1887
Volume 37, Issue 3
  • E-ISSN: 1365-2117

Abstract

[

Integration between deep subsurface geology and geophysics, near‐surface geophysics including, together with high‐resolution sedimentological field work on outcropping Bajocian limestone in quarries of the eastern edge of the Paris Basin. Ridges observed in 3D seismic images correspond to the coral buildups, probably nucleated from the crest of dunes.

, ABSTRACT

Enigmatic N120° ridges have been identified from 3D seismic reflection imaging of the Bajocian limestones of the eastern Paris Basin. These features may impact flows within the active Middle Jurassic aquifer beneath the Callovian–Oxfordian claystones and marls that host the Underground Research Laboratory (URL) where the Andra (French National Agency for Radioactive Waste Management) is studying the feasibility of a deep repository for radioactive waste. Worldwide, there are numerous other examples where carbonate buildups form ridges in 3D, which are more or less interconnected, laterally amalgamated, or bifurcating, with no clear reason for these geometric features. It is consequently of paramount importance to understand the nature and origin of these ridges, and an integrated study combining (1) well logs, (2) new 3D seismic acquisitions, (3) classical field sedimentology and stratigraphy, (4) near‐surface geophysics including ground penetrating radar (GPR), electrical resistivity tomography (ERT) and frequency‐domain electromagnetics (FDEM) and (5) seismic refraction has been developed to investigate them. Facies analysis and a regional sequence stratigraphy interpretation, integrating near‐surface geophysical imaging performed on time‐equivalent outcrop sections, demonstrate that elongated mounds of hermatypic scleractinian corals developed during the early Bajocian ( chronozone) in shallow, warm oligotrophic seawater. These buildups nucleated as patches on hardground atop giant subaqueous dunes composed of peloidal and bioclastic grainstones, dipping mostly N30° with N120°‐oriented crests. Some of the coral reefs form buildups up to 15 m high and several hundred meters wide. They are elongated in the main N120° direction of the underlying dunes, although the dispersion of measurements illustrates the complexity of the interfingered structures observed in 3D seismic images. The coral buildups are progressively onlapped and draped by oncoid‐rich alternating marl‐limestones that may result from a shift from oligotrophic to mesotrophic conditions probably brought about by a rise in relative sea level. Near‐surface geophysics provide insightful supporting evidence to supplement the field work, particularly by imaging the roots of several coral reefs, their internal structures and the infill of the inter‐reefal troughs. This work demonstrates the critical importance of outcrop analogue studies for resolving subsurface problems and also shows how near‐surface geophysical methods can usefully supplement direct classical field geology investigations. This new characterisation suggests that coral reefs forming ridges, structures that have often remained enigmatic, could develop by directly settling at the top of early cemented giant oo‐bioclastic dunes. Submarine early diagenesis generates hardgrounds that constitute stable substrates for nucleation and growth of coral reefs, especially when they cap prominent submarine reliefs.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70034
2025-05-12
2025-07-08
Loading full text...

Full text loading...

/deliver/fulltext/bre/37/3/bre70034.html?itemId=/content/journals/10.1111/bre.70034&mimeType=html&fmt=ahah

References

  1. Anastas, A., R.Dalrymple, N.James, and C.Nelson. 1997. “Cross‐Stratified Calcarenites From New Zealand: Subaqueous Dunes in a Cool‐Water, Oligo‐Miocene Seaway.” Sedimentology44: 869–891.
    [Google Scholar]
  2. André, G., C.Hibsch, S.Fourcade, M.Cathelineau, and S.Buschaert. 2010. “Chronology of Fracture Sealing Under a Meteoric Fluid Environment: Microtectonic and Isotopic Evidence of Major Cainozoic Events in the Eastern Paris Basin (France).” Tectonophysics490: 214–228.
    [Google Scholar]
  3. Bachtel, S. L., H. W.Posamentier, and T. P.Gerber. 2010. “Seismic Geomorphology and Stratigraphic Evolution of a Tertiary‐Aged Isolated Carbonate Platform System, Browse Basin, North West Shelf of Australia—Part II.” In Seismic Imaging of Depositional and Geomorphic Systems, edited by L. J.Wood, T. T.Simo, and N. C.Rosen, vol. 30. SEPM Society for Sedimentary Geology.
