1887
Volume 37, Issue 3
  • E-ISSN: 1365-2117
PDF

Abstract

[ABSTRACT

Estimations of source‐to‐sink sediment fluxes over geological timescales allow a better understanding of landscape sensitivity to forcings such as climate or tectonics. The Pyrenees Mountains represent an ideal location to test the accuracy of source‐to‐sink predictive methods, as the well‐studied mountainous sources and sediment sinks, including the Aquitaine, Jaca, and Ebro basins, collectively serve as a reference for evaluating the accuracy of predictive approaches. This study uses a paleo‐digital elevation model (pDEM) of Bartonian age (ca. 40 Ma) to reconstruct catchments for the Pyrenees. When coupled with published paleoclimatic constraints, the BQART equation is used to predict sediment fluxes into each sedimentary basin. Predicted sediment volumes are compared against volumes calculated from bedrock exhumation rates across the Pyrenees, and against published rock volumes preserved within Pyrenean sedimentary basins. Consistency between total sediment volumes predicted by the BQART model and for exhumation rates is within a factor of 1.5, and within a factor of 2 when sediment volumes are partitioned by sedimentary basin, indicating the pDEM is able to generate realistic, first‐order estimates of sediment flux. An uncertainty analysis showed that the runoff category contributes the greatest uncertainty to the BQART equation, highlighting the requirement for paleoclimate and drainage constraints on this parameter. When BQART and exhumation‐derived volumes are compared against preserved sediment volumes in the Aquitaine and Jaca Basins, sediments are undercounted by an order of magnitude. This is a result of the limited scope of volume quantification, as depocentres are defined by modern geography only, and from the postdepositional erosion of sediment in an active orogenic setting. Sediment volumes in the better‐preserved Ebro Basin were predicted within a factor of 1.35 and 2.5. The results show that the pDEM‐BQART method can appraise both the completeness of the sedimentary record within depocentres and successfully elucidate source‐to‐sink sediment routing within ancient orogens.

,

Sediment fluxes are estimated from an Eocene paleoDEM of the Pyrenees using the geomorphic‐climatic BQART equation. These volumes are comparable to sediment supplies independently calculated from bedrock exhumation rates, showing the pDEM generates reliable sediment fluxes. Estimates greatly exceed sediment volumes preserved in the Aquitaine and Jaca Basins, suggesting incomplete mapping and the postdepositional erosion of sediments.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70037
2025-06-07
2025-07-08
Loading full text...

Full text loading...

/deliver/fulltext/bre/37/3/bre70037.html?itemId=/content/journals/10.1111/bre.70037&mimeType=html&fmt=ahah

References

  1. Ábalos, B.2016. “Geologic Map of the Basque‐Cantabrian Basin and a New Tectonic Interpretation of the Basque Arc.” International Journal of Earth Sciences105: 2327–2354. https://doi.org/10.1007/s00531‐016‐1291‐6.
    [Google Scholar]
  2. Advokaat, E. L., D. J. J.van Hinsbergen, M.Maffione, et al. 2014. “Eocene Rotation of Sardinia, and the Paleogeography of the Western Mediterranean Region.” Earth and Planetary Science Letters401: 183–195. https://doi.org/10.1016/j.epsl.2014.06.012.
    [Google Scholar]
  3. Al Reda, S. M.2020. “Traçage Des Sédiments Dans les Séries Syn‐Orogéniques du Bassin d'Aquitaine.” PhD thesis, Université Paris‐Saclay.
  4. Al Reda, S. M., J.Barbarand, C.Gautheron, et al. 2021. “Thermal Record of the Building of an Orogen in the Retro‐Foreland Basin: Insight From Basement and Detrital Thermochronology in the Eastern Pyrenees and the North Pyrenean Basin (France).” Basin Research33, no. 5: 2763–2791. https://doi.org/10.1111/bre.12583.
    [Google Scholar]
  5. Allen, P. A., J. J.Armitage, A.Carter, et al. 2013. “The Qs Problem: Sediment Volumetric Balance of Proximal Foreland Basin Systems.” Sedimentology60, no. 1: 102–130. https://doi.org/10.1111/sed.12015.
    [Google Scholar]
  6. Almar, Y., O.Ferrer, E.Roca, M.Puigvert, A.Amilibia, and J. A.Muñoz. 2008. “A Geological Cross‐Section Along the Basque Pyrenees and the Parentis Basin (Western Pyrenees).” Geo‐Temas10: 421–424.
    [Google Scholar]
  7. Astibia, H., J.Elorza, A.Pisera, G.Álvarez‐Pérez, A.Payros, and S.Ortiz. 2014. “Sponges and Corals From the Middle Eocene (Bartonian) Marly Formations of the Pamplona Basin (Navarre, Western Pyrenees): Taphonomy, Taxonomy, and Paleoenvironments.” Facies60, no. 1: 91–110. https://doi.org/10.1007/s10347‐013‐0364‐2.
