1887
Volume 37, Issue 3
  • E-ISSN: 1365-2117

Abstract

[ABSTRACT

In its northern sector, the Gulf of California presents intricate tectonic and sedimentary characteristics, offering insights into the region's geologic evolution. Based on two‐dimensional seismic reflection profiles, we explore its structural style and sedimentary properties. Sedimentary thicknesses range from 7 km to over 10 km, heavily influenced by Colorado River sediments filling fault‐bounded axial basins, including the Wagner, Consag, Upper Delfín, and Lower Delfín basins. The Wagner Basin comprises two asymmetric sub‐basins trending NNE. A low‐angle fault controls the northern sub‐basin, which lacks bathymetric expression. In contrast, oblique faults influence the southern sub‐basin, 12–15 km wide, as they merge into the Wagner Fault and transfer strain to the Cerro Prieto Transform Fault. Late Pliocene deformation is evident, with significant subsidence reflected in the top Pliocene horizon. Axial basins in the northern Gulf exhibit composite separation geometry with four north–south trending sub‐basins linked by transform faults, including the Canal de Ballenas in the south and Cerro Prieto in the north. Strain transfer from the Canal de Ballenas fault produces a complex horsetail network, resulting in distributed transpressional deformation within the Upper and Lower Delfín basins. Active faults predominantly cut the seafloor west of the Tepoca Fault Zone, defining the modern rift's eastern boundary. Fault‐bounded marginal basins, such as those on Tiburón Island and the adjacent Gulf coast of Sonora, expose late Miocene faulted non‐marine deposits, indicating NE–SW extension and rift basin formation. Lower Pliocene marine deposits reveal marine incursions due to Pacific–North American plate movements. NE‐trending normal and oblique faults govern the active depocentres in the Wagner, Consag, Upper Delfín, and Lower Delfín basins. In the Upper Delfín Basin, four to five asymmetric depocentres are evident, shaped by tectonic activity. The Lower Delfín Basin features a NE‐trending symmetric rift parallel to the Ángel de la Guarda structural high, highlighting its tectonic alignment. The Tiburón Basin, characterised by a poorly defined acoustic basement, reveals substantial basin fill overlying the lower continental crust, indicating significant sedimentary accumulation. The Tiburón and De Mar faults control the NE‐oriented asymmetric depocentres in the Tiburón Basin. Abandoned basins along the eastern margin, including Tiburón, Tepoca, Peñasco, and Altar, are separated from active basins by structural highs. Basement irregularities in the Delfín and Consag basins reflect remnants of hyper‐extended continental crust, with intra‐basin structural highs resembling boudins of lower continental crust. This study underscores the importance of tectonic and sedimentary processes in shaping the northern Gulf of California, highlighting the role of major faults in its geological and topographical evolution.

,

Seismic data from the northern Gulf of California reveal active and inactive tectonic basins along the Gulf and Salton Trough. Two interpreted seismic reflection profiles highlight fault structures and acoustic basement depths, offering insights into basin distribution and tectonic activity in this key transitional zone.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70039
2025-05-27
2025-07-12
Loading full text...

Full text loading...

References

  1. Aragón‐Arreola, M., and A.Martín‐Barajas. 2007. “Westward Migration of Extension in the Northern Gulf of California, Mexico.” Geology35: 571–574.
    [Google Scholar]
  2. Aragón‐Arreola, M., M.Morandi, A.Martín‐Barajas, L.Deldago‐Argote, and A.Gonzalez‐Fernandez. 2005. “Structure of the Rift Basins in the Central Gulf of California: Kinematic Implications for Oblique Rifting.” Tectonophysics409: 19–38.
    [Google Scholar]
  3. Atwater, T., and J. M.Stock. 1998. “Pacific North America Plate Tectonics of the Neogene Southwestern United States: An Update.” International Geology Review40: 375–402.
    [Google Scholar]
  4. Axen, G., and J. M.Fletcher. 1998. “Late Miocene‐Pleistocene Extensional Faulting, Northern Gulf of California, Mexico and Salton Trough, California.” International Geology Review40: 217–244.
    [Google Scholar]
  5. Balestrieri, M. L., L.Ferrari, M.Bonini, et al. 2017. “Onshore and Offshore Apatite Fission‐Track Dating From the Southern Gulf of California: Insights Into the Time‐Space Evolution of the Rifting.” Tectonophysics719–720: 148–161. https://doi.org/10.1016/j.tecto.2017.05.012.
