1887
Volume 37, Issue 3
  • E-ISSN: 1365-2117

Abstract

[

This work presents insights into the anatomy of the Paraná‐Etendeka volcanic sequences from subsurface geophysical data and how subsurface data aids in the stratigraphic correlation of volcanic formations regionally. Additionally, we describe facies distribution and reservoir properties, providing perspectives for CCS in the Paraná‐Etendeka LIP.

, ABSTRACT

Volcanic reservoirs represent an important target for CO storage and large‐scale deployment. We accessed the volcanic stratigraphy of the Paraná‐Etendeka Large Igneous Province (PELIP) in South America through the analysis of petrophysical data from 9 exploration wells and regional seismic data. This approach enables the development of a refined geological model of the subsurface, offering new insights into facies distribution and reservoir characteristics. Stratigraphically, the PELIP consists of two major volcanic sequences: an older low‐Ti (LT) sequence in the southern region and a younger high‐Ti (HT) sequence in the central‐northern area. Seven distinct lava formations have been identified based on their architecture and geochemical signatures, with the Vale do Sol, Pitanga and Paranapanema formations accounting for over 80% of the stratigraphy. The province is formed by thick (c. 25 m) tabular lavas with well‐developed vesicular and brecciated upper crusts and subordinately compound lavas and volcaniclastic/siliciclastic deposits. Petrophysical analyses reveal a strong correlation between rock facies and reservoir properties (i.e., porosity and permeability). Lava flow tops exhibit high porosities comprising c. 10%–40% of the total flow thickness and represent viable targets for CO injection. In contrast, massive flow cores are low in porosity and may act as effective seals. The PELIP is geologically similar to other large igneous provinces currently hosting CCS (carbon capture and storage) projects (Carbfix, Iceland and Wallula, USA). The large volume of basaltic rocks, along with high porosity facies and reactive compositions, makes the Paraná‐Etendeka LIP a potential target for CCS developments in South America.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70038
2025-05-22
2025-07-12
Loading full text...

Full text loading...

/deliver/fulltext/bre/37/3/bre70038.html?itemId=/content/journals/10.1111/bre.70038&mimeType=html&fmt=ahah

References

  1. Bartetzko, A., H.Delius, and R.Pechnig. 2005. “Effect of Compositional and Structural Variations on Log Responses of Igneous and Metamorphic Rocks. I: Mafic Rocks.” Geological Society, London, Special Publications240: 255–278.
    [Google Scholar]
  2. Bellieni, G., P.Comin‐Chiaramonti, L. S.Marques, et al. 1984. “High‐ and Low‐TiO2 Flood Basalts From the Parana Plateau (Brazil): Petrology and Geochemical Aspects Bearing on Their Mantle Origin.” Neues Jahrbuch für Mineralogie (Abhandlungen)150, no. 3: 273–306.
    [Google Scholar]
  3. Besser, M., M.Brumatti, and A. L.Spisia. 2021. “Mapa Geológico e de Recursos Minerais do Estado do Paraná.” Programa Geologia, Mineração e Transformação Mineral. Curitiba: SGB CPRM.
  4. Besser, M. L., O. A. B.Licht, and E. M. G.Vasconcellos. 2024. “Well‐Preserved Fallout Basaltic Tuff in Central Paraná‐Etendeka Large Igneous Province: Pyroclastic Evidence of High Fire‐Fountain Eruptions.” Bulletin of Volcanology86: 6.
    [Google Scholar]
  5. Besser, M. L., E. M. G.Vasconcellos, and A. J. R.Nardy. 2018. “Morphology and Stratigraphy of Serra Geral Silicic Lava Flows in the Northern Segment of the Torres Trough, Paraná Igneous Province.” Brazilian Journal of Geology48: 201–219.
    [Google Scholar]
  6. Bryan, S. E. E., I. U. U.Peate, D. W. W.Peate, et al. 2010. “The Largest Volcanic Eruptions on Earth.” Earth‐Science Reviews102: 207–229.
    [Google Scholar]
  7. Carneiro, P., J.Dullius, R.Ligabue, C.Machado, J. M.Ketzer, and S.Einloft. 2013. “Carbonatação do Basalto e seu Potencial uso no Armazenamento de CO2.” Tecnologia em Metalurgia, Materiais e Mineracao10: 43–49.