    [Google Scholar]
  8. Baatsen, M., D. J. J.Van Hinsbergen, A. S.Von Der Heydt, et al. 2016. “Reconstructing Geographical Boundary Conditions for Palaeoclimate Modelling During the Cenozoic.” Climate of the Past12: 1635–1644. https://doi.org/10.5194/cp‐12‐1635‐2016.
    [Google Scholar]
  9. Balaguer, J., and D. M.Alba. 2016. “A New Dugong Species (Sirenia, Dugongidae) From the Eocene of Catalonia (NE Iberian Peninsula).” Comptes Rendus Palevol15, no. 5: 489–500. https://doi.org/10.1016/j.crpv.2015.10.002.
    [Google Scholar]
  10. Beamud, E., J. A.Muñoz, P. G.Fitzgerald, et al. 2011. “Magnetostratigraphy and Detrital Apatite Fission Track Thermochronology in Syntectonic Conglomerates: Constraints on the Exhumation of the South‐Central Pyrenees.” Basin Research23: 309–331. https://doi.org/10.1111/j.1365‐2117.2010.00492.x.
    [Google Scholar]
  11. Bentham, P. A., D. W.Burbank, and C.Puigdefabregas. 1992. “Temporal and Spatial Controls on the Alluvial Architecture of an Axial Drainage System: Late Eocene Escanilla Formation, Southern Pyrenean Foreland Basin, Spain.” Basin Research4, no. 3–4: 335–352. https://doi.org/10.1111/j.1365‐2117.1992.tb00052.x.
    [Google Scholar]
  12. Bhattacharya, J. P., P.Copeland, T. F.Lawton, and J.Holbrook. 2016. “Estimation of Source Area, River Paleo‐Discharge, Paleoslope, and Sediment Budgets of Linked Deep‐Time Depositional Systems and Implications for Hydrocarbon Potential.” Earth‐Science Reviews153: 77–110. https://doi.org/10.1016/j.earscirev.2015.10.013.
    [Google Scholar]
  13. Bonde, R.2009. “Population Genetics and Conservation of the Florida Manatee: Past, Present, and Future.” PhD thesis, University of Florida.
  14. Brewer, C. J., G. J.Hampson, A. C.Whittaker, G. G.Roberts, and S. E.Watkins. 2020. “Comparison of Methods to Estimate Sediment Flux in Ancient Sediment Routing Systems.” Earth‐Science Reviews207: 103217. https://doi.org/10.1016/j.earscirev.2020.103217.
    [Google Scholar]
  15. Burrel, L., A.Teixell, D.Gómez‐Gras, and X.Coll. 2021. “Basement‐Involved Thrusting, Salt Migration and Intramontane Conglomerates: A Case From the Southern Pyrenees.” BSGF—Earth Science Bulletins192: 24. https://doi.org/10.1051/bsgf/2021013.
    [Google Scholar]
  16. Calvet, M., Y.Gunnell, and B.Laumonier. 2021. “Denudation History and Palaeogeography of the Pyrenees and Their Peripheral Basins: An 84‐Million‐Year Geomorphological Perspective.” Earth Science Reviews215: 103436. https://doi.org/10.1016/j.earscirev.2020.103436.
    [Google Scholar]
  17. Carvajal, C., and R.Steel. 2011. “Source‐to‐Sink Sediment Volumes Within a Tectonostratigraphic Model for a Laramide Shelf‐to‐Deep‐Water Basin: Methods and Results.” In Tectonics of Sedimentary Basins: Recent Advances, edited by C.Busby and A.Azor, 131–151. John Wiley & Sons. https://doi.org/10.1002/9781444347166.ch7.
    [Google Scholar]
  18. Castelltort, S., C.Fillon, É.Lasseur, et al. 2023. The Source‐to‐Sink Vade‐Mecum: History, Concepts and Tools. Society for Sedimentary Geology. CSP 16. https://doi.org/10.2110/sepmcsp.16.
    [Google Scholar]
  19. Cavagnetto, C., and P.Anadón. 1996. “Preliminary Palynological Data on Floristic and Climatic Changes During the Middle Eocene‐Early Oligocene of the Eastern Ebro Basin, Northeast Spain.” Review of Palaeobotany and Palynology92, no. 3–4: 281–305. https://doi.org/10.1016/0034‐6667(95)00096‐8.
    [Google Scholar]
  20. Coll, X., M.Roigé, D.Gómez‐Gras, A.Teixell, S.Boya, and N.Mestres. 2022. “Interplay of Multiple Sediment Routing Systems Revealed by Combined Sandstone Petrography and Heavy Mineral Analysis (HMA) in the South Pyrenean Foreland Basin.” Minerals12, no. 2: 262. https://doi.org/10.3390/min12020262.
    [Google Scholar]
  21. Curry, M. E., P.van der Beek, R. S.Huismans, S. G.Wolf, C.Fillon, and J.Muñoz. 2021. “Spatio‐Temporal Patterns of Pyrenean Exhumation Revealed by Inverse Thermo‐Kinematic Modeling of a Large Thermochronologic Data Set.” Geology (Boulder)49, no. 6: 738–742. https://doi.org/10.1130/G48687.1.