    [Google Scholar]
  6. Brune, S., G.Corti, and G.Ranalli. 2017. “Controls of Inherited Lithospheric Heterogeneity on Rift Linkage: Numerical and Analog Models of Interaction Between the Kenyan and Ethiopian Rifts Across the Turkana Depression.” Tectonics36, no. 9: 1767–1786.
    [Google Scholar]
  7. Chanes‐Martínez, J. J., M.González‐Escobar, F.Suárez‐Vidal, and G. C.Gallardo‐Mata. 2014. “Structural Geometry of a Sector of the River Delta, Baja California, Mexico, Based on Seismic Reflections, 2014.” Pure and Applied Geophysics171: 1107–1127. https://doi.org/10.1007/s00024‐013‐0729‐z.
    [Google Scholar]
  8. Darin, M. H., R. J.Dorsey, T. M.Niemi, V. O.Salgado Muñoz, M. W.Henry, and M. E.Pecha. 2025. “Depositional Age of the Boleo Formation and Marine Flooding in the Central Gulf of California Rift, Santa Rosalía Basin, Baja California Sur, México, the Virtue of Fieldwork in Volcanology, Sedimentology, Structural Geology, and Tectonics—Celebrating the Career of Cathy Busby, Nancy Riggs, Keith Putirka, John Wakabayashi.”
  9. Dixon, T., F.Farina, C.DeMets, et al. 2000. “New Kinematic Models for Pacific‐North America Motion From 3 Myr to Present, II: Tectonic Implications for Baja and Alta California.” Geophysical Research Letters27: 3961–3964.
    [Google Scholar]
  10. Dorsey, R. J., A.Fluette, K. A.McDougall, et al. 2007. “Chronology of Miocene‐Pliocene Deposits at Split Mountain Gorge, Southern California: A Record of Regional Tectonics and Colorado River Evolution.” Geology35: 57–60.
    [Google Scholar]
  11. Dorsey, R. J., and P. J.Umhoefer. 2012. “Influence of Sediment Input and Plate‐Motion Obliquity on Basin Development Along an Active Oblique‐Divergent Plate Boundary: Gulf of California and Salton Trough.” In Tectonics of Sedimentary Basins: Recent Advances, edited by C.Busby and A.Azor, 209–225. Blackwell Publishing Ltd.
    [Google Scholar]
  12. Duque‐Trujillo, J., L.Ferrari, G.Norini, and M.López‐Martínez. 2014. “Miocene Faulting in the Southwestern Sierra Madre Occidental, Nayarit, Mexico: Kinematics and Segmentation During the Initial Rifting of the Southern Gulf of California.” Revista Mexicana de Ciencias Geológicas31, no. 3: 283–302.
    [Google Scholar]
  13. Duque‐Trujillo, J., L.Ferrari, T.Orozco‐Esquivel, et al. 2015. “Timing of Rifting in the Southern Gulf of California and Its Conjugate Margins: Insights From the Plutonic Record.” Bulletin Geological Society of America127, no. 5–6: 702–736. https://doi.org/10.1130/B31008.1.
    [Google Scholar]
  14. Felzer, K. R., and T.Cao. 2008. “The Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2): U.S. Geological 515 Survey Open‐File Report 2007‐1437H and California Geological Survey Special Report 516 203H.” February 25, 2012. The Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2). http://pubs.usgs.gov/of/2007/1437/h/.
  15. Fenby, S. S., R. G.Gastil, and Cartographers . 1991. Geologic‐Tectonic Map of the Gulf of California and Surrounding Areas. American Association of Petroleum Geologists.
    [Google Scholar]
  16. Fernández, A., and X.Pérez‐Campos. 2017. “Lithosphere Thickness in the Gulf of California Region.” Tectonophysics719‐720: 17–26. https://doi.org/10.1016/j.tecto.2017.06.016.
    [Google Scholar]
  17. Ferrari, L., M.Lopez‐Martínez, T.Orozco‐Esquivel, et al. 2013. “Late Oligocene to Middle Miocene Rifting and Synextensional Magmatism in the Southwestern Sierra Madre Occidental, Mexico: The Beginning of the Gulf of California Rift.” Geosphere9, no. 5: 1161–1200. https://doi.org/10.1130/GES00925.1.