    [Google Scholar]
  4. Bastos, A. C., M.Collins, and N. H.Kenyon. 2003. “Morphology and Internal Structure of Sand Shoals and Sandbanks off the Dorset Coast, English Channel.” Sedimentology50: 1105–1122.
    [Google Scholar]
  5. Bergerat, F.1987. “Tertiary Paleostress Fields in the European Platform in Front of the Alpine Orogen.” Bulletin de la Societe Geologique de France3: 611–620.
    [Google Scholar]
  6. Bergerat, F., P.Elion, D.Frizon de Lamotte, et al. 2007. “3D Multiscale Structural Analysis of the Eastern Paris Basin: The Andra Contribution.” In A Multi‐Disciplinary Approach to the Eastern Jurassic Border of the Paris Basin (Meuse/Haute‐Marne), edited by P.Lebon, vol. 178, 15–35. Société Géologique de France.
    [Google Scholar]
  7. Blaise, T., S. A.Ali Khoudja, C.Carpentier, et al. 2022. “Far‐Field Brittle Deformation Record in the Eastern Paris Basin (France).” Geological Magazine159: 2095–2109.
    [Google Scholar]
  8. Blanchy, G., S.Saneiyan, J.Boyd, P.McLachlan, and A.Binley. 2020. “ResIPy, an Intuitive Open Source Software for Complex Geoelectrical Inversion/Modeling.” Computers & Geosciences137: 104423.
    [Google Scholar]
  9. Bourillot, R., E.Vennin, C.Kolodka, et al. 2009. “The Role of Topography and Erosion in the Development and Architecture of Shallow‐Water Coral Bioherms (Tortonian–Messinian, Cabo de Gata, SE Spain).” Palaeogeography, Palaeoclimatology, Palaeoecology281: 92–114.
    [Google Scholar]
  10. Brigaud, B., C.Durlet, J.‐F.Deconinck, et al. 2009. “Facies and Climate/Environmental Changes Recorded on a Carbonate Ramp: A Sedimentological and Geochemical Approach on Middle Jurassic Carbonates (Paris Basin, France).” Sedimentary Geology222: 181–206.
    [Google Scholar]
  11. Brigaud, B., B.Vincent, C.Carpentier, et al. 2014. “Growth and Demise of the Jurassic Carbonate Platform in the Intracratonic Paris Basin (France): Interplay of Climate Change, Eustasy and Tectonics.” Marine and Petroleum Geology53: 3–29.
    [Google Scholar]
  12. Brigaud, B., B.Vincent, C.Durlet, J.‐F.Deconinck, P.Blanc, and A.Trouiller. 2010. “Acoustic Properties of Ancient Shallow‐Marine Carbonates: Effects of Depositional Environments and Diagenetic Processes (Middle Jurassic, Paris Basin, France).” Journal of Sedimentary Research80: 791–807.
    [Google Scholar]
  13. Brigaud, B., B.Vincent, C.Durlet, et al. 2014. “Characterization and Origin of Permeability–Porosity Heterogeneity in Shallow‐Marine Carbonates: From Core Scale to 3D Reservoir Dimension (Middle Jurassic, Paris Basin, France).” Marine and Petroleum Geology57: 631–651.
    [Google Scholar]
  14. Carpentier, C., B.Brigaud, T.Blaise, et al. 2014. “Impact of Basin Burial and Exhumation on Jurassic Carbonates Diagenesis on Both Sides of a Thick Clay Barrier (Paris Basin, NE France).” Marine and Petroleum Geology53: 44–70.
    [Google Scholar]
  15. Carpentier, C., B.Lathuilière, S.Ferry, and J.Sausse. 2007. “Sequence Stratigraphy and Tectonosedimentary History of the Upper Jurassic of the Eastern Paris Basin (Lower and Middle Oxfordian, Northeastern France).” Sedimentary Geology197: 235–266.
    [Google Scholar]
  16. Collin, P.‐Y., and P.Courville. 2006. “Sedimentation and Palaeogeography of the Eastern Part of the Paris Basin (France) at the Middle–Upper Jurassic Boundary.” Comptes Rendus Geoscience338: 824–833.
    [Google Scholar]
  17. Cuilhé, L., and A.Bruneton. 2003. Site Meuse/Haute‐Marne. Sismique 3D Après Retraitement 2002. Rapport d'interprétation géologique et structurale. Andra.