    [Google Scholar]
  22. Curry, M. E., P.van der Beek, R. S.Huismans, S. G.Wolf, and J.Muñoz. 2019. “Evolving Paleotopography and Lithospheric Flexure of the Pyrenean Orogen From 3D Flexural Modeling and Basin Analysis.” Earth and Planetary Science Letters515: 26–37. https://doi.org/10.1016/j.epsl.2019.03.009.
    [Google Scholar]
  23. De Celis, A., I.Narváez, and F.Ortega. 2020. “Spatiotemporal Palaeodiversity Patterns of Modern Crocodiles (Crocodyliformes: Eusuchia).” Zoological Journal of the Linnean Society189, no. 2: 635–656. https://doi.org/10.1093/zoolinnean/zlz038.
    [Google Scholar]
  24. Eide, C. H., R.Müller, W.Helland‐Hansen, and V.Manville. 2018. “Using Climate to Relate Water Discharge and Area in Modern and Ancient Catchments.” Sedimentology65, no. 4: 1378–1389. https://doi.org/10.1111/sed.12426.
    [Google Scholar]
  25. Espurt, N., P.Angrand, A.Teixell, et al. 2019. “Crustal‐Scale Balanced Cross‐Section and Restorations of the Central Pyrenean Belt (Nestes‐Cinca Transect): Highlighting the Structural Control of Variscan Belt and Permian‐Mesozoic Rift Systems on Mountain Building.” Tectonophysics764: 25–45. https://doi.org/10.1016/j.tecto.2019.04.026.
    [Google Scholar]
  26. Feulner, G., S.Rahmstorf, A.Levermann, and S.Volkwardt. 2013. “On the Origin of the Surface Air Temperature Difference Between the Hemispheres in Earth's Present‐Day Climate.” Journal of Climate26, no. 18: 7136–7150. https://doi.org/10.1175/JCLI‐D‐12‐00636.1.
    [Google Scholar]
  27. Filleaudeau, P.2011. “Croissance et Dénudation Des Pyrénées du Crétacé Supérieur au Paléogène: Apports de l'Analyse de Bassin et Thermochronométrie Détritique.” PhD thesis, Université Pierre et Marie Curie.
  28. Filleaudeau, P., F.Mouthereau, and R.Pik. 2012. “Thermo‐Tectonic Evolution of the South‐Central Pyrenees From Rifting to Orogeny: Insights From Detrital Zircon U/Pb and (U‐Th)/He Thermochronometry.” Basin Research24: 401–417. https://doi.org/10.1111/j.1365‐2117.2011.00535.x.
    [Google Scholar]
  29. Ford, M., L.Hemmer, A.Vacherat, K.Gallagher, and F.Christophoul. 2016. “Retro‐Wedge Foreland Basin Evolution Along the ECORS Line, Eastern Pyrenees, France.” Journal of the Geological Society173, no. 3: 419–437. https://doi.org/10.1144/jgs2015‐129.
    [Google Scholar]
  30. Ford, M., E.Masini, J.Vergés, et al. 2022. “Evolution of a Low Convergence Collisional Orogen: A Review of Pyrenean Orogenesis.” Bulletin de la Société Géologique de France193, no. 1: 19. https://doi.org/10.1051/bsgf/2022018.
    [Google Scholar]
  31. Fox, M.2019. “A Linear Inverse Method to Reconstruct Paleo‐Topography.” Geomorphology337: 151–164. https://doi.org/10.1016/j.geomorph.2019.03.034.
    [Google Scholar]
  32. Garcés, M., M.López‐Blanco, L.Valero, et al. 2020. “Paleogeographic and Sedimentary Evolution of the South Pyrenean Foreland Basin.” Marine and Petroleum Geology113: 104105. https://doi.org/10.1016/j.marpetgeo.2019.104105.
    [Google Scholar]
  33. Gilmullina, A., T. G.Klausen, A. G.Doré, V. M.Rossi, A.Suslova, and C. H.Eide. 2021. “Linking Sediment Supply Variations and Tectonic Evolution in Deep Time, Source‐To‐Sink Systems‐The Triassic Greater Barents Sea Basin.” Geological Society of America Bulletin134, no. 7–8: 1760–1780. https://doi.org/10.1130/B36090.1.
    [Google Scholar]
  34. Giri, C., E.Ochieng, L. L.Tieszen, et al. 2005. Global Mangrove Forests Distribution, 2000. NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4J67DW8.
    [Google Scholar]
  35. Grool, A. R., M.Ford, J.Vergés, R. S.Huismans, F.Christophoul, and A.Dielforder. 2018. “Insights Into the Crustal‐Scale Dynamics of a Doubly Vergent Orogen From a Quantitative Analysis of Its Forelands: A Case Study of the Eastern Pyrenees.” Tectonics37: 450–476. https://doi.org/10.1002/2017TC004731.
