar]
  33. Guiseppe, A. C., and P. L.Heller. 1998. “Long‐Term River Response to Regional Doming in the Price River Formation, Central Utah.” Geology26, no. 3: 239. https://doi.org/10.1130/0091‐7613(1998)026<0239:LTRRTR>2.3.CO;2.
    [Google Scholar]
  34. Holbrook, J., and S. A.Schumm. 1999. “Geomorphic and Sedimentary Response of Rivers to Tectonic Deformation: A Brief Review and Critique of a Tool for Recognizing Subtle Epeirogenic Deformation in Modern and Ancient Settings.” Tectonophysics305, no. 1–3: 287–306. https://doi.org/10.1016/S0040‐1951(99)00011‐6.
    [Google Scholar]
  35. Holbrook, J., R. W.Scott, and F. E.Oboh‐Ikuenobe. 2006. “Base‐Level Buffers and Buttresses: A Model for Upstream Versus Downstream Control on Fluvial Geometry and Architecture Within Sequences.” Journal of Sedimentary Research76, no. 1: 162–174. https://doi.org/10.2110/jsr.2005.10.
    [Google Scholar]
  36. Howard, A. D.1967. “Drainage Analysis in Geologic Interpretation: A Summation.” AAPG Bulletin5, no. 11: 2246–2259.
    [Google Scholar]
  37. Jain, V., and R.Sinha. 2005. “Response of Active Tectonics on the Alluvial Baghmati River, Himalayan Foreland Basin, Eastern India.” Geomorphology70, no. 3–4: 339–356. https://doi.org/10.1016/j.geomorph.2005.02.012.
    [Google Scholar]
  38. Jorgensen, D. W.1990. Adjustment of Alluvial River Morphology and Process to Localized Active Tectonics. Colorado State University.
    [Google Scholar]
  39. Kim, W., and C.Paola. 2007. “Long‐Period Cyclic Sedimentation With Constant Tectonic Forcing in an Experimental Relay Ramp.” Geology35, no. 4: 331. https://doi.org/10.1130/G23194A.1.
    [Google Scholar]
  40. Kleinhans, M. G., H. E.van de Kasteele, and E.Hauber. 2010. “Palaeoflow Reconstruction From Fan Delta Morphology on Mars.” Earth and Planetary Science Letters294, no. 3–4: 378–392. https://doi.org/10.1016/j.epsl.2009.11.025.
    [Google Scholar]
  41. Kleinhans, M. G., W. M.van Dijk, W. I.van de Lageweg, et al. 2014. “Quantifiable Effectiveness of Experimental Scaling of River‐ and Delta Morphodynamics and Stratigraphy.” Earth‐Science Reviews133: 43–61. https://doi.org/10.1016/j.earscirev.2014.03.001.
    [Google Scholar]
  42. Lane, E.1954. “The Importance of Fluvial Morphology in Hydraulic Engineering.” Journal of Hydraulic Engineering81, no. 372: 1–17. https://semspub.epa.gov/work/01/554355.pdf.
    [Google Scholar]
  43. Legarreta, L., and M. A.Uliana. 1998. “Anatomy of Hinterland Depositional Sequences: Upper Cretaceous Fluvial Strata, Neuquen Basin, West‐Central Argentina.” In Relative Role of Eustasy, Climate, and Tectonism in Continental Rocks, edited by K. W.Shanley and P. J.McCabe, vol. 59, 83–92. SEPM Special Publication.
    [Google Scholar]
  44. Maddy, D.1997. “Uplift‐Driven Valley Incision and River Terrace Formation in Southern England.” Journal of Quaternary Science12: 539–545.
    [Google Scholar]
  45. Martin, B., A.Owen, G. J.Nichols, A. J.Hartley, and R. D.Williams. 2021. “Quantifying Downstream, Vertical and Lateral Variation in Fluvial Deposits: Implications From the Huesca Distributive Fluvial System.” Frontiers in Earth Science8: 564017. https://doi.org/10.3389/feart.2020.564017.
    [Google Scholar]
  46. Martinsen, O. J., A.Ryseth, W.Helland‐Hansen, H.Flesche, G.Torkildsen, and S.Idil. 1999. “Stratigraphic Base Level and Fluvial Architecture: Ericson Sandstone (Campanian), rock Springs Uplift, SW Wyoming, USA.” Sedimentology46, no. 2: 235–263. https://doi.org/10.1046/j.1365‐3091.1999.00208.x.
    [Google Scholar]
  47. McEwan, E., T.Stahl, R.Langridge, T.Davies, A.Howell, and M.Wilson. 2025. “Seismic Hazard and Shifting Channels: Exploring Coseismic River Response.” Earth‐Science Reviews261: 105042. https://doi.org/10.1016/j.earscirev.2025.105042.
    [Google Scholar]
  48. Ouchi, S.1985. “Response of Alluvial Rivers to Slow Active Tectonic Movement.” Geological Society of America Bulletin96, no. 4: 504. https://doi.org/10.1130/0016‐7606(1985)96<504:ROARTS>2.0.CO;2.
