1887
Volume 37, Issue 3
  • E-ISSN: 1365-2117
PDF

Abstract

[

This research presents new high‐resolution seismic images and new insight into the interaction of down‐slope and along‐slope processes in the Upper Cretaceous depositional system at the Baltic Sea segment of the Sorgenfrei–Tornquist Zone. Santonian‐Campanian inversion tectonics is inferred with unprecedented temporal resolution, and erosional features in the Campanian‐Maastrichtian are attributed to intensified bottom currents related to compressional tectonics.

, ABSTRACT

We present a structural and depositional interpretation in the southeasternmost Sorgenfrei–Tornquist Zone (STZ), one of the most prominent Late Cretaceous compressional inversion structures in Northern Europe. Detailed stratigraphic analysis of seismic facies and well data shows that the spatial and temporal variability of gravitational deposits, contourite drifts, and moats in the marginal troughs are related to the polyphase inversion tectonic history and the associated palaeoceanographic changes. The Hanö Bay and Bornholm Basin contain a sand‐rich mounded depositional feature proximal to the STZ. This unit is resolved with high vertical resolution in seismic data and represents a clear example of a siliciclastic‐carbonate mixed depositional system, where deposition was controlled by the interplay between inversion events and eustatic sea‐level changes. Following the progradational and aggradational deposition during an early inversion phase and tectonic quiescence, a notable back‐stepping pattern is observed in the upper Santonian–lower Campanian. The increased accommodation space outpaced sediment infill during eustatic sea‐level rise in the late Santonian. We interpret that the marginal trough subsided during multiple inversion pulses associated with elastic flexure in response to inversion tectonics. The comparison of sequence‐stratigraphic indicators and the global (eustatic) sea‐level curve allows for a refined reconstruction of the inversion history and points to a major uplift in the Santonian–Campanian. Further, we attribute a penecontemporaneous change in the depositional pattern, i.e., the erosional Campanian–Maastrichtian contourite moat system, to intensified bottom current activity related to significant global cooling, in conjunction with the palaeoceanographic modification induced by the inversion tectonics described in this study.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70040
2025-06-05
2025-07-08
Loading full text...

Full text loading...

/deliver/fulltext/bre/37/3/bre70040.html?itemId=/content/journals/10.1111/bre.70040&mimeType=html&fmt=ahah

References

  1. Ahlrichs, N., V.Noack, C.Hübscher, E.Seidel, A.Warwel, and J.Kley. 2022. “Impact of Late Cretaceous Inversion and Cenozoic Extension on Salt Structure Growth in the Baltic Sector of the North German Basin.” Basin Research34, no. 1: 220–250. https://doi.org/10.1111/bre.12617.
    [Google Scholar]
  2. Arfai, J., R.Lutz, D.Franke, C.Gaedicke, and J.Kley. 2016. “Mass‐Transport Deposits and Reservoir Quality of Upper Cretaceous Chalk Within the German Central Graben, North Sea.” International Journal of Earth Sciences105, no. 3: 797–818. https://doi.org/10.1007/s00531‐015‐1194‐y.
    [Google Scholar]
  3. Back, S., H.van Gent, L.Reuning, J.Grötsch, J.Niederau, and P.Kukla. 2011. “3D Seismic Geomorphology and Sedimentology of the Chalk Group, Southern Danish North Sea.” Journal of the Geological Society168, no. 2: 393–406. https://doi.org/10.1144/0016‐76492010‐047.
    [Google Scholar]
  4. Barrera, E., S. M.Savin, E.Thomas, and C. E.Jones. 1997. “Evidence for Thermohaline‐Circulation Reversals Controlled by Sea‐Level Change in the Latest Cretaceous.” Geology25, no. 8: 715–718. https://doi.org/10.1130/0091‐7613(1997)025<0715:EFTCRC>2.3.CO;2.
    [Google Scholar]
  5. Bazzi, M., E.Einarsson, and B. P.Kear. 2016. “Late Cretaceous (Campanian) Actinopterygian Fishes From the Kristianstad Basin of Southern Sweden.” Geological Society Special Publication434, no. 1: 277–292. https://doi.org/10.1144/SP434.5.
    [Google Scholar]
  6. Bergerat, F., J.Angelier, and P. G.Andreasson. 2007. “Evolution of Paleostress Fields and Brittle Deformation of the Tornquist Zone in Scania (Sweden) During Permo‐Mesozoic and Cenozoic Times.” Tectonophysics444, no. 1–4: 93–110. https://doi.org/10.1016/j.tecto.2007.08.005.