    [Google Scholar]
  36. Hampson, G. J., R. A.Duller, A. L.Petter, R. A. J.Robinson, and P. A.Allen. 2014. “Mass‐Balance Constraints on Stratigraphic Interpretation of Linked Alluvial–Coastal–Shelf Deposits From Source to Sink: Example From Cretaceous Western Interior Basin, Utah and Colorado, U.S.A.” Journal of Sedimentary Research84, no. 11: 935–960. https://doi.org/10.2110/jsr.2014.78.
    [Google Scholar]
  37. Head, R., and M.Simmons, eds. 2020. Exploration Handbook. Halliburton Landmark.
    [Google Scholar]
  38. Helland‐Hansen, W., T. O.Sømme, O. J.Martinsen, I.Lunt, and J.Thurmond. 2016. “Deciphering Earth's Natural Hourglasses; Perspectives on Source‐to‐Sink Analysis.” Journal of Sedimentary Research86, no. 9: 1008–1033. https://doi.org/10.2110/jsr.2016.56.
    [Google Scholar]
  39. Hemelsdaël, R., M.Séranne, E.Husson, and G.Ballas. 2021. “Structural Style of the Languedoc Pyrenean Thrust Belt in Relation With the Inherited Mesozoic Structures and With the Rifting of the Gulf of Lion Margin, Southern France.” Bulletin de la Société Géologique de France192: 46. https://doi.org/10.1051/bsgf/2021037.
    [Google Scholar]
  40. Huyghe, D., S.Castelltort, F.Mouthereau, et al. 2012. “Large Scale Facies Change in the Middle Eocene South‐Pyrenean Foreland Basin: The Role of Tectonics and Prelude to Cenozoic Ice‐Ages.” Sedimentary Geology253: 25–46. https://doi.org/10.1016/j.sedgeo.2012.01.004.
    [Google Scholar]
  41. Huyghe, D., F.Mouthereau, and L.Emmanuel. 2012. “Oxygen Isotopes of Marine Mollusc Shells Record Eocene Elevation Change in the Pyrenees.” Earth and Planetary Science Letters345–348: 131–141. https://doi.org/10.1016/j.epsl.2012.06.035.
    [Google Scholar]
  42. Jolivet, L., C.Gorini, J.Smit, and S.Leroy. 2015. “Continental Breakup and the Dynamics of Rifting in Back‐Arc Basins: The Gulf of Lion Margin.” Tectonics34, no. 4: 662–679. https://doi.org/10.1002/2014tc003570.
    [Google Scholar]
  43. Juvany, P., M.Garcés, M.Lopez‐Blanco, et al. 2024. “Chronostratigraphy and Tectono‐Sedimentary History of the Eastern South Pyrenean Foreland Basin (Ripoll Syncline, North‐East Spain).” Depositional Record10: 338–363. https://doi.org/10.1002/dep2.287.
    [Google Scholar]
  44. Juvany, P., M.Garcés, M.López‐Blanco, et al. 2024. “Unraveling the Sediment Routing Systems Evolution of the South Pyrenean Foreland Basin During the Lower to Middle Paleogene Period.” Marine and Petroleum Geology167: 106913. https://doi.org/10.1016/j.marpetgeo.2024.106913.
    [Google Scholar]
  45. Kocsis, L., P.Ozsvart, D.Becker, R.Ziegler, L.Scherler, and V.Codrea. 2014. “Orogeny Forced Terrestrial Climate Variation During the Late Eocene‐Early Oligocene in Europe.” Geology42, no. 8: 727–730. https://doi.org/10.1130/G35673.1.
    [Google Scholar]
  46. Lettéron, A., Y.Hamon, F.Fournier, M.Séranne, P.Pellenard, and P.Joseph. 2018. “Reconstruction of a Saline, Lacustrine Carbonate System (Priabonian, St‐Chaptes Basin, SE France): Depositional Models, Paleogeographic and Paleoclimatic Implications.” Sedimentary Geology367: 20–47. https://doi.org/10.1016/j.sedgeo.2017.12.023.
    [Google Scholar]
  47. López‐Blanco, M., M.Marzo, D. W.Burbank, et al. 2000. “Tectonic and Climatic Controls on the Development of Foreland Fan Deltas: Montserrat and Sant Llorenç Del Munt Systems (Middle Eocene, Ebro Basin, NE Spain).” Sedimentary Geology138, no. 1–4: 17–39. https://doi.org/10.1016/S0037‐0738(00)00142‐1.
    [Google Scholar]
  48. Lyster, S. J., A. C.Whittaker, P. A.Allison, D. J.Lunt, and A.Farnsworth. 2020. “Predicting Sediment Discharges and Erosion Rates in Deep Time—Examples From the Late Cretaceous North American Continent.” Basin Research32, no. 6: 1547–1573. https://doi.org/10.1111/bre.12442.