    [Google Scholar]
  49. Owen, A., G. J.Nichols, A. J.Hartley, G. S.Weissmann, and L. A.Scuderi. 2015. “Quantification of a Distributive Fluvial System: The Salt Wash DFS of the Morrison Formation, SW U.S.A.” Journal of Sedimentary Research85, no. 5: 544–561. https://doi.org/10.2110/jsr.2015.35.
    [Google Scholar]
  50. Paola, C.2000. “Quantitative Models of Sedimentary Basin Filling.” Sedimentology47, no. s1: 121–178. https://doi.org/10.1046/j.1365‐3091.2000.00006.x.
    [Google Scholar]
  51. Paola, C., P. L.Heller, and C. L.Angevine. 1992. “The Large‐Scale Dynamics of Grain‐Size Variation in Alluvial Basins, 1: Theory.” Basin Research4, no. 2: 73–90. https://doi.org/10.1111/j.1365‐2117.1992.tb00145.x.
    [Google Scholar]
  52. Paola, C., K.Straub, D.Mohrig, and L.Reinhardt. 2009. “The “Unreasonable Effectiveness” of Stratigraphic and Geomorphic Experiments.” Earth‐Science Reviews97, no. 1–4: 1–43. https://doi.org/10.1016/j.earscirev.2009.05.003.
    [Google Scholar]
  53. Papini, M., M.Ghinassi, Y.Libsekal, and L.Rook. 2014. “Facies Associations of the Northern Dandiero Basin (Danakil Depression, Eritrea, Including the Pleistocene Buya Homo Site).” Journal of Maps10, no. 1: 126–135. https://doi.org/10.1080/17445647.2013.862748.
    [Google Scholar]
  54. Peakall, J., P.Ashworth, and J.Best. 1996. Physical Modelling in Fluvial Geomorphology: Principles, Applications and Unresolved Issues, 221–253. Scientific Nature of Geomorphology.
    [Google Scholar]
  55. Peakall, J., P. J.Ashworth, and J. L.Best. 2007. “Meander‐Bend Evolution, Alluvial Architecture, and the Role of Cohesion in Sinuous River Channels: A Flume Study.” Journal of Sedimentary Research77, no. 3: 197–212. https://doi.org/10.2110/jsr.2007.017.
    [Google Scholar]
  56. Peakall, J., M.Leeder, J.Best, and P.Ashworth. 2000. “River Response to Lateral Ground Tilting: A Synthesis and Some Implications for the Modelling of Alluvial Architecture in Extensional Basins.” Basin Research12, no. 3–4: 413–424. https://doi.org/10.1111/j.1365‐2117.2000.00128.x.
    [Google Scholar]
  57. Posamentier, H. W., and G. P.Allen. 1993. “Variability of the Sequence Stratigraphic Model: Effects of Local Basin Factors.” Sedimentary Geology86, no. 1–2: 91–109. https://doi.org/10.1016/0037‐0738(93)90135‐R.
    [Google Scholar]
  58. Posamentier, H. W., and G. P.Allen. 1999. “Fundamental Concepts of Sequence Stratigraphy.” In Siliciclastic Sequence Stratigraphy, 9–51. SEPM Society for Sedimentary Geology.
    [Google Scholar]
  59. Posamentier, H. W., M. T.Jervey, and P. R.Vail. 1988. Eustatic Controls on Clastic Deposition I — Conceptual Framework. Society of Economic Paleontologists and Mineralogists (SEPM).
    [Google Scholar]
  60. Posamentier, H. W., and P. R.Vail. 1988. Eustatic Controls on Clastic Deposition II—Sequence and Systems Tract Models. Vol. 42. SEPM Special Publication.
    [Google Scholar]
  61. Postma, G., M. G.Kleinhans, P. T. H.Meijer, and J. T.Eggenhuisen. 2008. “Sediment Transport in Analogue Flume Models Compared With Real‐World Sedimentary Systems: A New Look at Scaling Evolution of Sedimentary Systems in a Flume.” Sedimentology55, no. 6: 1541–1557. https://doi.org/10.1111/j.1365‐3091.2008.00956.x.
    [Google Scholar]
  62. Russ, D. R.1982. “Style and Significance of Surface Deformation in the Vicinity of New Madrid, Missouri.” United States Geological Survey Professional Paper1236: 95–114.
    [Google Scholar]
  63. Sani, F., M.Ghinassi, M.Papini, O.Oms, and A.Finotello. 2017. “Evolution of the Northern Tip of Afar Triangle: Inferences From the Quaternary Succession of the Dandiero — Massawa Area (Eritrea).” Tectonophysics717: 339–357. https://doi.org/10.1016/j.tecto.2017.08.026.
    [Google Scholar]
  64. Schumm, S. A.1986. “Alluvial River Response to Active Tectonics.” In Active Tectonics, 80–94. National Academy Press.
    [Google Scholar]
  65. Schumm, S. A.1993. “River Response to Baselevel Change: Implications for Sequence Stratigraphy.” Journal of Geology101, no. 2: 279–294. https://doi.org/10.1086/648221.