    [Google Scholar]
  7. Bergström, J., and B.Sundquist. 1978. “Kritberggrunden.” In Beskrivning till berggrundskartan och flygmagnetiska kartan Kristianstad SO, edited by K. A.Kornfält, J.Bergström, L.Carserud, H.Henkel, and B.Sundquist, 55–99. Sveriges Geologiska Undersökning Af 121.
    [Google Scholar]
  8. Boussaha, M., N.Thibault, K.Anderskouv, J.Moreau, and L.Stemmerik. 2017. “Controls on Upper Campanian–Maastrichtian Chalk Deposition in the Eastern Danish Basin.” Sedimentology64, no. 7: 1998–2030. https://doi.org/10.1111/sed.12386.
    [Google Scholar]
  9. Brackenridge, R. E., F. J.Hernández‐Molina, D. A. V.Stow, and E.Llave. 2013. “A Pliocene Mixed Contourite‐Turbidite System Offshore the Algarve Margin, Gulf of Cadiz: Seismic Response, Margin Evolution and Reservoir Implications.” Marine and Petroleum Geology46: 36–50. https://doi.org/10.1016/j.marpetgeo.2013.05.015.
    [Google Scholar]
  10. Catuneanu, O.2019. “First‐Order Foreland Cycles: Interplay of Flexural Tectonics, Dynamic Loading, and Sedimentation.” Journal of Geodynamics129, no. March 2018: 290–298. https://doi.org/10.1016/j.jog.2018.03.001.
    [Google Scholar]
  11. Catuneanu, O., V.Abreu, J. P.Bhattacharya, et al. 2009. “Towards the Standardization of Sequence Stratigraphy.” Earth‐Science Reviews92, no. 1–2: 1–33. https://doi.org/10.1016/j.earscirev.2008.10.003.
    [Google Scholar]
  12. Chiarella, D., S. G.Longhitano, and M.Tropeano. 2017. “Types of Mixing and Heterogeneities in Siliciclastic‐Carbonate Sediments.” Marine and Petroleum Geology88: 617–627. https://doi.org/10.1016/j.marpetgeo.2017.09.010.
    [Google Scholar]
  13. Christensen, W. K.1975. Upper Cretaceous Belemnites from the Kristianstad area in Scania, 1–69. https://doi.org/10.18261/8200093743‐1975‐01.
  14. Christensen, W. K.1984. “The Albian to Maastrichtian of Southern Sweden and Bornholm, Denmark: A Review.” Cretaceous Research5: 313–327. https://doi.org/10.1016/S0195‐6671(84)80027‐0.
    [Google Scholar]
  15. Deeks, N. R., and S. A.Thomas. 1995. “Basin Inversion in a Strike‐Slip Regime: The Tornquist Zone, Southern Baltic Sea.” Geological Society, London, Special Publications88, no. 1: 319–338. https://doi.org/10.1144/GSL.SP.1995.088.01.18.
    [Google Scholar]
  16. Dielforder, A., G.Frasca, S.Brune, and M.Ford. 2019. “Formation of the Iberian‐European Convergent Plate Boundary Fault and Its Effect on Intraplate Deformation in Central Europe.” Geochemistry, Geophysics, Geosystems20, no. 5: 2395–2417. https://doi.org/10.1029/2018GC007840.
    [Google Scholar]
  17. Eberli, G. P., and C.Betzler. 2019. “Characteristics of Modern Carbonate Contourite Drifts.” Sedimentology66, no. 4: 1163–1191. https://doi.org/10.1111/sed.12584.
    [Google Scholar]
  18. Erlström, M.2020. “Carboniferous–Neogene Tectonic Evolution of the Fennoscandian Transition Zone, Southern Sweden.” Geological Society Memoir50: 603–620. https://doi.org/10.1144/M50‐2016‐25.
    [Google Scholar]
  19. Erlström, M., and J.Gabrielson. 1985. “The Upper Cretaceous Clastic Deposits of Ullstorp, Kristianstad Basin, Scania.” GFF107, no. 3: 241–254. https://doi.org/10.1080/11035898609453063.
    [Google Scholar]
  20. Erlström, M., and J.Gabrielson. 1992. “Petrology, Fossil Composition and Depositional History of the Ignaberga Limestone, Kristianstad Basin, Scania.” Sveriges Geologiska Undersökning80: 1–30.