    [Google Scholar]
  18. Ferrari, L., T.Orozco‐Esquivel, S. E.Bryan, M.Lopez‐Martínez, and A.Silva‐Fragoso. 2018. “Cenozoic Magmatism and Extension in Western Mexico: Linking the Sierra Madre Occidental Silicic Large Igneous Province and the Comondú Group With the Gulf of California Rift.” Earth‐Science Reviews183: 115–152. https://doi.org/10.1016/j.earscirev.2017.04.006.
    [Google Scholar]
  19. Fletcher, J. M., M.Grove, D.Kimbrough, O.Lovera, and G.Gehrels. 2007. “Ridge‐Trench Interactions and the Neogene Tectonic Evolution of the Magdalena Shelf and Southern Gulf of California: Insights From Detrital Zircon U‐Pb Ages From the Magdalena Fan and Adjacent Sediment Input and Plate‐Motion Obliquity 223 Areas.” Geological Society of America Bulletin119: 1313–1336.
    [Google Scholar]
  20. Fuis, G. S., W. D.Mooney, J. H.Healy, G.McMechan, and W. J.Lutter. 1984. “A Seismic Refraction Survey of the Imperial Valley Region, California.” Journal of Geophysical Research. Solid Earth89, no. B2: 1165–1189. https://doi.org/10.1029/JB089iB02p01165.
    [Google Scholar]
  21. Gans, P. B.1997. “Large‐Magnitude Oligo‐Miocene Extensión in Southern Sonora: Implications for the Tectonic Evolution of Northwest Mexico.” Tectonics16, no. 3: 388–408.
    [Google Scholar]
  22. Gastil, G., and D.Krummenacher. 1977. “Reconnaissance Geology of Coastal Sonora Between Puerto Lobos and Bahia Kino.” Geological Society of America Bulletin88: 189–198.
    [Google Scholar]
  23. González‐Escobar, M., C.Aguilar‐Campos, F.Suárez‐Vidal, and A.Martín‐Barajas. 2009. “Geometry of the Wagner Basin, Upper Gulf of California Based on Seismic Reflections.” International Geology Review51, no. 2: 133–144. https://doi.org/10.1080/00206810802615124.
    [Google Scholar]
  24. González‐Escobar, M., C. S.Reyes‐Martínez, C. A.Gallegos‐Castillo, S. M.Arregui‐Ojeda, and E. A.Mastache‐Román. 2024. “Basin Style Variation Along a Transform Fault: Southern Colorado River Delta, Baja California, México.” Pure and Applied Geophysics182, no. 3: 1297–1332. https://doi.org/10.1007/s00024‐024‐03561‐6.
    [Google Scholar]
  25. González‐Escobar, M. F., A.Suárez‐Vidal, C. G.Sojo‐Amezquita, A.Gallardo‐Mata, and A.Martin‐Barajas. 2014. “Consag Basin: Northern Gulf of California, Evidence of Generation of New Crust, Based on Seismic Reflection Data.” International Geology Review56, no. 11: 1315–1331. https://doi.org/10.1080/00206814.2014.941023.
    [Google Scholar]
  26. González‐Fernández, A., J. J.Danobeitia, L.Deldago‐Argote, F.Michaud, D.Cordoba, and R.Bartolome. 2005. “Mode of Extension and Rifting History of Upper Tiburon and Upper Delfin Basins, Northern Gulf of California.” Journal of Geophysical Research110: 1–17.
    [Google Scholar]
  27. Helenes, J., A. L.Carreño, and R. M.Carrillo. 2009. “Middle to Late Miocene Chronostratigraphy and Development of the Northern Gulf of California.” Marine Micropaleontology72: 10–25.
    [Google Scholar]
  28. Lizarralde, D., G. J.Axen, H. E.Brown, et al. 2007. “Variation in Styles of Rifting in the Gulf of California.” Nature448: 466–469.
    [Google Scholar]
  29. Lomnitz, C., C.Allen, J.Brune, and W.Thatcher. 1970. “Sismicidad y Tectónica de la Región Norte Del Golfo de California, México, Resultados Preliminares.” Geofisica Internacional10: 37–48.
    [Google Scholar]
  30. Lonsdale, P.1989. “Geology and Tectonic History of the Gulf of California.” In The Eastern Pacific Ocean and Hawaii, edited by E. L.Winterer, D.Hussong, and R. W.Decker, vol. N, 499–522. Geological Society of America, Geology of North America.