    [Google Scholar]
  18. Dagallier, G., A. I.Laitinen, F.Malartre, I. P. A. M.Van Campenhout, and P. C. H.Veeken. 2000. “Ground Penetrating Radar Application in a Shallow Marine Oxfordian Limestone Sequence Located on the Eastern Flank of the Paris Basin, NE France.” Sedimentary Geology130: 149–165.
    [Google Scholar]
  19. Dalrymple, R. W., and R. N.Rhodes. 1995. “Chapter 13 Estuarine Dunes and Bars.” In Geomorphology and Sedimentology of Estuaries, edited by G. M. E.Perillo, vol. 53, 359–422. Elsevier.
    [Google Scholar]
  20. de Graciansky, C., and T.Jacquin. 2003. “Evolution Des Structures et de la Paléogéographie au Passage Lias‐Dogger Dans le Bassin de Paris d'après les Données de la Subsurface.” Bulletin de la Société Géologique de France174: 3–17.
    [Google Scholar]
  21. Dépré, P., J. P.Murillo, and R.Dupont. 2003. Laboratoire souterrain de Meuse/Haute‐Marne. Sismique 3D, 2D. Rapport de retraitement. Andra.
    [Google Scholar]
  22. Dera, G., P.Neige, J. L.Dommergues, and A.Brayard. 2011. “Ammonite Paleobiogeography During the Pliensbachian‐Toarcian Crisis (Early Jurassic) Reflecting Paleoclimate, Eustasy, and Extinctions.” Global and Planetary Change78: 92–105.
    [Google Scholar]
  23. Dercourt, J., M.Gaetani, B.Vrielynck, et al. 2000. Atlas Peri‐Tethys, Palaeogeographical Maps, 24 Maps and Explanatory Notes: I–XX, 1–269. CCGM/CGMW.
    [Google Scholar]
  24. Drouiller, Y., and D.Guillemot. 2005. EST210. PSV Walk‐above.Interprétation combinée du PSV avec l'imagerie de paroi FMI et la sismique 3D. Laboratoire de recherche souterrain de Meuse/Haute‐Marne. Andra.
    [Google Scholar]
  25. Droxler, A. W., and S. J.Jorry. 2013. “Deglacial Origin of Barrier Reefs Along Low‐Latitude Mixed Siliciclastic and Carbonate Continental Shelf Edges.” Annual Review of Marine Science5: 165–190.
    [Google Scholar]
  26. Durlet, C.1996. Apport de la Diagenèse des Discontinuités à l'interprétation Paléo‐Environnementale et Séquentielle D'une Plate‐Forme Carbonatée. PhD thesis. Université de Bourgogne.
    [Google Scholar]
  27. Durlet, C., T.Jacquin, and M.Floquet. 1997. “Extensional Synsedimentary Tectonics During Aalenian and Bajocian on the Burgundy High (France).” Comptes Rendus de L'académie Des Sciences Série IIa: Sciences de la Terre et Des Planètes324: 1001–1008.
    [Google Scholar]
  28. Durlet, C., B.Lathuilière, and M.Aycard. 2001. “Reef Geometries and Facies in Bajocian Limestones of the Burgundy High (France): Environmental and Sequence Stratigraphy Interpretations.” Eclogae Geologicae Helvetiae94: 1–11.
    [Google Scholar]
  29. Durlet, C., J. P.Loreau, and A.Pascal. 1992. “Diagenetic Signature of Unconformities and New Graphic Visualization of Diagenesis.” Comptes Rendus de L'académie Des Sciences Série IIa:Sciences de la Terre et Des Planètes314: 1507–1514.
    [Google Scholar]
  30. Durlet, C., and J.Thierry. 2000. “Modalités séquentielles de la transgression aaléno‐bajocienne sur le sud‐est du Bassin parisien.” Bulletin de la Société Géologique de France171: 327–339.
    [Google Scholar]
  31. Elion, P., J.Brulhet, and E.Leclerc. 2005. Le site de Meuse/Haute‐Marne: histoire géologique et état actuel. Andra.
    [Google Scholar]
  32. Embry, A. F., and E. P.Johannessen. 1992. “T–R Sequence Stratigraphy, Facies Analysis and Reservoir Distribution in the Uppermost Triassic‐ Lower Jurassic Succession, Western Sverdrup Basin, Arctic Canada.” In Arctic Geology and Petroleum Potential, n 2, edited by T. O.Vorren, E.Bergsager, O. A.Dahl‐Stamnes et al vol. 2, 121–146. Norwegian Petroleum Society.