    [Google Scholar]
  21. Erlström, M., S. a.Thomas, N.Deeks, and U.Sivhed. 1997. “Structure and Tectonic Evolution of the Tornquist Zone and Adjacent Sedimentary Basins in Scania and the Southern Baltic Sea Area.” Tectonophysics271, no. 3–4: 191–215. https://doi.org/10.1016/S0040‐1951(96)00247‐8.
    [Google Scholar]
  22. Esmerode, E. V., H.Lykke‐Andersen, and F.Surlyk. 2007. “Ridge and Vally Systems in the Upper Cretaceous Chalk of the Danish Basin: Contourites in an Epeiric Sea.” Geological Society, London, Special Publications276: 265–282. https://doi.org/10.1144/GSL.SP.2007.276.01.13.
    [Google Scholar]
  23. Esmerode, E. V., H.Lykke‐Andersen, and F.Surlyk. 2008. “Interaction Between Bottom Currents and Slope Failure in the Late Cretaceous of the Southern Danish Central Graben, North Sea.” Journal of the Geological Society165, no. 1: 55–72. https://doi.org/10.1144/0016‐76492006‐138.
    [Google Scholar]
  24. Esmerode, E. V., and F.Surlyk. 2009. “Origin of Channel Systems in the Upper Cretaceous Chalk Group of the Paris Basin.” Marine and Petroleum Geology26, no. 8: 1338–1349. https://doi.org/10.1016/j.marpetgeo.2009.05.001.
    [Google Scholar]
  25. Evans, D. J., P. M.Hopson, G. A.Kirby, and C. R.Bristow. 2003. “The Development and Seismic Expression of Synsedimentary Features Within the Chalk of Southern England.” Journal of the Geological Society160, no. 5: 797–813. https://doi.org/10.1144/0016‐764903‐056.
    [Google Scholar]
  26. Faugères, J. C., D. A. V.Stow, P.Imbert, and A.Viana. 1999. “Seismic Features Diagnostic of Contourite Drifts.” Marine Geology162, no. 1: 1–38. https://doi.org/10.1016/S0025‐3227(99)00068‐7.
    [Google Scholar]
  27. Fonnesu, M., D.Palermo, M.Galbiati, M.Marchesini, E.Bonamini, and D.Bendias. 2020. “A New World‐Class Deep‐Water Play‐Type, Deposited by the Syndepositional Interaction of Turbidity Flows and Bottom Currents: The Giant Eocene Coral Field in Northern Mozambique.” Marine and Petroleum Geology111, no. May 2019: 179–201. https://doi.org/10.1016/j.marpetgeo.2019.07.047.
    [Google Scholar]
  28. Frahm, L., C.Hübscher, A.Warwel, J.Preine, and H.Huster. 2020. “Misinterpretation of Velocity Pull‐Ups Caused by High‐Velocity Infill of Tunnel Valleys in the Southern Baltic Sea.” Near Surface Geophysics18: 1–15. https://doi.org/10.1002/nsg.12122.
    [Google Scholar]
  29. Fuhrmann, A., I. A.Kane, M. A.Clare, et al. 2020. “Hybrid Turbidite‐Drift Channel Complexes: An Integrated Multiscale Model.” Geology48, no. 6: 562–568. https://doi.org/10.1130/G47179.1.
    [Google Scholar]
  30. Gale, A., K.Anderskouv, F.Surlyk, and J.Whalley. 2015. “Slope Failure of Chalk Channel Margins: Implications of an Upper Cretaceous Mass Transport Complex, Southern England.” Journal of the Geological Society172, no. 6: 763–776. https://doi.org/10.1144/jgs2014‐124.
    [Google Scholar]
  31. Gale, A. S., F.Surlyk, and K.Anderskouv. 2013. “Channelling Versus Inversion: Origin of Condensed Upper Cretaceous Chalks, Eastern Isle of Wight, UK.” Journal of the Geological Society170, no. 2: 281–290. https://doi.org/10.1144/jgs2012‐044.
    [Google Scholar]
  32. Gennaro, M., and J. P.Wonham. 2014. “Channel Development in the Chalk of the Tor Formation, North Sea: Evidence of Bottom Current Activity.” In From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin, 551–586. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118920435.ch19.
