1887
Volume 37, Issue 2
  • E-ISSN: 1365-2117

Abstract

[

By means of seismic interpretations, this study provides improved constraints on a major Tournaisian tectonic phase with normal faulting in the Campine Basin. Faulting was accompanied by the development of major buildup structures, probably Waulsortian mudmounds.

, ABSTRACT

By means of seismic interpretations, this study provides improved constraints on a major Tournaisian (lowermost Carboniferous) tectonic phase with faulting across the Campine Basin, northeastern Belgium. Faults are normal with throws below 100 m, except for some larger intra‐rift horst and graben structures with throws up to 300 m. In an asymmetric graben structure in the southern study area, an estimated average of 1000 m of Tournaisian sediments accumulated. Outside the graben, Tournaisian thicknesses are in the order of 300–500 m, which agrees with the limited available well data outside the study area of the Campine Basin. There is an uncertainty on fault strikes since the individual fault segments are short compared to the spacing between the seismic lines, but we estimate it to vary between SW–NE and WNW–ESE. The wide range of fault strikes can be related to the reactivation of pre‐existing faults in the Cambro‐Silurian basement. The SW–NE and WNW–ESE directions of the Tournaisian fault strikes have been identified as lineaments on gravimetric and aeromagnetic maps of the lower Palaeozoic Brabant Massif to the southeast and southwest of the study area, respectively. Such fault strikes imply a roughly NNW–SSE to N–S extensional stress field prevailing in the area during the Tournaisian. The range of fault strikes is very similar to the strike of contemporaneous faults in Ireland and the United Kingdom, which suggests that the NNW–SSE to N–S extensional stress field occurred throughout much of northwestern Europe. The Tournaisian succession of the Campine Basin includes numerous mound‐shaped complexes, interpreted as buildup structures. We show examples of major buildup complexes that developed in graben structures. One of them reaches a height of 750 m and is 3 km wide. Given the similarity in timing of formation and size of the buildup complexes in the Campine Basin with buildup complexes in southern Belgium and Ireland, we consider it likely that the buildup complexes in the Campine Basin represent Waulsortian mudmounds.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70023
2025-02-27
2025-05-19
Loading full text...

Full text loading...