    [Google Scholar]
  49. Lyster, S. J., A. C.Whittaker, A.Farnsworth, and G. J.Hampson. 2023. “Constraining Flow and Sediment Transport Intermittency in the Geological Past.” GSA Bulletin136, no. 5‐6: 2425–2442. https://doi.org/10.1130/B36873.1.
    [Google Scholar]
  50. Markwick, P. J.2019. “Palaeogeography in Exploration.” Geological Magazine156, no. 2: 366–407. https://doi.org/10.1017/S0016756818000468.
    [Google Scholar]
  51. Markwick, P. J., and P. J.Valdes. 2004. “Palaeo‐Digital Elevation Models for Use as Boundary Conditions in Coupled Ocean–Atmosphere GCM Experiments: A Maastrichtian (Late Cretaceous) Example.” Palaeogeography, Palaeoclimatology, Palaeoecology213: 37–63. https://doi.org/10.1016/j.palaeo.2004.06.015.
    [Google Scholar]
  52. Martinsen, O. J., T. O.Sømme, J. B.Thurmond, W.Helland‐Hansen, and I.Lunt. 2010. “Source‐to‐Sink Systems on Passive Margins: Theory and Practice With an Example From the Norwegian Continental Margin.” Geological Society of London, Petroleum Geology Conference Series7: 913–920. https://doi.org/10.1144/0070913.
    [Google Scholar]
  53. McLeod, J. S., J.Wood, S. J.Lyster, J. M.Valenza, A. R. T.Spencer, and A. C.Whittaker. 2023. “Quantitative Constraints on Flood Variability in the Rock Record.” Nature Communications14: 3362. https://doi.org/10.1038/s41467‐023‐38967‐8.
    [Google Scholar]
  54. Michael, N. A., A.Carter, A. C.Whittaker, and P. A.Allen. 2014. “Erosion Rates in the Source Region of an Ancient Sediment Routing System; Comparison of Depositional Volumes With Thermochronometric Estimates.” Journal of the Geological Society171, no. 3: 401–412. https://doi.org/10.1144/jgs2013‐108.
    [Google Scholar]
  55. Michael, N. A., A. C.Whittaker, and P. A.Allen. 2013. “The Functioning of Sediment Routing Systems Using a Mass Balance Approach: Example From the Eocene of the Southern Pyrenees.” Journal of Geology121, no. 6: 581–606. https://doi.org/10.1086/673176.
    [Google Scholar]
  56. Michael, N. A., A. C.Whittaker, A.Carter, and P. A.Allen. 2014. “Volumetric Budget and Grain‐Size Fractionation of a Geological Sediment Routing System; Eocene Escanilla Formation, South‐Central Pyrenees.” Geological Society of America Bulletin126, no. 3–4: 585–599. https://doi.org/10.1130/B30954.1.
    [Google Scholar]
  57. Milesi, G., P.Monié, R.Soliva, et al. 2022. “Deciphering the Cenozoic Exhumation History of the Eastern Pyrenees Along a Crustal‐Scale Normal Fault Using Low‐Temperature Thermochronology.” Tectonics41, no. 4: e2021TC007172. https://doi.org/10.1029/2021TC007172.
    [Google Scholar]
  58. Milliman, J. D., and K. L.Farnsworth. 2011. “Appendices. Global River Data Base.” In River Discharge to the Coastal Ocean: A Global Synthesis, edited by J. D.Milliman and K. L.Farnsworth, 165–169. Cambridge University Press. https://doi.org/10.1017/CBO9780511781247.
    [Google Scholar]
  59. Morris, R. G., H. D.Sinclair, and A. J.Yelland. 1998. “Exhumation of the Pyrenean Orogen: Implications for Sediment Discharge.” Basin Research10: 69–85. https://doi.org/10.1046/j.1365‐2117.1998.00053.x.
    [Google Scholar]
  60. Nyberg, B., W.Helland‐Hansen, R.Gawthorpe, F.Tillmans, and P.Sandbakken. 2021. “Assessing First‐Order BQART Estimates for Ancient Source‐To‐Sink Mass Budget Calculations.” Basin Research33, no. 4: 2435–2452. https://doi.org/10.1111/bre.12563.
    [Google Scholar]
  61. Nyberg, B., W.Helland‐Hansen, R. L.Gawthorpe, et al. 2018. “Revisiting Morphological Relationships of Modern Source‐to‐Sink Segments as a First‐Order Approach to Scale Ancient Sedimentary Systems.” Sedimentary Geology373: 111–113. https://doi.org/10.1016/j.sedgeo.2018.06.007.
    [Google Scholar]
  62. Odlum, M. L., D. F.Stockli, T. N.Capaldi, et al. 2019. “Tectonic and Sediment Provenance Evolution of the South Eastern Pyrenean Foreland Basins During Rift Margin Inversion and Orogenic Uplift.” Tectonophysics765: 226–248. https://doi.org/10.1016/j.tecto.2019.05.008.