    [Google Scholar]
  33. Gennaro, M., J. P.Wonham, R.Gawthorpe, and G.Sælen. 2013. “Seismic Stratigraphy of the Chalk Group in the Norwegian Central Graben, North Sea.” Marine and Petroleum Geology45: 236–266. https://doi.org/10.1016/j.marpetgeo.2013.04.010.
    [Google Scholar]
  34. Hansen, D. L., and S. B.Nielsen. 2000. “The Post‐Triassic Evolution of the Sorgenfrei–Tornquist Zone—Results From Thermo‐Mechanical Modelling.” Tectonophysics328: 245–267.
    [Google Scholar]
  35. Hindle, D., and J.Kley. 2021. “The Subhercynian Basin: An Example of an Intraplate Foreland Basin due to a Broken Plate.” Solid Earth12, no. 10: 2425–2438. https://doi.org/10.5194/se‐12‐2425‐2021.
    [Google Scholar]
  36. Hübscher, C., N.Ahlrichs, G.Allum, et al. 2016. BalTec. Report.
  37. Hübscher, C., M.Al Hseinat, M.Schneider, and C.Betzler. 2019. “Evolution of Contourite Systems in the Late Cretaceous Chalk Sea Along the Tornquist Zone.” Sedimentology66, no. 4: 1341–1360. https://doi.org/10.1111/sed.12564.
    [Google Scholar]
  38. Hübscher, C., C.Betzler, and S.Reiche. 2016. “Seismo‐Stratigraphic Evidences for Deep Base Level Control on Middle to Late Pleistocene Drift Evolution and Mass Wasting Along Southern Levant Continental Slope (Eastern Mediterranean).” Marine and Petroleum Geology77: 526–534. https://doi.org/10.1016/j.marpetgeo.2016.07.008.
    [Google Scholar]
  39. Japsen, P., P. F.Green, J. M.Bonow, and M.Erlström. 2016. “Episodic Burial and Exhumation of the Southern Baltic Shield: Epeirogenic Uplifts During and After Break‐Up of Pangaea.” Gondwana Research35: 357–377. https://doi.org/10.1016/j.gr.2015.06.005.
    [Google Scholar]
  40. Jarvis, I., A. S.Gale, H. C.Jenkyns, and M. A.Pearce. 2006. “Secular Variation in Late Cretaceous Carbon Isotopes: A New δ13C Carbonate Reference Curve for the Cenomanian‐Campanian (99.6‐70.6 Ma).” Geological Magazine143, no. 5: 561–608. https://doi.org/10.1017/S0016756806002421.
    [Google Scholar]
  41. Jenkyns, H. C., A. S.Gale, and R. M.Corfield. 1994. “Carbon‐ and Oxygen‐Isotope Stratigraphy of the English Chalk and Italian Scaglia and Its Palaeoclimatic Significance.” Geological Magazine131, no. 1: 1–34. https://doi.org/10.1017/S0016756800010451.
    [Google Scholar]
  42. Kley, J.2018. “Timing and Spatial Patterns of Cretaceous and Cenozoic Inversion in the Southern Permian Basin.” Geological Society Special Publication469: 19–31. https://doi.org/10.1144/SP469.12.
    [Google Scholar]
  43. Kley, J., and T.Voigt. 2008. “Late Cretaceous Intraplate Thrusting in Central Europe: Effect of Africa‐Iberia‐Europe Convergence, Not Alpine Collision.” Geology36, no. 11: 839–842. https://doi.org/10.1130/G24930A.1.
    [Google Scholar]
  44. Krzywiec, P.2006. “Structural Inversion of the Pomeranian and Kuiavian Segments of the Mid‐Polish Trough ‐ Lateral Variations in Timing and Structural Style.” Geological Quarterly50, no. 1: 151–168.
    [Google Scholar]
  45. Krzywiec, P.2009. “Devonian‐Cretaceous Repeated Subsidence and Uplift Along the Teisseyre‐Tornquist Zone in SE Poland ‐ Insight From Seismic Data Interpretation.” Tectonophysics475, no. 1: 142–159. https://doi.org/10.1016/j.tecto.2008.11.020.
    [Google Scholar]
  46. Krzywiec, P., R.Kramarska, and P.Zientara. 2003. “Strike‐Slip Tectonics Within the SW Baltic Sea and Its Relationship to the Inversion of the Mid‐Polish Trough‐Evidence From High‐Resolution Seismic Data.” Tectonophysics373, no. 1–4: 93–105. https://doi.org/10.1016/S0040‐1951(03)00286‐5.