References

  1. André, L., J.Hertogen, and S.Deutsch. 1986. “Ordovician—Silurian Magmatic Provinces in Belgium and the Caledonian Orogeny in Middle Europe.” Geology14: 879–882.
    [Google Scholar]
  2. Aretz, M., and E.Chevalier. 2007. “After the Collapse of Stromatoporoid‐Coral Reefs—The Famennian and Dinantian Reefs of Belgium: Much More Than Waulsortian Mounds.” Geological Society, London, Special Publications275: 163–188.
    [Google Scholar]
  3. Bábek, O., J.Kalvoda, P.Cossey, D.Šimíč ek, F.‐X.Devuyst, and S.Hargreaves. 2013. “Facies and Petrophysical Signature of the Tournaisian/Viséan (Lower Carboniferous) Sea‐Level Cycle in Carbonate Ramp to Basinal Settings of the Wales‐Brabant Massif, British Isles.” Sedimentary Geology284: 197–213. https://doi.org/10.1016/j.sedgeo.2012.12.008.
    [Google Scholar]
  4. Bos, S.2018. “Interpretatie van boring B/1‐102784 (Mol‐GT‐03). DOV Boorrapport geraardpleegd in 2022.”
  5. Broothaers, M., D.Lagrou, B.Laenen, V.Harcouët‐Menou, and D.Vos. 2021. “Deep Geothermal Energy in the Lower Carboniferous Carbonates of the Campine Basin, Northern Belgium: An Overview From the 1950's to 2020.” Zeitschrift der Deutschen Gesellschaft für Geowissenschaften172: 211–225.
    [Google Scholar]
  6. Bubb, J. N., and W. G.Hatlelid. 1977. “Seismic Stratigraphy and Global Changes of Sea Level, Part 10: Seismic Recognition of Carbonate Buildups.” In Seismic Stratigraphy—Applications to Hydrocarbon Exploration, edited by C. E.Payton, vol. 26, 185–204. American Association of Petroleum Geologists.
    [Google Scholar]
  7. Chacksfield, B. C., J. P.Williamson, T. C.Pharaoh, and F. M.McEvoy. 2004. “Reinterpretation of Gravity Anomalies over the Brabant Massif in Southern Flanders (Belgium).” British Geological Survey Commissioned Report (2004), p. 47 CR/04/215.
  8. Debacker, T. N., S.Dewaele, M.Sintubin, J.Verniers, P.Muchez, and A.Boven. 2005. “Timing and Duration of the Progressive Deformation of the Brabant Massif, Belgium.” Geologica Belgica8: 20–34.
    [Google Scholar]
  9. Deckers, J., R.De Koninck, S.Bos, et al. 2019. “Geologisch (G3D) en hydrogeologisch (H3D) 3D‐lagenmodel van Vlaanderen – versie 3. Studie uitgevoerd in opdracht van het Vlaams Planbureau voor Omgeving, departement Omgeving en de Vlaamse Milieumaatschappij.” VITO‐rapport 2018/RMA/R/1569.
  10. Deckers, J., B.Rombaut, M.Broothaers, K.Dirix, and T.Debacker. 2023. “New 3D Fault Model for Eastern Flanders (Belgium) Providing Insights on the Major Deformation Phases in the Region Since the Late Paleozoic.” Journal of Structural Geology166: 104779.
    [Google Scholar]
  11. Devuyst, F. X.2006. “The Tournaisian‐Viséan Boundary in Eurasia.” Unpublished PhD Thesis, Université Catholique de Louvain, 430 p.
  12. Devuyst, F. X., and J. A. E.Dehantschutter. 2007. “Waulsortian Carbonate Mud‐Banks, Belgium.” In Facies from Palaeozoic Reefs and Bioaccumulations. Mémoires du Muséum national d'Histoire naturelle, edited by E.Vennin, M.Aretz, F.Boulvain, and A.Munnecke, vol. 195, 235–238. Publications Scientifiques du Muséum.
    [Google Scholar]
  13. Fraser, A. J., and R. L.Gawthorpe. 2003. “An Atlas of Carboniferous Basin Evolution in Northern England.” Geological Society Memoir28: 79.
    [Google Scholar]
  14. Gawthorpe, R. L.1987. “Tectono‐Sedimentary Evolution of the Bowland Basin, N. England, During the Dinantian.” Geological Society of London144: 59–71.
    [Google Scholar]
  15. Hance, L.2018. Report on Cuttings from the Mol‐GT‐01 Borehole. Unpublished Report Vito.
  16. Hance, L.2022. Biostratigraphic Revision of the Dinantian (Mississippian) of the Campine Basin. Unpublished report.
  17. Hance, L., E.Poty, and F.‐X.Devuyst. 2006. “Ivorian.” In Current Status of Chronostratigraphic Units Named From Belgium and Adjacent Areas, edited by L.Dejonghe, vol. 9/1–2, 117–122. Geologica Belgica.
    [Google Scholar]
  18. Hitzman, M. W.1999. “Extensional Faults That Localize Irish Syndiagenetic Zn‐Pb Deposits and Their Reactivation During Variscan Compression.” In Fractures, Fluid Flow and Mineralization, edited by K. J. W.McCaffrey, L.Lonergan, and J. J.Wilkinson, vol. 155, 233–245. Geological Society of London Special Publications.
    [Google Scholar]
  19. Howell, L., S.Egan, G.Leslie, and S.Clarke. 2019. “Structural and Geodynamic Modelling of the Influence of Granite Bodies During Lithospheric Extension: Application to the Carboniferous Basins of Northern England.” Tectonophysics755: 47–63.
    [Google Scholar]