    [Google Scholar]
  8. Courtillot, V. E., and P. R.Renne. 2003. “On the Ages of Flood Basalt Events.” Comptes Rendus Geoscience335: 113–140.
    [Google Scholar]
  9. Duraiswami, R. A., P.Gadpallu, T. N.Shaikh, and N.Cardin. 2014. “Pahoehoe‐A'a Transitions in the Lava Flow Fields of the Western Deccan Traps, India‐Implications for Emplacement Dynamics, Flood Basalt Architecture and Volcanic Stratigraphy.” Journal of Asian Earth Sciences84: 146–166.
    [Google Scholar]
  10. Ellis, D. V., and J. M.Singer. 2007. Well Logging for Earth Scientists. Vol. 692. Springer.
    [Google Scholar]
  11. Ernesto, M., M. I. B.Raposo, L. S.Marques, P. R.Renne, L. A.Diogo, and A.De Min. 1999. “Paleomagnetism, Geochemistry and 40Ar/39Ar Dating of the North‐Eastern Parana Magmatic Province: Tectonic Implications.” Journal of Geodynamics28: 321–340.
    [Google Scholar]
  12. Famelli, N., E. F.Lima, and I. D. O.Carmo. 2021. “Lithostratigraphy of the Serra Geral Formation in the Northern Portion of the Paraná‐Etendeka Igneous Province: A Tool for Tracking Early Cretaceous Paleoenvironmental Changes.” Journal of Volcanology and Geothermal Research410: 107152. https://doi.org/10.1016/j.jvolgeores.2020.107152.
    [Google Scholar]
  13. Ferreira, A., R. V.Santos, T. S.de Almeida, et al. 2024. “Unraveling the Rapid CO2 Mineralization Experiment Using the Paraná Flood Basalts of South America.” Scientific Reports14, no. 1: 8116. https://doi.org/10.1038/s41598‐024‐58729‐w.
    [Google Scholar]
  14. Florisbal, L. M., L. M.Heaman, V.de Assis Janasi, and M.de Fatima Bitencourt. 2014. “Tectonic Significance of the Florianópolis Dyke Swarm, Paraná–Etendeka Magmatic Province: A Reappraisal Based on Precise U–Pb Dating.” Journal of Volcanology and Geothermal Research289: 140–150.
    [Google Scholar]
  15. Garland, F., C. J.Hawkesworth, and M. S. M.Mantovani. 1995. “Description and Petrogenesis of the Paraná Rhyolites, Southern Brazil.” Journal of Petrology36, no. 5: 1193–1227.
    [Google Scholar]
  16. Gomes, A. S., and P. M.Vasconcelos. 2021. “Geochronology of the Paraná‐Etendeka Large Igneous Province.” Earth‐Science Reviews220: 103716.
    [Google Scholar]
  17. Harris, A. J. L., and S. K.Rowland. 2009. “Effusion Rate Controls on Lava Flow Length and the Role of Heat Loss: A Review.” In Studies in Volcanology: The Legacy of George Walker, vol. 2, 33–51. Geological Society of London.
    [Google Scholar]
  18. Harris, A. J. L., S. K.Rowland, N.Villeneuve, and T.Thordarson. 2017. “Pāhoehoe, ‘a ‘ā, and Block Lava: An Illustrated History of the Nomenclature'a.” Bulletin of Volcanology79: 1–34.
    [Google Scholar]
  19. Helm‐Clark, C. M., D. W.Rodgers, and R. P.Smith. 2004. “Borehole Geophysical Techniques to Define Stratigraphy, Alteration and Aquifers in Basalt.” Journal of Applied Geophysics55: 3–38.
    [Google Scholar]
  20. Hirata, R., and S.Foster. 2020. “The Guarani Aquifer System – From Regional Reserves to Local Use.” Quarterly Journal of Engineering Geology and Hydrogeology54, no. 1: qjegh2020‐091. https://doi.org/10.1144/qjegh2020‐091.
    [Google Scholar]
  21. Horn, B. L. D., A. A.Oliveira, M. S.Simões, M. L.Besser, and L. L. D.Araújo. 2022. “Projeto Geologia e Potencial Mineral da Bacia do Paraná. Mapa Geológico. Porto Alegre. SGB/CPRM. Mapa Geológico da Bacia do Paraná.” Serviço Geológico do Brasil.
  22. Jayne, R. S., and R. M.Pollyea. 2018. “Permeability Correlation Structure of the Columbia River Plateau and Implications for Fluid System Architecture in Continental Large Igneous Provinces.” Geology46, no. 8: 715–718. https://doi.org/10.1130/g45001.1.