    [Google Scholar]
  47. Krzywiec, P., and A.Stachowska. 2016. “Late Cretaceous Inversion of the NW Segment of the Mid‐Polish Trough—How Marginal Troughs Were Formed, and Does It Matter at All?” Zeitschrift der Deutschen Gesellschaft für Geowissenschaften167, no. 2: 107–119. https://doi.org/10.1127/zdgg/2016/0068.
    [Google Scholar]
  48. Krzywiec, P., A.Stachowska, and A.Stypa. 2018. “The Only Way Is Up – On Mesozoic Uplifts and Basin Inversion Events in SE Poland.” Geological Society, London, Special Publications469, no. 1: 33–57. https://doi.org/10.1144/sp469.14.
    [Google Scholar]
  49. Kumpas, M.1980. “Seismic Stratigraphy and Tectonics in Hano Bay, Southern Baltic.” Stockholm Contributions in GeologyXXXIV: 4.
    [Google Scholar]
  50. Liboriussen, J., P.Ashton, and T.Tygesen. 1987. “The Tectonic Evolution of the Fennoscandian Border Zone in Denmark.” Tectonophysics137, no. 1–4: 21–29. https://doi.org/10.1016/0040‐1951(87)90310‐6.
    [Google Scholar]
  51. Lidmar‐Bergström, K.1982. “Pre‐Quaternary geomorphological evolution in southern Fennoscandia.” Sveriges Geologiska Undersökning C. Sveriges Geologiska Undersökning, Uppsala.
  52. Lüdmann, T., C.Betzler, G. P.Eberli, et al. 2018. “Carbonate Delta Drift: A New Sediment Drift Type.” Marine Geology401, no. June 2017: 98–111. https://doi.org/10.1016/j.margeo.2018.04.011.
    [Google Scholar]
  53. Lykke‐Andersen, H., and F.Surlyk. 2004. “The Cretaceous‐Palaeogene Boundary at Stevns Klint, Denmark: Inversion Tectonics or Sea‐Floor Topography?” Journal of the Geological Society161, no. 3: 343–352. https://doi.org/10.1144/0016‐764903‐021.
    [Google Scholar]
  54. Michelsen, O., and L. H.Nielsen. 1993. “Structural Development of the Fennoscandian Border Zone, Offshore Denmark.” Marine and Petroleum Geology10, no. 2: 124–134. https://doi.org/10.1016/0264‐8172(93)90017‐M.
    [Google Scholar]
  55. Miller, K. G., M. A.Kominz, J. V.Browning, et al. 2005. “The Phanerozoic Record of Global Sea‐Level Change.” Science310, no. 5752: 1293–1298. https://doi.org/10.1126/science.1116412.
    [Google Scholar]
  56. Miramontes, E., A.Thiéblemont, N.Babonneau, et al. 2021. “Contourite and Mixed Turbidite‐Contourite Systems in the Mozambique Channel (SW Indian Ocean): Link Between Geometry, Sediment Characteristics and Modelled Bottom Currents.” Marine Geology437, no. January: 106502. https://doi.org/10.1016/j.margeo.2021.106502.
    [Google Scholar]
  57. Mitchum, R. M., P. R.Vail, and J. B.Sangree. 1977. “Seismic Stratigraphy and Global Changes of Sea Level, Part 6: Stratigraphic Interpretation of Seismic Reflection Patterns in Depositional Sequences.” In Seismic Stratigraphy Applications to Hydrocarbon Exploration, edited by C. E.Payton, vol. 26, 117–133. AAPG Memoir.
    [Google Scholar]
  58. Mizintseva, S. F., J. V.Browning, K. G.Miller, R. K.Olsson, and J. D.Wright. 2009. “Integrated Late Santonian‐Early Campanian Sequence Stratigraphy, New Jersey Coastal Plain: Implications for Global Sea‐Level Studies.” Stratigraphy6, no. 1: 45–60. https://doi.org/10.29041/strat.06.1.04.
    [Google Scholar]
  59. Mogensen, T. E.1994. “Palaeozoic Structural Development Along the Tornquist Zone, Kattegat Area, Denmark.” Tectonophysics240, no. 1–4: 191–214. https://doi.org/10.1016/0040‐1951(94)90272‐0.