  20. Jenkins, A. P., and T.Torvela. 2020. “Basin Analysis Using Seismic Interpretation as a Tool to Examine the Extent of a Basin Ore ‘Play’.” Ore Geology Reviews125: 103968.
    [Google Scholar]
  21. Johnston, J. D., D.Coller, G.Millar, and M. F.Critchley. 1996. “Basement Structural Controls on Carboniferous‐Hosted Base Metal Mineral Deposits in Ireland.” In Recent Advances in Lower Carboniferous Geology, edited by P.Strogen, I. D.Somerville, and G. L.Jones, vol. 107, 1–121. Geological Society London Special Publication.
    [Google Scholar]
  22. Kyne, R., K.Torremans, R.Doyle, J.Güven, and J. J.Walsh. 2019. “3D Modelling of the Lisheen and Silvermines Deposits, co. Tipperary, Ireland: Insights Into Structural Controls on the Formation of Irish Zn‐Pb Deposits.” Economic Geology114, no. 1: 93–116.
    [Google Scholar]
  23. Labofina . 1976. “Heibaart 1/1bis. Etude sédimentologique des carottes. Labofina, Exploration, intern rapport.”
  24. Lagrou, D., and M.Coen‐Aubert. 2017. “Update of the Devonian Lithostratigraphic Subdivision in the Subsurface of the Campine Basin (Northern Belgium).” Geologica Belgica20, no. 1–2: 1–13.
    [Google Scholar]
  25. Lagrou, D., and B.Laenen. 2014. “Introduction of New Formal Lithostratigraphic Units for the Dinantian in the Campine Basin.”https://ncs.naturalsciences.be/carboniferous/dinantian‐campine‐basin.
  26. Langenaeker, V., and M.Dusar. 1992. “Petrophysical Stratigraphy of the Namurian and Lowermost Westphalian in the Western Part of the Campine Basin.” Bulletin de la Société Belge de géologie101, no. 3–4: 199–208.
    [Google Scholar]
  27. Leeder, M. R.1982. “Upper Palaeozoic Basins of the British Isles—Caledonide Inheritance Versus Hercynian Plate Margin Processes.” Journal of the Geological Society139, no. 4: 479–491.
    [Google Scholar]
  28. Lees, A., and J.Miller. 1995. “Waulsortian Banks.” In Carbonate Mud‐Mounds: Their Origin and Evolution. Special Publication, edited by C. L. V.Monty, D. W. J.Bosence, P. H.Bridges, and B. R.Pratt, vol. 23, 191–271. International Association of Sedimentologists.
    [Google Scholar]
  29. Lees, A., B.Noël, and P.Bouw. 1977. “The Waulsortian “Reefs” of Belgium: A Progress Report.” Mémoires de l'Institut Géologique de l'Université de Louvain29: 289–315.
    [Google Scholar]
  30. de Morton, S. N., M. W.Wallace, C. P.Reed, et al. 2015. “The Significance of Tournaisian Tectonism in the Dublin Basin: Implications for Basin Evolution and Zinc‐Lead Mineralization in the Irish Midlands.” Sedimentary Geology330: 32–46.
    [Google Scholar]
  31. Mottequin, B., and E.Simon. 2017. “New Insights on Tournaisian–Visean (Carboniferous, Mississippian) Athyridide, Orthotetide, Rhynchonellide, and Strophomenide Brachiopods From Southern Belgium.” Palaeontologia Electronica20, no. 2.28A: 1–45.
    [Google Scholar]
  32. Mozafari, M., P.Gutteridge, A.Riva, K.Geel, J.Garland, and J.Dewit. 2019. Facies Analysis and Diagenetic Evolution of the Dinantian Carbonates in the Dutch Subsurface: Data and Analyses Wells CAL‐GT‐01, 02, 03. Report by SCAN. https://scanaardwarmte.nl/, 12 p.
  33. Muchez, P., and V.Langenaeker. 1993. “Middle Devonian to Dinantian Sedimentation in the Campine Basin (Northern Belgium): Its Relation to Variscan Tectonism.” Special Publication of the International Association of Sedimentologists20: 171–181.
    [Google Scholar]
  34. Muchez, P., W.Viaene, M.Wofl, and J.Bouckaert. 1987. “Sedimentology, Coalification Pattern End Paleogeography of the Campine‐Brabant Basin During the Vissen.” Geologie en Mijnbouw66: 313–326.
    [Google Scholar]
  35. Muchez, P., W.Viaene, J.Bouckaert, et al. 1990. “The Occurrence of a Microbial Buildup at Poederlee (Campine Basin, Belgium): Biostratigraphy, Sedimentology, Early Diagenesis and Significance for Early Warnantian Paleogeography.” Annales de la Société Géologique de Belgique113: 329–339.
    [Google Scholar]
  36. Nagy, Z. R., I. D.Somerville, J. M.Gregg, S. P.Becker, K. L.Shelton, and A. G.Sleeman. 2005. “Sedimentation in an Actively Tilting Half‐Graben: Sedimentology and Stratigraphy of Late Tournaisian–Visean (Mississippian, Lower Carboniferous) Carbonate Rocks in South County Wexford, Ireland.” Sedimentology52: 489–512.
    [Google Scholar]
  37. PanTerra . 2023. Sedimentological Reconstruction of the Campine Basin During the Dinantian Vlaams Planbureau voor Omgeving. https://archief.algemeen.omgeving.vlaanderen.be/xmlui/handle/acd/982025.
  38. Poty, E.1991. “Tectonique de blocs dans le prolongement oriental du Massif du Brabant.” Annales. Société Géologique de Belgique114, no. 1: 265–275.