    [Google Scholar]
  23. Jerram, D., N.Mountney, F.Holzförster, and H.Stollhofen. 1999. “Internal Stratigraphic Relationships in the Etendeka Group in the Huab Basin, NW Namibia: Understanding the Onset of Flood Volcanism.” Journal of Geodynamics28: 393–418.
    [Google Scholar]
  24. Jerram, D. A., R. T.Single, R. W.Hobbs, and C. E.Nelson. 2009. “Understanding the Offshore Flood Basalt Sequence Using Onshore Volcanic Facies Analogues: An Example From the Faroe–Shetland Basin.” Geological Magazine146, no. 3: 353–367.
    [Google Scholar]
  25. Jerram, D. A., and M.Widdowson. 2005. “The Anatomy of Continental Flood Basalt Provinces: Geological Constraints on the Processes and Products of Flood Volcanism.” Lithos79, no. 3–4: 385–405.
    [Google Scholar]
  26. Jerram, D. A. A.2002. “Volcanology and Facies Architecture of Flood Basalts. Volcanic Rifted Margins.” 119–132.
  27. Krob, F. C., U. A.Glasmacher, H. P.Bunge, A. M.Friedrich, and P. C.Hackspacher. 2020. “Application of Stratigraphic Frameworks and Thermochronological Data on the Mesozoic SW Gondwana Intraplate Environment to Retrieve the Paraná‐Etendeka Plume Movement.” Gondwana Research84: 81–110.
    [Google Scholar]
  28. Luchetti, A. C. F., A. J.Nardy, and J.Madeira. 2018. “Silicic, High‐To Extremely High‐Grade Ignimbrites and Associated Deposits From the Paraná Magmatic Province, Southern Brazil.” Journal of Volcanology and Geothermal Research355: 270–286.
    [Google Scholar]
  29. Machado, F. B., E. R. V.Rocha‐Júnior, L. S.Marques, and A. J. R.Nardy. 2015. “Volcanological Aspects of the Northwest Region of Paraná Continental Flood Basalts (Brazil).” Solid Earth6: 227–241.
    [Google Scholar]
  30. Marins, G. M., Y.Parizek‐Silva, J. M.Millett, et al. 2022. “Characterization of Volcanic Reservoirs; Insights From the Badejo and Linguado Oil Field, Campos Basin, Brazil.” Marine and Petroleum Geology146: 105950.
    [Google Scholar]
  31. Mark, N. J., N.Schofield, D. A.Watson, S.Holford, S.Pugliese, and D.Muirhead. 2024. “The Impact of Igneous Intrusions on Sedimentary Host Rocks: Insights From Field Outcrop and Subsurface Data.” Petroleum Geoscience30, no. 1: petgeo2022‐086.
    [Google Scholar]
  32. Marsh, J. S., A.Ewart, S. C.Milner, A. R.Duncan, and R. M. G.Miller. 2001. “The Etendeka Igneous Province: Magma Types and Their Stratigraphic Distribution With Implications for the Evolution of the Paraná‐Etendeka Flood Basalt Province.” Bulletin of Volcanology62: 464–486.
    [Google Scholar]
  33. Matter, J. M., W. S.Broecker, S. R.Gislason, et al. 2011. “The CarbFix Pilot Project – Storing Carbon Dioxide in Basalt.” In Energy Procedia, 5579–5585. Elsevier Ltd.
    [Google Scholar]
  34. Matter, J. M., M.Stute, S. O.Snaebjornsdottir, et al. 2016. “Rapid Carbon Mineralization for Permanent Disposal of Anthropogenic Carbon Dioxide Emissions.” Science352: 1312–1314.
    [Google Scholar]
  35. McGrail, B. P., H. T.Schaef, A. M.Ho, Y. J.Chien, J. J.Dooley, and C. L.Davidson. 2006. “Potential for Carbon Dioxide Sequestration in Flood Basalts.” Journal of Geophysical Research: Solid Earth111, no. B12: e04169.
    [Google Scholar]
  36. McGrail, B. P., F. A.Spane, E. C.Sullivan, D. H.Bacon, and G.Hund. 2011. “The Wallula Basalt Sequestration Pilot Project.” Energy Procedia4: 5653–5660.
    [Google Scholar]
  37. Milani, E. J., J.Henrique, G.de Melo, P. A.de Souza, L. A.Fernandes, and A. B.França. 2007. “Bacia do Paraná.” Boletim de Geociências da Petrobras15: 265–287.