    [Google Scholar]
  63. Okwara, I. C., G. J.Hampson, A. C.Whittaker, G. G.Roberts, and P. W.Ball. 2023. “Source‐To‐Sink Mass‐Balance Analysis of an Ancient Wave‐Influenced Sediment Routing System: Middle Jurassic Brent Delta, Northern North Sea, Offshore UK and Norway.” Basin Research35: 1555–1589. https://doi.org/10.1111/bre.12765.
    [Google Scholar]
  64. Ortega, F., I.Armenteros, A.De Celis, et al. 2022. “Crocodyliformes and Testudines From the Eocene of the Duero Basin (Northwestern Spain): An Update of Their Diversity and Stratigraphic Context.” Historical Biology34, no. 8: 1560–1581. https://doi.org/10.1080/08912963.2022.2051503.
    [Google Scholar]
  65. Ortiz, A.2019. “Géométries et Bilan Érosion‐Sédimentation d'Un Rétro‐Bassin d'Avant‐Pays Durant Son Évolution Finie‐Orogénique et Post‐Orogénique: Le Cas du Système Pyrénées/Bassin d'Aquitaine/Golfe de Gascogne de 38 à 0 Ma.” PhD thesis, Universite Bretagne Loire.
  66. Ortiz, A.“BRGM Postdoctoral Researcher.” Personal communication October 5, 2023.
  67. Ortiz, A., F.Guillocheau, E.Lasseur, et al. 2020. “Sediment Routing System and Sink Preservation During the Post‐Orogenic Evolution of a Retro‐Foreland Basin: The Case Example of the North Pyrenean (Aquitaine, Bay of Biscay) Basins.” Marine and Petroleum Geology112: 104085. https://doi.org/10.1016/j.marpetgeo.2019.104085.
    [Google Scholar]
  68. Ortiz, A., F.Guillocheau, C.Robin, E.Lasseur, J.Briais, and C. C.Fillon. 2022. “Siliciclastic Sediment Volumes and Rates of the North Pyrenean Retro‐Foreland Basin.” Basin Research34, no. 4: 1421–1439. https://doi.org/10.1111/bre.12665.
    [Google Scholar]
  69. Pedrera, A., J.García‐Senz, C.Peropadre, et al. 2021. “The Getxo Crustal‐Scale Cross‐Section: Testing Tectonic Models in the Bay of Biscay‐Pyrenean Rift System.” Earth Science Reviews212: 103429. https://doi.org/10.1016/j.earscirev.2020.103429.
    [Google Scholar]
  70. Pedrera, A., J.García‐Senz, E. M.Pueyo, B.López‐Mir, R.Silva‐Casal, and J.Díaz‐Alvarado. 2023. “Inhomogeneous Rift Inversion and the Evolution of the Pyrenees.” Earth‐Science Reviews245: 104555. https://doi.org/10.1016/j.earscirev.2023.104555.
    [Google Scholar]
  71. PiPujol, M. D., and P.Buurman. 1997. “Dynamics of Iron and Calcium Carbonate Redistribution and Palaeohydrology in Middle Eocene Alluvial Paleosols of the Southeast Ebro Basin Margin (Catalonia, Northeast Spain).” Palaeogeography, Palaeoclimatology, Palaeoecology134, no. 1: 87–107. https://doi.org/10.1016/S0031‐0182(97)00076‐X.
    [Google Scholar]
  72. Quade, J., J.Eiler, M.Daëron, and H.Achyuthan. 2013. “The Clumped Isotope Geothermometer in Soil and Paleosol Carbonate.” Geochimica et Cosmochimica Acta105: 92–107. https://doi.org/10.1016/j.gca.2012.11.031.
    [Google Scholar]
  73. Ravidà, D. C. G., L.Caracciolo, W. A.Heins, and H.Stollhofen. 2021. “Reconstructing Environmental Signals Across the Permian‐Triassic Boundary in the SE Germanic Basin: Paleodrainage Modelling and Quantification of Sediment Flux.” Global and Planetary Change206: 103632. https://doi.org/10.1016/j.gloplacha.2021.103632.
    [Google Scholar]
  74. Romans, B. W., S.Castelltort, J. A.Covault, A.Fildani, and J. P.Walsh. 2016. “Environmental Signal Propagation in Sedimentary Systems Across Timescales.” Earth Science Reviews153: 7–29. https://doi.org/10.1016/j.earscirev.2015.07.012.
    [Google Scholar]
  75. Romans, B. W., and S. A.Graham. 2013. “A Deep‐Time Perspective of Land‐Ocean Linkages in the Sedimentary Record.” Annual Review of Marine Science5: 69–94. https://doi.org/10.1146/annurev‐marine‐121211‐172426.
    [Google Scholar]
  76. Rougier, G., M.Ford, F.Christophoul, and A.Bader. 2016. “Stratigraphic and Tectonic Studies in the Central Aquitaine Basin, Northern Pyrenees: Constraints on the Subsidence and Deformation History of a Retro‐Foreland Basin.” Comptes Rendus Geoscience348, no. 3–4: 224–235. https://doi.org/10.1016/j.crte.2015.12.005.