    [Google Scholar]
  60. van der Molen, A. S., H. W.Dudok van Heel, and T. E.Wong. 2005. “The Influence of Tectonic Regime on Chalk Deposition: Examples of the Sedimentary Development and 3D‐Seismic Stratigraphy of the Chalk Group in theNetherlands Offshore Area.” Basin Research17, no. 1: 63–81. https://doi.org/10.1111/j.1365‐2117.2005.00261.x.
    [Google Scholar]
  61. Mortimore, R.2011a. “A Chalk Revolution: What Have We Done to the Chalk of England?” Proceedings of the Geologists' Association122, no. 2: 232–297. https://doi.org/10.1016/j.pgeola.2010.09.001.
    [Google Scholar]
  62. Mortimore, R.2011b. “Structural Geology of the Upper Cretaceous Chalk Central Mass, Isle of Wight, U.K.” Proceedings of the Geologists' Association122, no. 2: 298–331. https://doi.org/10.1016/j.pgeola.2010.10.003.
    [Google Scholar]
  63. Mortimore, R. N.2018. “Late Cretaceous Tectono‐Sedimentary Events in NW Europe.” Proceedings of the Geologists' Association129, no. 3: 392–420. https://doi.org/10.1016/j.pgeola.2017.12.004.
    [Google Scholar]
  64. Mortimore, R., and B.Pomerol. 1997. “Upper Cretaceous Tectonic Phases and End Cretaceous Inversion in the Chalk of the Anglo‐Paris Basin.” Proceedings of the Geologists' Association108, no. 3: 231–255. https://doi.org/10.1016/S0016‐7878(97)80031‐4.
    [Google Scholar]
  65. Nielsen, S. B., and D. L.Hansen. 2000. “Physical Explanation of the Formation and Evolution of Inversion Zones and Marginal Troughs.” Geology28, no. 10: 875–878. https://doi.org/10.1130/0091‐7613(2000)28<875:PEOTFA>2.0.CO;2.
    [Google Scholar]
  66. Nielsen, T., P. C.Knutz, and A.Kuijpers. 2008. “Chapter 16 Seismic Expression of Contourite Depositional Systems.” Developments in Sedimentology60, no. 8: 301–321. https://doi.org/10.1016/S0070‐4571(08)10016‐4.
    [Google Scholar]
  67. Nielsen, S. B., E.Thomsen, D. L.Hansen, and O. R.Clausen. 2005. “Plate‐Wide Stress Relaxation Explains European Palaeocene Basin Inversions.” Nature435, no. 7039: 195–198. https://doi.org/10.1038/nature03599.
    [Google Scholar]
  68. Norling, E.1981. “Upper Jurassic and Lower Cretaceous Geology of Sweden.” Geologiska Föreningen i Stockholm Förhandlingar103, no. 2: 253–269. https://doi.org/10.1080/11035898109454522.
    [Google Scholar]
  69. Norling, E., and J.Bergström. 1987. “Mesozoic and Cenozoic Tectonic Evolution of Scania, Southern Sweden.” Tectonophysics137: 7–19. https://doi.org/10.1016/0040‐1951(87)90309‐X.
    [Google Scholar]
  70. Packer, S. R., and M. B.Hart. 1994. “Evidence for Sea Level Change From the Cretaceous of Bornholm, Denmark.” GFF116, no. 3: 167–173. https://doi.org/10.1080/11035899409546180.
    [Google Scholar]
  71. Pan, Y., E.Seidel, C.Juhlin, C.Hübscher, and D.Sopher. 2022. “Inversion Tectonics in the Sorgenfrei–Tornquist Zone: Insight From New Marine Seismic Data at the Bornholm Gat, SW Baltic Sea.” GFF144, no. 2: 71–88. https://doi.org/10.1080/11035897.2022.2071335.
    [Google Scholar]
  72. Petrizzo, M. R., B. T.Huber, F.Falzoni, and K. G.MacLeod. 2020. “Changes in Biogeographic Distribution Patterns of Southern Mid‐To High Latitude Planktonic Foraminifera During the Late Cretaceous Hot to Cool Greenhouse Climate Transition.” Cretaceous Research115: 104547. https://doi.org/10.1016/j.cretres.2020.104547.
    [Google Scholar]
  73. Petrizzo, M. R., K. G.MacLeod, D. K.Watkins, E.Wolfgring, and B. T.Huber. 2022. “Late Cretaceous Paleoceanographic Evolution and the Onset of Cooling in the Santonian at Southern High Latitudes (IODP Site U1513, SE Indian Ocean).” Paleoceanography and Paleoclimatology37, no. 1: e2021PA004353. https://doi.org/10.1029/2021pa004353.