    [Google Scholar]
  33. Fenster, M. S., D. M.Fitzgerald, W. F.Bohlen, R. S.Lewis, and C. T.Baldwin. 1990. “Stability of Giant Sand Waves in Eastern Long Island Sound, USA.” Marine Geology91: 207–225.
    [Google Scholar]
  34. Fournier, F., J.Borgomano, and L. F.Montaggioni. 2005. “Development Patterns and Controlling Factors of Tertiary Carbonate Buildups: Insights From High‐Resolution 3D Seismic and Well Data in the Malampaya Gas Field (Offshore Palawan, Philippines).” Sedimentary Geology175: 189–215.
    [Google Scholar]
  35. Geister, J., and B.Lathuilière. 1991. Jurassic Coral Reefs of the Northeastern Paris Basin (Luxembourg and Lorraine), 112. Excursion‐Guidebook VI.
    [Google Scholar]
  36. Goldstein, R. H., E. K.Franseen, and C. J.Lipinski. 2013. “Topographic and Sea Level Controls on Oolite‐Microbialite‐Coralgal Reef Sequences: The Terminal Carbonate Complex of Southeast Spain.” AAPG Bulletin97: 1997–2034.
    [Google Scholar]
  37. Guillocheau, F., C.Robin, M.Mettraux, G.Dagallier, F.‐X.Robin, and A.Le Solleuz. 2002. “Le Jurassique de l'Est du Bassin de Paris.” Bulletin D'informations Géologiques du Bassin de Paris39: 23–47.
    [Google Scholar]
  38. Harris, P. M., S. J.Purkis, and J.Ellis. 2011. “Analyzing Spatial Patterns in Modern Carbonate Sand Bodies From Great Bahama Bank.” Journal of Sedimentary Research81: 185–206.
    [Google Scholar]
  39. Homewood, P., P.Mauriaud, and F.Lafont. 1999. Best Practices in Sequence Stratigraphy for Explorationists and Reservoir Engineers, 81. Bulletin Centre de Recherche Exploitation‐Production Elf Aquitaine, Mem. 25.
    [Google Scholar]
  40. Howarth, V., and T. M.Alves. 2016. “Fluid Flow Through Carbonate Platforms as Evidence for Deep‐Seated Reservoirs in Northwest Australia.” Marine Geology380: 17–43.
    [Google Scholar]
  41. Jacquin, T., G.Dardeau, C.Durlet, C.de Graciansky, and P.Hantzpergue. 1998. “The North Sea Cycle: An Overview of 2nd‐Order Transgressive/Regressive Facies Cycles in Western Europe.” In Mesozoic and Cenozoic Sequence Stratigraphy of European Basins, edited by P.‐C.de Graciansky, J.Hardenbol, T.Jacquin, and P. R.Vail, vol. 60, 445–466. SEPM Special Publication.
    [Google Scholar]
  42. Jacquin, T., and P.‐C.de Graciansky. 1998. “Major Transgressive/Regressive Cycles: The Stratigraphic Signature of European Basin Development.” In Mesozoic and Cenozoic Sequence Stratigraphy of European Basins, edited by P.‐C.De Graciansky, J.Hardenbol, T.Jacquin, and P. R.Vail, vol. 60, 15–29. SEPM Special Publication.
    [Google Scholar]
  43. Jorry, S. J., and G.Biévre. 2011. “Integration of Sedimentology and Ground‐Penetrating Radar for High‐Resolution Imaging of a Carbonate Platform: High‐Resolution Imaging of a Carbonate Platform.” Sedimentology58: 1370–1390.
    [Google Scholar]
  44. Kiessling, W.2009. “Geologic and Biologic Controls on the Evolution of Reefs.” Annual Review of Ecology, Evolution, and Systematics40: 173–192.
    [Google Scholar]
  45. Kiessling, W., E.Flügel, and J.Golonka, eds. 2002. Phanerozoic Reef Patterns. SEPM (Society for Sedimentary Geology).
    [Google Scholar]
  46. Koša, E.2015. “Sea‐Level Changes, Shoreline Journeys, and the Seismic Stratigraphy of Central Luconia, Miocene‐Present, Offshore Sarawak, NW Borneo.” Marine and Petroleum Geology59: 35–55.