    [Google Scholar]
  31. Mar‐Hernández, E., M.González‐Escobar, and A.Martin‐Barajas. 2012. “Tectonic Framework of Tiburon Basin, Gulf of California, From Seismic Reflection Evidence.” International Geology Review54, no. 11: 1271–1283. https://doi.org/10.1080/00206814.2011.636988.
    [Google Scholar]
  32. Martín‐Barajas, A., M.González‐Escobar, J.Fletcher, M.Pacheco, E. M.Oskin, and R.Dorsey. 2013. “Thick Deltaic Sedimentation and Detachment Faulting Delay the Onset of Continental Rupture in the Northern Gulf of California: Analysis of Seismic Reflection Profiles.” Tectonics32: 1294–1311.
    [Google Scholar]
  33. Martín‐Barajas, A., M.González‐Escobar, M.Pacheco, et al. 2020. The Thermal Evolution of Rifting and the Transition to Passive Margins in the Area of Gulf of California, Phase 1 Report, Ensenada, México, División Ciencias de la Tierra, CICESE, 85. The Thermal Evolution of Rifting and the Transition to Passive Margins in the Area of Gulf of California, Phase 1 Report.
    [Google Scholar]
  34. McDowell, F. W., J.Rold'an‐Quintana, and R.Amaya‐Martinez. 1997. “The Interrelationship of Sedimentary and Volcanic Deposits Associated With Tertiary Extension in Sonora, Mexico.” Geological Society of America Bulletin109: 1349–1360.
    [Google Scholar]
  35. Merriam, R., and O. L.Bandy. 1965. “Source of Upper Cenozoic Sediments in Colorado Delta Region.” Journal of Sedimentary Research35, no. 4: 911–916.
    [Google Scholar]
  36. Miranda‐Martínez, A.2019. “Edad de Los Depósitos Marinos Asociados a la Evolución Temprana Del Golfo de California.” PhD Thesis, UNAM. pp. 246.
  37. Moore, D. G., and J. R.Curray. 1982. Geologic and Tectonic History of the Gulf of California. Initial Reports DSDP, 1279–1294. U.S. Govt. Printing Office.
    [Google Scholar]
  38. Mulwa, J. K., F.Kimata, and N. A.Duong. 2013. Kenya: A Natural Outlook: Chapter 19. Seismic Hazard. Vol. 16. Elsevier Inc.
    [Google Scholar]
  39. Nicholson, C., C. C.Sorlien, T.Atwater, J. C.Crowell, and B. P.Luyendyk. 1994. “Microplate Capture, Rotation of the Western Transverse Ranges, and Initiation of the San Andreas Transform as a Low‐Angle Fault System.” Geology22: 491–495.
    [Google Scholar]
  40. Oskin, M., J.Stock, and A.Martín‐Barajas. 2001. “Rapid Localization of Pacific‐North America Plate Motion in the Gulf of California.” Geology29: 459–462.
    [Google Scholar]
  41. Oskin, M., and J. M.Stock. 2003a. “Marine Incursion Synchronous With Plate‐Boundary Localization in the Gulf of California.” Geology31: 23–26.
    [Google Scholar]
  42. Oskin, M., and J. M.Stock. 2003b. “Pacific‐North America Plate Motion and Opening of the Upper Delfın Basin, Northern Gulf of California.” Geological Society of America Bulletin115: 1173–1190.
    [Google Scholar]
  43. Oskin, M., and J. M.Stock. 2003c. “Cenozoic Volcanism and Tectonics of the Continental Margins of the Upper Delfın Basin, Northeastern Baja California and Western Sonora.” In Tectonic Evolution of Northwestern Mexico and the Southwestern USA: Geological Society of America Special Paper 374, edited by D. L.Kimbrough, S. E.Johnson, S.Paterson, A.Martın‐Barajas, J. M.Fletcher, and G.Girty, 421–428. Geological Society of America.
    [Google Scholar]
  44. Persaud, P., J. M.Stock, M. S.Steckler, et al. 2003. “Active Deformation and Shallow Structure of the Wagner, Consag, and Delfín Basins, Northern Gulf of California, México.” Journal of Geophysical Research108, no. B7: 2355. https://doi.org/10.1029/2002JB001937.