    [Google Scholar]
  38. Millett, J., M. J.Hole, D. W.Jolley, N.Schofield, and E.Campbell. 2015. “Frontier Exploration and the North Atlantic Igneous Province: New Insights From a 2.6 Km Offshore Volcanic Sequence in the NE Faroe‐Shetland Basin.” Journal of the Geological Society of London173, no. 2: 320–336.
    [Google Scholar]
  39. Millett, J. M., M. J.Hole, D. W.Jolley, and S. R.Passey. 2017. “Geochemical Stratigraphy and Correlation Within Large Igneous Provinces: The Final Preserved Stages of the Faroe Islands Basalt Group.” Lithos286: 1–15.
    [Google Scholar]
  40. Millett, J. M., D. A.Jerram, B.Manton, et al. 2021a. “The Rosebank Field, NE Atlantic: Volcanic Characterisation of an Inter‐Lava Hydrocarbon Discovery.” Basin Research33: 2883–2913.
    [Google Scholar]
  41. Millett, J. M., D. A.Jerram, S.Planke, et al. 2021b. “Volcanic Facies Architecture of Early Bimodal Volcanism of the NW Deccan Traps: Volcanic Reservoirs of the Raageshwari Deep Gas Field, Barmer Basin, India.” Basin Research33: 3348–3377.
    [Google Scholar]
  42. Millett, J. M., L.Rossetti, A.Bischoff, et al. 2024. Lava Flow‐Hosted Reservoirs: A Review. Vol. 547. Geological Society.
    [Google Scholar]
  43. Milner, S. C., A. R.Duncan, A.Ewart, and J. S.Marsh. 1994. “Promotion of the Etendeka Formation to Group Status: A New Integrated Stratigraphy.” Communications – Geological Survey of Namibia9: 5–11.
    [Google Scholar]
  44. Navarro, J., E. H.Teramoto, B. Z.Engelbrecht, and C. H.Kiang. 2020. “Assessing Hydrofacies and Hydraulic Properties of Basaltic Aquifers Derived From Geophysical Logging.” Brazilian Journal of Geology50, no. 4: e20200013. https://doi.org/10.1590/2317‐4889202020200013.
    [Google Scholar]
  45. Nelson, C. E., D. A.Jerram, J. A.Clayburn, A. M.Halton, and J.Roberge. 2015. “Eocene Volcanism in Offshore Southern Baffin Bay.” Marine and Petroleum Geology67: 678–691.
    [Google Scholar]
  46. Nelson, C. E., D. A.Jerram, and R. W.Hobbs. 2009. “Flood Basalt Facies From Borehole Data: Implications for Prospectivity and Volcanology in Volcanic Rifted Margins.” Petroleum Geoscience15: 313–324.
    [Google Scholar]
  47. Oelkers, E. H., and D. R.Cole. 2008. “Carbon Dioxide Sequestration: A Solution to a Global Problem.” Elements4: 305–310.
    [Google Scholar]
  48. Orita, G. K. L., and V. G. P.da Cruz. 2023. “Captura e Armazenamento de CO2: Uma Revisão das Tecnologias Existentes, Carbonatação In Situ de Basaltos e Avaliação do Potencial da Formação Serra Geral como Reservatório de CO2.” Geociências41: 779–795.
    [Google Scholar]
  49. Peate, D. W.1997. “The Parana‐Etendeka Province.” In Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, vol. 100, 217–245. American Geophysical Union.
    [Google Scholar]
  50. Peate, D. W., C. J.Hawkesworth, and M. S. M.Mantovani. 1992. “Chemical Stratigraphy of the Parand Lavas (South America): Classification of Magma Types and Their Spatial Distribution.” Bulletin of Volcanology55: 119–139.
    [Google Scholar]
  51. Peate, D. W. D., C. C. J.Hawkesworth, M. M. M. S.Mantovani, N. W.Rogers, and S. S. P.Turner. 1999. “Petrogenesis and Stratigraphy of the High‐Ti/Y Urubici Magma Type in the Parana Flood Basalt Province and Implications for the Nature of ‘Dupal’‐Type Mantle in the South Atlantic Region.” Journal of Petrology40: 451–473.
    [Google Scholar]
  52. Piccirillo, E. M., and A. J.Melfi. 1988. The Mesozoic Flood Volcanism From the Paraná Basin (Brazil): Petrogenetic and Geophysical Aspects. Universidade de São Paulo, Instituto Astronômico e Geofísico.