    [Google Scholar]
  47. Landrein, P., G.Vigneron, J.Delay, P.Lebon, and M.Pagel. 2013. “Lithologie, Hydrodynamisme et Thermicite Dans le Systeme Sedimentaire Multicouche Recoupé Par Les Forages Andra de Montiers‐Sur‐Saulx (Meuse).” Bulletin de la Societe Geologique de France184: 519–543.
    [Google Scholar]
  48. Lathuilière, B.2000a. “Reef Building Corals of Lower Bajocian of France. Part 1.” Geobios33: 51–72.
    [Google Scholar]
  49. Lathuilière, B.2000b. “Reef Building Corals of Lower Bajocian of France (Part 2).” Geobios33: 153–181.
    [Google Scholar]
  50. Lathuilière, B.2005. “Introduction Géologique à la Carrière d'Ottange‐Rumelange.” In Fossiles et Minéraux de la carrière d'Ottange‐Rumelange, 15–25. Association lorraine amateur de géologie et Amis de la géologie et paléontologie.
    [Google Scholar]
  51. Lathuilière, B., G.André, G.Dagallier, et al. 2003. Production carbonatée dans le Jurassique de Lorraine Groupe Français d'Etude du Jurassique.
  52. Lathuilière, B., and D.Marchal. 2009. “Extinction, Survival and Recovery of Corals From the Triassic to Middle Jurassic Time.” Terra Nova21: 57–66.
    [Google Scholar]
  53. Loreau, J. P., and C.Durlet. 2000. “Diagenetic Stratigraphy of Discontinuity Surfaces: An Application to Paleo‐Environments and Sequence Stratigraphy.” In West European Case Studies in Stratigraphy, edited by H.Bock, R.Muller, R.Swennen, et al. Zentralblatt Für Geologie Und Paläontologie , 381–407. Schweizerbart Science Publishers.
    [Google Scholar]
  54. Macintyre, I. G.1972. “Submerged Reefs of Eastern Caribbean.” AAPG Bulletin56: 720–738.
    [Google Scholar]
  55. Malikides, M., P. T.Harris, C. J.Jenkins, and J. B.Keene. 1988. “Carbonate Sandwaves in Bass Strait.” Australian Journal of Earth Sciences35: 303–311.
    [Google Scholar]
  56. Mancini, E. A., T. A.Blasingame, R.Archer, et al. 2004. “Improving Recovery From Mature Oil Fields Producing From Carbonate Reservoirs: Upper Jurassic Smackover Formation, Womack Hill Field (Eastern Gulf Coast, USA).” AAPG Bulletin88: 1629–1651.
    [Google Scholar]
  57. Mangold, C., E.Poirot, B.Lathuilière, and J.Le Roux. 1994. “Biochronologie du Bajocien supérieur et du Bathonien de Lorraine (France).” Geobios27: 343–349.
    [Google Scholar]
  58. Mari, J. L., and B.Yven. 2014. “The Application of High‐Resolution 3D Seismic Data to Model the Distribution of Mechanical and Hydrogeological Properties of a Potential Host Rock for the Deep Storage of Radioactive Waste in France.” Marine and Petroleum Geology53: 133–153.
    [Google Scholar]
  59. Martín‐Martín, J. D., J.Vergés, E.Saura, et al. 2017. “Diapiric Growth Within an Early Jurassic Rift Basin: The Tazoult Salt Wall (Central High Atlas, Morocco).” Tectonics36: 2–32.
    [Google Scholar]
  60. Matyszkiewicz, J., M.Krajewski, and J.Kędzierski. 2006. “Origin and Evolution of an Upper Jurassic Complex of Carbonate Buildups From Zegarowe Rocks (Kraków–Wieluń Upland, Poland).” Facies52: 249–263.
    [Google Scholar]
  61. Maubeuge, P.‐L.1956. “Observations nouvelles sur l'Aalénien du Nord de Langres.” Bulletin Technique Des Mines de Fer de France43: 3.
    [Google Scholar]
  62. Nichol, S. L., T. J.Anderson, C.Battershill, and B. P.Brooke. 2012. “Submerged Reefs and Aeolian Dunes as Inherited Habitats, Point Cloates, Carnarvon Shelf, Western Australia.” In Seafloor Geomorphology as Benthic Habitat, 397–407. Elsevier.