    [Google Scholar]
  66. Schumm, S. A., J. F.Dumont, and J. M.Holbrook. 2000. “Active Tectonics and Alluvial Rivers, S. A. Schumm, J. F. Dumont and J. M. Holbrook, Cambridge University Press, Cambridge 2000 (276 pp) ISBN 0‐521‐66110‐2 (hardback).” Journal of Quaternary Science17: 800–801. https://onlinelibrary.wiley.com/doi/10.1002/jqs.698.
    [Google Scholar]
  67. Shanley, K. W., and P. J.McCabe. 1991. “Predicting Facies Architecture Through Sequence Stratigraphy—An Example From the Kaiparowits Plateau.” Utah Geology19, no. 7: 742. https://doi.org/10.1130/0091‐7613(1991)019<0742:PFATSS>2.3.CO;2.
    [Google Scholar]
  68. Simms, A. R., J. B.Anderson, Z. P.Taha, and A. B.Rodriguez. 2006. “Overfilled Versus Underfilled Incised Valleys: Examples From the Quaternary Gulf of Mexico.” In Incised Valleys in Time and Space, vol. 85, 117–139. SEPM Spec. Publ.
    [Google Scholar]
  69. Strong, N., and C.Paola. 2008. “Valleys That Never Were: Time Surfaces Versus Stratigraphic Surfaces.” Journal of Sedimentary Research78, no. 8: 579–593. https://doi.org/10.2110/jsr.2008.059.
    [Google Scholar]
  70. Vail, P. R., J.Hardenbol, and R. G.Todd. 1984. “Jurassic Unconformities, Chronostratigraphy and Sea‐Level Changes From Seismic Stratigraphy and Biostratigraphy.” In The Jurassic of the Gulf Rim, 347–364. SEPM Society for Sedimentary Geology. https://doi.org/10.5724/gcs.84.03.0347.
    [Google Scholar]
  71. van de Lageweg, W. I., W. M.van Dijk, and M. G.Kleinhans. 2013. “Channel Belt Architecture Formed by a Meandering River.” Sedimentology60, no. 3: 840–859. https://doi.org/10.1111/j.1365‐3091.2012.01365.x.
    [Google Scholar]
  72. van Dijk, W. M., R.Teske, W. I.van de Lageweg, and M. G.Kleinhans. 2013. “Effects of Vegetation Distribution on Experimental River Channel Dynamics.” Water Resources Research49, no. 11: 7558–7574. https://doi.org/10.1002/2013WR013574.
    [Google Scholar]
  73. van Dijk, W. M., W. I.van de Lageweg, and M. G.Kleinhans. 2012. “Experimental Meandering River With Chute Cutoffs.” Journal of Geophysical Research: Earth Surface117, no. F3: F03023. https://doi.org/10.1029/2011JF002314.
    [Google Scholar]
  74. Van Heijst, M. W. I. M., and G.Postma. 2001. “Fluvial Response to Sea‐Level Changes: A Quantitative Analogue, Experimental Approach.” Basin Research13, no. 3: 269–292. https://doi.org/10.1046/j.1365‐2117.2001.00149.x.
    [Google Scholar]
  75. Westaway, R., and D. R.Bridgland. 2014. “Relation Between Alternations of Uplift and Subsidence Revealed by Late Cenozoic Fluvial Sequences and Physical Properties of the Continental Crust.” Boreas. An International Journal of Quaternary Research43: 505–527.
    [Google Scholar]
  76. Westaway, R., D.Maddy, and D.Bridgland. 2002. “Flow in the Lower Continental Crust as a Mechanism for the Quaternary Uplift of South‐East England: Constraints From the Thames Terrace Record.” Quaternary Science Reviews21: 559–603.
    [Google Scholar]
  77. Woolderink, H. A. G., K. M.Cohen, C.Kasse, M. G.Kleinhans, and R. T.Van Balen. 2021. “Patterns in River Channel Sinuosity of the Meuse, Roer and Rhine Rivers in the Lower Rhine Embayment Rift‐System, Are They Tectonically Forced?” Geomorphology375: 107550. https://doi.org/10.1016/j.geomorph.2020.107550.
    [Google Scholar]
  78. Wright, P. V., and S. B.Marriott. 1993. “The Sequence Stratigraphy of Fluvial Depositional Systems: The Role of Floodplain Sediment Storage.” Sedimentary Geology86, no. 3–4: 203–210. https://doi.org/10.1016/0037‐0738(93)90022‐W.
    [Google Scholar]
  79. Zernitz, E. R.1932. “Drainage Patterns and Their Significance.” Journal of Geology40, no. 6: 498–521. https://doi.org/10.1086/623976.
    [Google Scholar]
  80. Zhang, K., W.Xuan, B.Yikui, and X.Xiuquan. 2021. “Prediction of Sediment Transport Capacity Based on Slope Gradients and Flow Discharge.” PLoS One16, no. 9: e0256827. https://doi.org/10.1371/journal.pone.0256827.
    [Google Scholar]
/content/journals/10.1111/bre.70020
Loading
/content/journals/10.1111/bre.70020
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error