    [Google Scholar]
  74. Rasmussen, S. L., and F.Surlyk. 2012. “Facies and Ichnology of an Upper Cretaceous Chalk Contourite Drift Complex, Eastern Denmark, and the Validity of Contourite Facies Models.” Journal of the Geological Society169, no. 4: 435–447. https://doi.org/10.1144/0016‐76492011‐136.
    [Google Scholar]
  75. Ray, D. C., F. S. P.van Buchem, G.Baines, et al. 2019. “The Magnitude and Cause of Short‐Term Eustatic Cretaceous Sea‐Level Change: A Synthesis.” Earth‐Science Reviews197, no. December 2018: 102901. https://doi.org/10.1016/j.earscirev.2019.102901.
    [Google Scholar]
  76. Rebesco, M., F. J.Hernández‐Molina, D.Van Rooij, and A.Wåhlin. 2014. “Contourites and Associated Sediments Controlled by Deep‐Water Circulation Processes: State‐Of‐The‐Art and Future Considerations.” Marine Geology352: 111–154. https://doi.org/10.1016/j.margeo.2014.03.011.
    [Google Scholar]
  77. Rebesco, M., and D.Stow. 2001. “Seismic Expression of Contourites and Related Deposits: A Preface.” Marine Geophysical Research22, no. 5–6: 303–308. https://doi.org/10.1023/A:1016316913639.
    [Google Scholar]
  78. Remin, Z., M.Cyglicki, and M.Niechwedowicz. 2022. “Deep vs. Shallow—Two Contrasting Theories? A Tectonically Activated Late Cretaceous Deltaic System in the Axial Part of the Mid‐Polish Trough: A Case Study From Southeast Poland.” Solid Earth13, no. 3: 681–703. https://doi.org/10.5194/se‐13‐681‐2022.
    [Google Scholar]
  79. Remin, Z., M.Gruszczyński, and J. D.Marshall. 2016. “Changes in Paleo‐Circulation and the Distribution of Ammonite Faunas at the Coniacian‐Santonian Transition in Central Poland and Western Ukraine.” Acta Geologica Polonica66, no. 1: 107–124. https://doi.org/10.1515/agp‐2016‐0006.
    [Google Scholar]
  80. Sandström, O.2001. “Depositional Environment of the Campanian (Upper Cretaceous) Strata at Maltesholm, Scania, Southern Sweden.” GFF123, no. 1: 51–54. https://doi.org/10.1080/11035890101231051.
    [Google Scholar]
  81. Seidel, E., M.Meschede, and K.Obst. 2018. “The Wiek Fault System East of Rügen Island: Origin, Tectonic Phases and its Relationship to the Trans‐European Suture Zone.” Geological Society, London, Special Publications469, no. 1: 59–82. https://doi.org/10.1144/sp469.10.
    [Google Scholar]
  82. Smit, F. W. H., and L.Stemmerik. 2022. “Seismic Geomorphology of Submarine Landslides in the Chalk Group of the Danish Central Graben: Implications for Reservoir Potential.” Geological Society, London, Special Publications525, no. 1: 43–75. https://doi.org/10.1144/sp525‐2020‐244.
    [Google Scholar]
  83. Smit, F. W. H., L.Stemmerik, M. E.Smith, et al. 2022. “The Occurrence of a Palaeo‐Lithification Front in an Overpressured Basin (Chalk Group)—Timing From Clumped Isotopes and Seismic Stratigraphic Analysis.” Basin Research34: 1341–1373. https://doi.org/10.1111/bre.12662.
    [Google Scholar]
  84. Sopher, D., M.Erlström, N.Bell, and C.Juhlin. 2016. “The Structure and Stratigraphy of the Sedimentary Succession in the Swedish Sector of the Baltic Basin: New Insights From Vintage 2D Marine Seismic Data.” Tectonophysics676: 90–111. https://doi.org/10.1016/j.tecto.2016.03.012.
    [Google Scholar]
  85. Stachowska, A., and P.Krzywiec. 2023. “The Late Cretaceous Tectono‐Sedimentary Evolution of Northern Poland – A Seismic Perspective on the Role of Transverse and Axial Depositional Systems During Basin Inversion.” Marine and Petroleum Geology152: 106224. https://doi.org/10.1016/j.marpetgeo.2023.106224.