    [Google Scholar]
  63. Olivier, N., B.Lathuilière, and P.Thiry‐Bastien. 2006. “Growth Models of Bajocian Coral‐Microbialite Reefs of Chargey‐Les‐Port (Eastern France): Palaeoenvironmental Interpretations.” Facies52: 113–127.
    [Google Scholar]
  64. Olivier, N., B.Pittet, C.Gaillard, and P.Hantzpergue. 2007. “High‐Frequency Palaeoenvironmental Fluctuations Recorded in Jurassic Coral‐ and Sponge‐Microbialite Bioconstructions.” Comptes Rendus Palevol6: 21–36.
    [Google Scholar]
  65. Olivier, N., B.Pittet, W.Werner, P.Hantzpergue, and C.Gaillard. 2008. “Facies Distribution and Coral‐Microbialite Reef Development on a Low‐Energy Carbonate Ramp (Chay Peninsula, Kimmeridgian, Western France).” Sedimentary Geology205: 14–33.
    [Google Scholar]
  66. Pagel, M.2014. “Introduction to Present and Past Transfers in a Sedimentary Aquifer–Aquitard System: A 2000 m Deep Drill‐Hole in the Mesozoic of the Paris Basin.” Marine and Petroleum Geology53: 1–2.
    [Google Scholar]
  67. Pagel, M., M.Bonifacie, D. A.Schneider, et al. 2018. “Improving Paleohydrological and Diagenetic Reconstructions in Calcite Veins and Breccia of a Sedimentary Basin by Combining Δ47 Temperature, δ18Owater and U‐Pb Age.” Chemical Geology481: 1–17.
    [Google Scholar]
  68. Piuz, A. D.2008. “Associations Micro‐Faunistiques de la Plate‐Forme Échinodermique Bajocienne du Jura et de Bourgogne: Implications Paléoenvironnementales.” Archives des Sciences61: 101–120.
    [Google Scholar]
  69. Pomar, L.1991. “Reef Geometries, Erosion Surfaces and High‐Frequency Sea‐Level Changes, Upper Miocene Reef Complex, Mallorca, Spain.” Sedimentology38: 243–269.
    [Google Scholar]
  70. Pomar, L.2001. “Types of Carbonate Platforms: A Genetic Approach.” Basin Research13: 313–334.
    [Google Scholar]
  71. Poprawski, Y., C.Basile, E.Jaillard, M.Gaudin, and M.Lopez. 2016. “Halokinetic Sequences in Carbonate Systems: An Example From the Middle Albian Bakio Breccias Formation (Basque Country, Spain).” Sedimentary Geology334: 34–52.
    [Google Scholar]
  72. Purkis, S. J., and P.Harris. 2017. “Quantitative Interrogation of a Fossilized Carbonate Sand Body – The Pleistocene Miami Oolite of South Florida.” Sedimentology64, no. 5: 1439–1464. https://doi.org/10.1111/sed.12367.
    [Google Scholar]
  73. Quesne, D., M.Guiraud, J.‐P.Garcia, J.Thierry, B.Lathuilière, and N.Audebert. 2000. “Marqueurs d'une Structuration Extensive Jurassique en Arrière de la Marge Nord‐Téthysienne (Monts Du Mâconnais, Bourgogne, France).” Comptes Rendus de L'académie Des Sciences – Series IIA ‐ Earth and Planetary Science330: 623–629.
    [Google Scholar]
  74. Rafaelsen, B., G.Elvebakk, K.Andreassen, L.Stemmerik, A.Colpaert, and T. J.Samuelsberg. 2008. “From Detached to Attached Carbonate Buildup Complexes — 3D Seismic Data From the Upper Palaeozoic, Finnmark Platform, Southwestern Barents Sea.” Sedimentary Geology206: 17–32.
    [Google Scholar]
  75. Rankey, E. C., and S. L.Reeder. 2012. “Tidal Sands of the Bahamian Archipelago.” In Principles of Tidal Sedimentology, edited by R. A.Davis and R. W.Dalrymple, 537–565. Springer Netherlands.
    [Google Scholar]
  76. Rebours, H., G.André, M.Cruchaudet, et al. 2004. Forages de reconnaissance de la formation – Synthèse FRF – Laboratoire de recherche souterrain de Meuse/Haute‐Marne – Volume I texte. Andra.