    [Google Scholar]
  53. Planke, S.1994. “Geophysical Response of Flood Basalts From Analysis of Wire Line Logs: Ocean Drilling Program Site 642, Voring Volcanic Margin.” Journal of Geophysical Research99: 9279–9296.
    [Google Scholar]
  54. Planke, S., H.Svensen, R.Myklebust, S.Bannister, B.Manton, and L.Lorenz. 2018. “Geophysics and Remote Sensing.” In Physical Geology of Shallow Magmatic Systems: Dykes, Sills and Laccoliths, 131–146. Springer.
    [Google Scholar]
  55. Polo, L. A., V. A.Janasi, D.Giordano, E. F.Lima, E.Cañon‐Tapia, and M.Roverato. 2018. “Effusive Silicic Volcanism in the Paraná Magmatic Province, South Brazil: Evidence for Locally‐Fed Lava Flows and Domes From Detailed Field Work.” Journal of Volcanology and Geothermal Research355: 204–218.
    [Google Scholar]
  56. Raposo, M. I. B., T.Pescarini, L. F.Guimarães, and M. C.Esteves. 2023. “New Magnetostratigraphy Constrains in the Southern Paraná Magmatic Province (Herveiras and Gramado Xavier Areas), Rio Grande Do Sul State, South Brazil: Implications for the Timing Between Volcanic Sources.” Journal of South American Earth Sciences126: 104327.
    [Google Scholar]
  57. Reidel, S. P., and T. L.Tolan. 2013. “The Grande Ronde Basalt, Columbia River Basalt Group.” Geological Society of America Special Papers497: 117–153.
    [Google Scholar]
  58. Rocha, B. C., J. H. F. L.Davies, V. A.Janasi, et al. 2020. “Rapid Eruption of Silicic Magmas From the Paraná Magmatic Province (Brazil) Did Not Trigger the Valanginian Event.” Geology48: 1174–1178.
    [Google Scholar]
  59. Rosenqvist, M. P., J. M.Millett, S.Planke, et al. 2024. “The Architecture of Basalt Reservoirs in the North Atlantic Igneous Province With Implications for Basalt Carbon Sequestration.” Geological Society, London, Special Publications547, no. 1: 389–413. https://doi.org/10.1144/SP547‐2023‐96.
    [Google Scholar]
  60. Rossetti, L., E. F.Lima, B. L.Waichel, M. J.Hole, M. S.Simões, and C. M. S.Scherer. 2018. “Lithostratigraphy and Volcanology of the Serra Geral Group, Paraná‐Etendeka Igneous Province in Southern Brazil: Towards a Formal Stratigraphical Framework.” Journal of Volcanology and Geothermal Research355: 98–114.
    [Google Scholar]
  61. Rossetti, L. M., E. F.Lima, B. L.Waichel, C. M.Scherer, and C. J.Barreto. 2014. “Stratigraphical Framework of Basaltic Lavas in Torres Syncline Main Valley, Southern Parana‐Etendeka Volcanic Province.” Journal of South American Earth Sciences56: 409–421. https://doi.org/10.1016/j.jsames.2014.09.025.
    [Google Scholar]
  62. Rossetti, L. M., D.Healy, M. J.Hole, et al. 2019. “Evaluating Petrophysical Properties of Volcano‐Sedimentary Sequences: A Case Study in the Paraná‐Etendeka Large Igneous Province.” Marine and Petroleum Geology102: 638–656.
    [Google Scholar]
  63. Rossetti, L. M. M., M. J.Hole, E. F.de Lima, M. S.Simões, J. M.Millett, and M. M. M.Rossetti. 2021. “Magmatic Evolution of Low‐Ti Lavas in the Southern Paraná‐Etendeka Large Igneous Province.” Lithos400: 106359.
    [Google Scholar]
  64. Scherer, C. M., A. D.Reis, B. L.Horn, et al. 2023. “The Stratigraphic Puzzle of the Permo‐Mesozoic Southwestern Gondwana: The Paraná Basin Record in Geotectonic and Palaeoclimatic Context.” Earth‐Science Reviews240: 104397.
    [Google Scholar]
  65. Scherer, C. M. S.2002. “Preservation of Aeolian Genetic Units by Lava Flows Basin, Southern Brazil in the Lower Cretaceous of the Parana.” Sedimentary Geology49: 97–116.