    [Google Scholar]
  77. Scotese, C. R., and N.Wright. 2018. PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic. Earthbyte Group. https://doi.org/10.5281/zenodo.5348491.
    [Google Scholar]
  78. Semmani, N., F.Fournier, J.Suc, et al. 2023. “The Paleogene Continental Basins From SE France: New Geographic and Climatic Insights From an Integrated Approach.” Palaeogeography, Palaeoclimatology, Palaeoecologypal615: 111452. https://doi.org/10.1016/j.palaeo.2023.111452.
    [Google Scholar]
  79. Séranne, M., R.Couëffé, E.Husson, C.Baral, and J.Villard. 2021. “The Transition From Pyrenean Shortening to Gulf of Lion Rifting in Languedoc (South France); A Tectonic‐Sedimentation Analysis.” Bulletin de la Société Géologique de France192, no. 1: 27. https://doi.org/10.1051/bsgf/2021017.
    [Google Scholar]
  80. Sharma, N., J. E.Spangenberg, T.Adatte, et al. 2024. Middle Eocene Climatic Optimum (MECO) and Its Imprint in the Continental Escanilla Formation, Spain. EGUsphere. https://doi.org/10.5194/egusphere‐2023‐894.
    [Google Scholar]
  81. Sharma, N., A. C.Whittaker, S.Watkins, et al. 2023. “Water Discharge Variations Control Fluvial Stratigraphic Architecture in the Middle Eocene Escanilla Formation, Spain.” Scientific Reports13: 6834. https://doi.org/10.1038/s41598‐023‐33600‐6.
    [Google Scholar]
  82. Sharma, S., J. P.Bhattacharya, and B.Richards. 2017. “Source‐to‐Sink Sediment Budget Analysis of the Cretaceous Ferron Sandstone, Utah, U.S.A., Using the Fulcrum Approach.” Journal of Sedimentary Research87, no. 6: 594–608. https://doi.org/10.2110/jsr.2017.23.
    [Google Scholar]
  83. Simon‐Coinçon, R., M.Thiry, and J.Schmitt. 1997. “Glacial to Holocene Fluctuations in Hydrography and Productivity Along the Southwestern Continental Margin of India.” Palaeogeography, Palaeoclimatology, Palaeoecology129, no. 1–2: 51. https://doi.org/10.1016/S0031‐0182.
    [Google Scholar]
  84. Sinclair, H. D., M.Gibson, M.Naylor, and R. G.Morris. 2005. “Asymmetric Growth of the Pyrenees Revealed Through Measurement and Modeling of Orogenic Fluxes.” American Journal of Science (1880)305, no. 5: 369–406. https://doi.org/10.2475/ajs.305.5.369.
    [Google Scholar]
  85. Snedden, J. W., W. E.Galloway, K. T.Milliken, J.Xu, T.Whiteaker, and M. D.Blum. 2018. “Validation of Empirical Source‐to‐Sink Scaling Relationships in a Continental‐Scale System: The Gulf of Mexico Basin Cenozoic Record.” Geosphere14, no. 2: 768–784. https://doi.org/10.1130/ges01452.1.
    [Google Scholar]
  86. Sømme, T. O., W.Helland‐Hansen, O. J.Martinsen, and J. B.Thurmond. 2009. “Relationships Between Morphological and Sedimentological Parameters in Source‐to‐Sink Systems: A Basis for Predicting Semi‐Quantitative Characteristics in Subsurface Systems.” Basin Research21: 361–387. https://doi.org/10.1111/j.1365‐2117.2009.00397.x.
    [Google Scholar]
  87. Sømme, T. O., O. J.Martinsen, and I.Lunt. 2013. “Linking Offshore Stratigraphy to Onshore Paleotopography: The Late Jurassic‐Paleocene Evolution of the South Norwegian Margin.” Geological Society of America125, no. 7–8: 1164–1186. https://doi.org/10.1130/B30747.1.
    [Google Scholar]
  88. Syvitski, J. P. M., and J. D.Milliman. 2007. “Geology, Geography, and Humans Battle for Dominance Over the Delivery of Fluvial Sediment to the Coastal Ocean.” Journal of Geology115, no. 1: 1–19. https://doi.org/10.1086/509246.
    [Google Scholar]
  89. Tan, M., and C. A.Scholz. 2021. “Source‐to‐Sink Response to High‐Amplitude Lake Level Rise Driven by Orbital‐Scale Climate Change: An Example From the Pleistocene Lake Malawi (Nyasa) Rift, East Africa.” Sedimentology68: 3494–3522. https://doi.org/10.1111/sed.12909.
    [Google Scholar]
  90. Tardif, D., F.Fluteau, Y.Donnadieu, et al. 2020. “The Origin of Asian Monsoons: A Modelling Perspective.” Climate of the Past16, no. 3: 847–865. https://doi.org/10.5194/cp‐16‐847‐2020.