  77. Reynaud, J.‐Y., and R. W.Dalrymple. 2012. “Shallow‐Marine Tidal Deposits.” In Principles of Tidal Sedimentology, edited by R. A.Davis and R. W.Dalrymple, 335–369. Springer Netherlands.
    [Google Scholar]
  78. Riera, R., U.Lebrec, S. C.Lang, and V.Paumard. 2023. “Differentiating Reefal Ridges From Relict Coastal Ridges: Lessons From the Seismic Geomorphologic Study of Buried Miocene Buildups (North West Shelf, Australia).” Basin Research35: 1793–1814.
    [Google Scholar]
  79. Schlager, W., and S.Purkis. 2015. “Reticulate Reef Patterns–Antecedent Karst Versus Self‐Organization.” Sedimentology62: 501–515.
    [Google Scholar]
  80. Teixell, A., A.Barnolas, I.Rosales, and M.‐L.Arboleya. 2017. “Structural and Facies Architecture of a Diapir‐Related Carbonate Minibasin (Lower and Middle Jurassic, High Atlas, Morocco).” Marine and Petroleum Geology81: 334–360.
    [Google Scholar]
  81. Teyssen, T. A. L.1984. “Sedimentology of the Minette Oolitic Ironstones of Luxembourg and Lorraine: A Jurassic Subtidal Sandwave Complex.” Sedimentology31: 195–211.
    [Google Scholar]
  82. Thiry‐Bastien, P.2002. Stratigraphie séquentielle des calcaires bajociens de l'Est de la France (Jura‐Bassin de Paris). PhD thesis. Université Claude Bernard.
    [Google Scholar]
  83. Todd, B. J., and J.Shaw. 2009. “International Year of Planet Earth 5. Applications of Seafloor Mapping on the Canadian Atlantic Continental Shelf.” Geoscience Canada36: 81–94.
    [Google Scholar]
  84. Vennin, E., T.Boisseau, J.‐N.Proust, and B. I.Chuvashov. 2003. “Influence of Eustasy and Tectonism on Reef Architecture in Early Permian Reef Complexes, Southern Urals, Russia.” In Paleozoic Carbonates of the Commonwealth of Independent States (CIS): Subsurface Reservoirs and Outcrop Analogs, edited by W. G.Zempolich and H. E.Cook, vol. 74. SEPM Society for Sedimentary Geology.
    [Google Scholar]
  85. Vennin, E., A.Bouton, A.Roche, et al. 2021. “The Limagne Basin: A Journey Through Modern and Fossil Microbial Deposits.” BSGF Earth Sciences Bulletin192: 41.
    [Google Scholar]
  86. Vennin, E., J.‐M.Rouchy, C.Chaix, M.‐M.Blanc‐Valleron, A.Caruso, and V.Rommevau. 2004. “Paleoecological Constraints on Reef‐Coral Morphologies in the Tortonian–Early Messinian of the Lorca Basin, SE Spain.” Palaeogeography, Palaeoclimatology, Palaeoecology213: 163–185.
    [Google Scholar]
  87. Vincent, B.2001. Sédimentologie et géochimie de la diagenèse des carbonates. Application au Malm de la bordure Est du Bassin de Paris. PhD Thesis. University of Burgundy.
    [Google Scholar]
  88. Vincent, B., L.Emmanuel, P.Houel, and J.‐P.Loreau. 2007. “Geodynamic Control on Carbonate Diagenesis: Petrographic and Isotopic Investigation of the Upper Jurassic Formations of the Paris Basin (France).” Sedimentary Geology197: 267–289.
    [Google Scholar]
  89. Wolpert, P., T.Aigner, D.Bendias, K.Beichel, and K.Zosseder. 2022. “A Novel Workflow for Geothermal Exploration: 3D Seismic Interpretation of Biohermal Buildups (Upper Jurassic, Molasse Basin, Germany).” Geothermal Energy10: 27.
    [Google Scholar]
  90. Zeyen, H., and E.Léger. 2024. “PyRefra – Refraction Seismic Data Treatment and Inversion.” Computers & Geosciences185: 105556.
    [Google Scholar]
/content/journals/10.1111/bre.70034
Loading
/content/journals/10.1111/bre.70034
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Bajocian; carbonate; coral; facies; geophysics; reef

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error