    [Google Scholar]
  66. Self, S., L.Keszthelyi, and T.Thordarson. 1998. “The Importance of Pāhoehoe.” Annual Review of Earth and Planetary Sciences26: 81–110. https://doi.org/10.1146/annurev.earth.26.1.81.
    [Google Scholar]
  67. Self, S., T.Mittal, and A. E.Jay. 2021. “Thickness Characteristics of Pāhoehoe Lavas in the Deccan Province, Western Ghats, India, and in Continental Flood Basalt Provinces Elsewhere.” Frontiers in Earth Science8: 630604. https://doi.org/10.3389/feart.2020.630604.
    [Google Scholar]
  68. Simões, M. S., E. F.Lima, C. A.Sommer, and L. M. M.Rossetti. 2018. “Structures and Lithofacies of Inferred Silicic Conduits in the Paraná‐Etendeka LIP, Southernmost Brazil.” Journal of Volcanology and Geothermal Research355: 319–336.
    [Google Scholar]
  69. Snæbjörnsdóttir, S., B.Sigfússon, C.Marieni, D.Goldberg, S. R.Gislason, and E. H.Oelkers. 2020. “Carbon Dioxide Storage Through Mineral Carbonation.” Nature Reviews Earth and Environment1: 90–102.
    [Google Scholar]
  70. Snæbjörnsdóttir, S. Ó., F.Wiese, T.Fridriksson, H.Ármansson, G. M.Einarsson, and S. R.Gislason. 2014. “CO2 Storage Potential of Basaltic Rocks in Iceland and the Oceanic Ridges.” Energy Procedia63: 4585–4600.
    [Google Scholar]
  71. Tsutsui, K., S.Holford, N.Schofield, M.Bunch, R.King, and K.McClay. 2024. “Petrophysical Characteristics of Igneous Rocks in the Outboard Browse Basin, North West Shelf of Australia: Implications for Predicting Igneous Sequences Prior to Exploration Drilling.” Geological Society, London, Special Publications 547.
  72. Waichel, B. L., E. F.de Lima, R.Lubachesky, and C. A.Sommer. 2006. “Pahoehoe Flows From the Central Paraná Continental Flood Basalts.” Bulletin of Volcanology68: 599–610.
    [Google Scholar]
  73. Waichel, B. L., E. F.de Lima, C. A.Sommer, and R.Lubachesky. 2007. “Peperite Formed by Lava Flows Over Sediments: An Example From the Central Paraná Continental Flood Basalts, Brazil.” Journal of Volcanology and Geothermal Research159: 343–354.
    [Google Scholar]
  74. Waichel, B. L., E. F.de Lima, A. R.Viana, C. M.Scherer, G. V.Bueno, and G.Dutra. 2012. “Stratigraphy and Volcanic Facies Architecture of the Torres Syncline, Southern Brazil, and Its Role in Understanding the Paraná‐Etendeka Continental Flood Basalt Province.” Journal of Volcanology and Geothermal Research215–216: 74–82. https://doi.org/10.1016/j.jvolgeores.2011.12.004.
    [Google Scholar]
  75. Walker, G. P. L.1971. “Compound and Simple Lava Flows and Flood Basalts.” Bulletin Volcanologique35: 579–590.
    [Google Scholar]
  76. Watton, T. J., K. A.Wright, D. A.Jerram, and R. J.Brown. 2014. “The Petrophysical and Petrographical Properties of Hyaloclastite Deposits: Implications for Petroleum Exploration.” American Association of Petroleum Geologists Bulletin98: 449–463.
    [Google Scholar]
  77. White, J. D. L., S. E.Bryan, P. S.Ross, S.Self, and T.Thordarson. 2009. “Physical Volcanology of Continental Large Igneous Provinces: Update and Review.” Special Publications of IAVCEI 291–321.
  78. White, S. K., F. A.Spane, H. T.Schaef, et al. 2020. “Quantification of CO 2 Mineralization at the Wallula Basalt Pilot Project.” Environmental Science & Technology54: 14609–14616.
    [Google Scholar]
  79. Zakharova, N. V., D. S.Goldberg, E. C.Sullivan, M. M.Herron, and J. A.Grau. 2012. “Petrophysical and Geochemical Properties of Columbia River Flood Basalt: Implications for Carbon Sequestration.” Geochemistry, Geophysics, Geosystems13: 1–22.
    [Google Scholar]
/content/journals/10.1111/bre.70038
Loading
/content/journals/10.1111/bre.70038
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): CCS; geochemical correlation; volcanic anatomy; volcanic reservoirs

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error