    [Google Scholar]
  91. Ternois, S., M.Odlum, M.Ford, et al. 2019. “Thermochronological Evidence of Early Orogenesis, Eastern Pyrenees, France.” Tectonics38, no. 4: 1308–1336. https://doi.org/10.1029/2018TC005254.
    [Google Scholar]
  92. Tosal, A., L.Valero, J.Sanjuan, and C.Martín‐Closas. 2019. “Influence of Short‐ and Long‐Term Climatic Cycles on Floristic Change Across the Eocene–Oligocene Boundary in the Ebro Basin (Catalonia, Spain).” Comptes Rendus Palevol18, no. 8: 925–947. https://doi.org/10.1016/j.crpv.2019.10.003.
    [Google Scholar]
  93. UNEP‐WCMC, WorldFish Centre, WRI, TNC . 2021. Global Distribution of Warm‐Water Coral Reefs, Compiled From Multiple Sources Including the Millennium Coral Reef Mapping Project. Version 4.1. UN Environment World Conservation Monitoring Centre. https://doi.org/10.34892/t2wk‐5t34.
    [Google Scholar]
  94. Vacherat, A., F.Mouthereau, R.Pik, et al. 2017. “Rift‐to‐Collision Sediment Routing in the Pyrenees: A Synthesis From Sedimentological, Geochronological and Kinematic Constraints.” Earth‐Science Reviews172: 43–74. https://doi.org/10.1016/j.earscirev.2017.07.004.
    [Google Scholar]
  95. Vergés, J., M.Marzo, T.Santaeulària, et al. 1998. “Quantified Vertical Motions and Tectonic Evolution of the SE Pyrenean Foreland Basin.” Geological Society, London, Special Publications134, no. 1: 107–134. https://doi.org/10.1144/GSL.SP.1998.134.01.06.
    [Google Scholar]
  96. Waldner, M., N.Bellahsen, F.Mouthereau, et al. 2021. “Central Pyrenees Mountain Building: Constraints From New LT Thermochronological Data From the Axial Zone.” Tectonics40, no. 3: 289–302. https://doi.org/10.1029/2020TC006614.
    [Google Scholar]
  97. Wang, X., L.Shao, K. A.Eriksson, et al. 2020. “Evolution of a Plume‐Influenced Source‐to‐Sink System: An Example From the Coupled Central Emeishan Large Igneous Province and Adjacent Western Yangtze Cratonic Basin in the Late Permian, SW China.” Earth‐Science Reviews207: 103224. https://doi.org/10.1016/j.earscirev.2020.103224.
    [Google Scholar]
  98. Watkins, S. E., A. C.Whittaker, R. E.Bell, et al. 2018. “Are Landscapes Buffered to High‐Frequency Climate Change? A Comparison of Sediment Fluxes and Depositional Volumes in the Corinth Rift, Central Greece, Over the Past 130 k.y.” Geological Society of America Bulletin131, no. 3–4: 372–388. https://doi.org/10.1130/B31953.1.
    [Google Scholar]
  99. Whitchurch, A. L., A.Carter, H. D.Sinclair, R. A.Duller, A. C.Whittaker, and P. A.Allen. 2011. “Sediment Routing System Evolution Within a Diachronously Uplifting Orogen: Insights From Detrital Zircon Thermochronological Analyses From the South‐Central Pyrenees.” American Journal of Science311, no. 5: 442–482. https://doi.org/10.2475/05.2011.03.
    [Google Scholar]
  100. Wrobel‐Daveau, J., G.Nicoll, M. G.Tetley, et al. 2022. “Plate Tectonic Modelling and the Energy Transition.” Earth‐Science Reviews234: 104227. https://doi.org/10.1016/j.earscirev.2022.104227.
    [Google Scholar]
  101. Yelland, A. J.1990. “Fission Track Thermotectonics in the Pyrenean Orogen.” International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements17, no. 3: 293–299. https://doi.org/10.1016/1359‐0189(90)90049‐4.
    [Google Scholar]
  102. Zhang, J., J.Covault, M.Pyrcz, G.Sharman, C.Carvajal, and K.Milliken. 2018. “Quantifying Sediment Supply to Continental Margins; Application to the Paleogene Wilcox Group, Gulf of Mexico.” AAPG Bulletin102, no. 9: 1685–1702. https://doi.org/10.1306/01081817308.
    [Google Scholar]
  103. Zhang, W., J.Harff, R.Schneider, M.Meyer, E.Zorita, and B.Hünicke. 2014. “Holocene Morphogenesis at the Southern Baltic Sea: Simulation of Multi‐Scale Processes and Their Interactions for the Darss–Zingst Peninsula.” Journal of Marine Systems129: 4–18. https://doi.org/10.1016/j.jmarsys.2013.06.003.
    [Google Scholar]
/content/journals/10.1111/bre.70037
Loading
/content/journals/10.1111/bre.70037
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Eocene; palaeogeography; Pyrenees; sediment flux; source‐to‐sink

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error