    [Google Scholar]
  39. Poty, E.2016. “The Dinantian (Mississippian) Succession of Southern Belgium and Surrounding Areas: Stratigraphy Improvement and Inferred Climate Reconstruction.” In Devonian and Carboniferous Research: Homage to Professor Edouard Poty, edited by J.Denayer and M.Aretz, vol. 19/1–2, 177–200. Geologica Belgica.
    [Google Scholar]
  40. Poty, E., F.‐X.Devuyst, and L.Hance. 2006. “Upper Devonian and Mississippian Foraminiferal and Rugose Coral Zonations of Belgium and Northern France: A Tool for Eurasian Correlations.” Geological Magazine143, no. 6: 829–857.
    [Google Scholar]
  41. Pracht, M., A.Lees, B.Leake, et al. 2004. Geology of Galway Bay: A Geological Description to Accompany the Bedrock Geology, 1:100,000 Scale Map Series, Sheet 14, Galway Bay, 76. Geological Survey of Ireland.
    [Google Scholar]
  42. Reijmer, J. J. G., J. H.ten Veen, B.Jaarsma, and R.Boots. 2017. “Seismic Stratigraphy of Dinantian Carbonates in the Southern Netherlands and Northern Belgium.” Netherlands Journal of Geosciences96: 353–379.
    [Google Scholar]
  43. Rombaut, B., J.Deckers, K.Dirix, and K.Van Baelen. 2024. Nieuwe inzichten en geologische 3D modellen van het Dinantiaan in het Bekken van de Kempen. VITO‐Rapport 2021/RMA/R/2477.
  44. Sintubin, M.1997. “Structural Implications of the Aeromagnetic Lineament Geometry in the Lower Paleozoic Brabant Massif (Belgium).” Aardkundige Mededelingen8: 165–168.
    [Google Scholar]
  45. Smit, J., J.‐D.van Wees, and S.Cloetingh. 2018. “Early Carboniferous Extension in East Avalonia: 350 My Record of Lithospheric Memory.” Marine and Petroleum Geology92: 1010–1027.
    [Google Scholar]
  46. Somerville, I. D.2003. “Review of Irish Lower Carboniferous (Mississippian) mud Mounds: Depositional Setting, Biota, Facies, and Evolution.” In Permo‐Carboniferous Carbonate Platforms and Reefs. SEPM Special Publications No. 78, edited by W. M.Ahr, P. M. M.Harris, W. A.Morgan, and I. D.Somerville, vol. 83, 239–252. AAPG Memoir.
    [Google Scholar]
  47. Somerville, I. D., P.Strogen, N. A. H.Pickard, et al. 1992. “Mid‐Dinantian Waulsortian Buildups in the Dublin Basin, Ireland.” Sedimentary Geology79: 91–116.
    [Google Scholar]
  48. Ter Borgh, M. M., B.Jaarsma, and E. A.Rosendaal. 2018. “Structural Development of the Northern Dutch Offshore: Paleozoic to Present.” In Paleozoic Plays of NW Europe, edited by A.Monaghan, J. R.Underhill, A. J.Hewett, and J. E. A.Marshall, vol. 471, 115. Geological Society of London, Special Publication.
    [Google Scholar]
  49. Van den Haute, P., and C.Vercoutere. 1989. “Apatite Fission‐Track Evidence for a Mesozoic Uplift of the Brabant Massif: Preliminary Results.” Annales de la Société Géologique de Belgique112, no. 2: 443–452.
    [Google Scholar]
  50. van der Voet, E., B.Laenen, B.Rombaut, M.Kourta, and R.Swennen. 2020. “Fracture Characteristics of Lower Carboniferous Carbonates in Northern Belgium Based on FMI Log Analyses.” Netherlands Journal of Geosciences99: e8.
    [Google Scholar]
  51. van der Voet, E., P.Muchez, B.Laenen, G. J.Weltje, D.Lagrou, and R.Swennen. 2020. “Characterizing Carbonate Reservoir Fracturing From Borehole Data – A Case Study of the Viséan in Northern Belgium.” Marine and Petroleum Geology111: 375–389.
    [Google Scholar]
  52. Vandenberghe, N.1984. “The Subsurface Geology of the Meer Area in North Belgium and Its Significance for the Occurrence of Hydrocarbons.” Journal of Petroleum Geology7: 55–66.
    [Google Scholar]
  53. Vandenberghe, N., S.Van Simaeys, E.Steurbaut, J. W. M.Jagt, and P. J.Felder. 2004. “Stratigraphic Architecture of the Upper Cretaceous and Cenozoic Along the Southern Border of the North Sea Basin in Belgium.” Geologie en Mijnbouw83, no. 3: 155–171.
    [Google Scholar]
  54. Wang, D., L.Yang, W.Li, and X.Wang. 2023. “The Impact of Pre‐Existing Faults on Fault Geometry During Multiphase Rifts: The Jiyang Depression, Eastern China.” Journal of Marine Science and Engineering11, no. 10: 1971.
    [Google Scholar]
  55. Worthington, R. P., and J. J.Walsh. 2011. “Structure of Lower Carboniferous Basins of NW Ireland, and Its Implications for Structural Inheritance and Cenozoic Faulting.” Journal of Structural Geology33, no. 8: 1285–1299.
    [Google Scholar]
  56. Ziegler, P. A.1984. Geological Atlas of Western and Central Europe, 130. Shell B.V.
    [Google Scholar]
/content/journals/10.1111/bre.70023
Loading
/content/journals/10.1111/bre.70023
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error