    [Google Scholar]
  45. Plattner, C., R.Malservisi, T. H.Dixon, et al. 2007. “New Constraints on Relative Motion Between the Pacific Plate and Baja California Microplate (Mexico) From GPS Measurements.” Geophysical Journal International170: 1373–1380. https://doi.org/10.1111/j.1365‐246X.2007.03494.x.
    [Google Scholar]
  46. Sánchez‐Barra, A. C., M.González‐Escobar, and L.Ferrari. 2022. “Subsurface Structure of the Mazatlán Basin, Southeastern Gulf of California, Mexico, From Seismic Reflection and Well Data.” Tectonophysics838: 229505. https://doi.org/10.1016/j.tecto.2022.229505.
    [Google Scholar]
  47. Spencer, J. E., and W. R.Normark. 1979. “Tosco‐Abreojos Fault Zone: A Neogene Transform Plate Boundary Within the Pacific Margin of South Baja California, Mexico.” Geology7: 554–557.
    [Google Scholar]
  48. Stock, J. M., and K. V.Hodges. 1989. “Pre‐Pliocene Extension Around the Gulf of California and the Transfer of Baja California to the Pacific Plate.” Tectonics8: 99–115. https://doi.org/10.1029/TC008i001p00099.
    [Google Scholar]
  49. Suárez‐Vidal, F., R.Mendoza‐Borunda, L. M.Naffarrete‐Zamarripa, J.Ramirez, and E.Glowacka. 2008. “Shape and Dimensions of the Cerro Prieto Pull‐Apart Basin, Mexicali, Baja California, México, Based on the Regional Seismic Record and Surface Structures.” International Geology Review50: 636–649. https://doi.org/10.2747/0020‐6814.50.7.636.
    [Google Scholar]
  50. Sutherland, F. H., G. M.Kent, A. J.Harding, et al. 2012. “Middle Miocene to Early Pliocene Oblique Extension in the Southern Gulf of California.” Geosphere8, no. 4: 752–770. https://doi.org/10.1130/GES00770.1.
    [Google Scholar]
  51. Umhoefer, P. J., M. H.Darin, S. E. K.Bennett, L. A.Skinner, R. J.Dorsey, and E.Oskin. 2018. “Breaching of Strike‐Slip Faults and Successive Flooding of Pull=Apart Basins to Form the Gulf of California Seaway From ca. 8–6 ma.”
  52. Umhoefer, P. J., R. J.Dorsey, and P. R.Renne. 1994. “Tectonics of the Pliocene Loreto Basin, Baja California Sur, Mexico, and Evolution of the Gulf of California.” Geology22: 649–652.
    [Google Scholar]
  53. Umhoefer, P. J., R. J.Dorsey, S.Willsey, L.Mayer, and P.Renne. 2001. “Stratigraphy and Geochronology of the Comondú Group Near Loreto, Baja California Sur, Mexico.” Sedimentary Geology144, no. 1–2: 125–147. https://doi.org/10.1016/S0037‐0738(01)00138‐5.
    [Google Scholar]
  54. van Wijk, J., G.Axen, and A.Abera. 2017. “Initiation, Evolution and Extinction of Pull‐Apart Basin: Implications for Opening of the Gulf of California.” Tectonophysics719–720: 37–50. https://doi.org/10.1016/j.tecto.2017.04.019.
    [Google Scholar]
  55. Wei, S., E.Fielding, S.Leprince, et al. 2011. “Superficial Simplicity of the 2010 El Mayor–Cucapah Earthquake of Baja California in Mexico.” Nature Geoscience4, no. 9: 615–618. https://doi.org/10.1038/ngeo121.
    [Google Scholar]
  56. Winker, C. D., and S. M.Kidwell. 1986. “Paleocurrent Evidence for Lateral Displacement of the Pliocene Colorado River Delta by the San Andreas Fault System, Southeastern California.” Geology14, no. 9: 788–791.
    [Google Scholar]
  57. Wong, M. S., P. B.Gans, and J.Scheier. 2010. “The 40Ar/39Ar Thermochronology of Core Complexes and Other Basement Rocks in Sonora, Mexico: Implications for Cenozoic Tectonic Evolution of Northwestern Mexico.” Journal of Geophysical Research115, no. B7: 2009JB007032. https://doi.org/10.1029/2009JB007032.
    [Google Scholar]
/content/journals/10.1111/bre.70039
Loading
/content/journals/10.1111/bre.70039
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error