    [Google Scholar]
  86. Stephenson, R., C.Schiffer, A.Peace, S. B.Nielsen, and S.Jess. 2020. “Late Cretaceous‐Cenozoic Basin Inversion and Palaeostress Fields in the North Atlantic‐Western Alpine‐Tethys Realm: Implications for Intraplate Tectonics.” Earth‐Science Reviews210, no. November 2019: 103252. https://doi.org/10.1016/j.earscirev.2020.103252.
    [Google Scholar]
  87. Stow, D. A. V., F. J.Hernández‐Molina, E.Llave, M.Sayago‐Gil, V.Díaz‐del Río, and A.Branson. 2009. “Bedform‐Velocity Matrix: The Estimation of Bottom Current Velocity From Bedform Observations.” Geology37, no. 4: 327–330. https://doi.org/10.1130/G25259A.1.
    [Google Scholar]
  88. Stow, D. A. V., S.Hunter, D.Wilkinson, and F. J.Hernández‐Molina. 2008. “Chapter 9 the Nature of Contourite Deposition.” Developments in Sedimentology60, no. 8: 143–156. https://doi.org/10.1016/S0070‐4571(08)10009‐7.
    [Google Scholar]
  89. Surlyk, F., S. K.Jensen, and M.Engkilde. 2008. “Deep Channels in the Cenomanian—Danian Chalk Group of the German North Sea Sector: Evidence of Strong Constructional and Erosional Bottom Currents and Effect on Reservoir Quality Distribution.” American Association of Petroleum Geologists Bulletin92, no. 11: 1565–1586. https://doi.org/10.1306/07100808035.
    [Google Scholar]
  90. Surlyk, F., and H.Lykke‐Andersen. 2007. “Contourite Drifts, Moats and Channels in the Upper Cretaceous Chalk of the Danish Basin.” Sedimentology54, no. 2: 405–422. https://doi.org/10.1111/j.1365‐3091.2006.00842.x.
    [Google Scholar]
  91. Surlyk, F., and A. M.Sørensen. 2010. “An Early Campanian Rocky Shore at Ivö Klack, Southern Sweden.” Cretaceous Research31, no. 6: 567–576. https://doi.org/10.1016/j.cretres.2010.07.006.
    [Google Scholar]
  92. Thibault, N., I.Jarvis, S.Voigt, A. S.Gale, K.Attree, and H. C.Jenkyns. 2016. “Astronomical Calibration and Global Correlation of the Santonian (Cretaceous) Based on the Marine Carbon Isotope Record.” Paleoceanography31, no. 6: 847–865. https://doi.org/10.1002/2016PA002941.
    [Google Scholar]
  93. Thybo, H.1997. “Geophysical Characteristics of the Tornquist Fan Area, Northwest Trans‐European Suture Zone: Indication of Late Carboniferous to Early Permian Dextral Transtension.” Geological Magazine134, no. 5: 597–606. https://doi.org/10.1017/S0016756897007267.
    [Google Scholar]
  94. Thybo, H.2000. “Crustal Structure and Tectonic Evolution of the Tornquist Fan Region as Revealed by Geophysical Methods.” Bulletin of the Geological Society of Denmark46, no. 2: 145–160.
    [Google Scholar]
  95. Tóth, Z., V.Spiess, J. M.Mogollón, and J. B.Jensen. 2014. “Estimating the Free Gas Content in Baltic Sea Sediments Using Compressional Wave Velocity From Marine Seismic Data.” Journal of Geophysical Research: Solid Earth119, no. 12: 1–17. https://doi.org/10.1002/2014JB010989.
    [Google Scholar]
  96. Van Buchem, F. S. P., F. W. H.Smit, G. J. A.Buijs, B.Trudgill, and P. H.Larsen. 2017. “Tectonostratigraphic Framework and Depositional History of the Cretaceous‐Danian Succession of the Danish Central Graben (North Sea)‐New Light on a Mature Area.” Petroleum Geology Conference Proceedings8, no. 1: 9–46. https://doi.org/10.1144/PGC8.24.
    [Google Scholar]
  97. Van Der Voet, E. V. A., L.Heijnen, and J. J. G.Reijmer. 2019. “Geological Evolution of the Chalk Group in the Northern Dutch North Sea: Inversion, Sedimentation and Redeposition.” Geological Magazine156, no. 7: 1265–1284. https://doi.org/10.1017/S0016756818000572.
    [Google Scholar]
  98. Vejbæk, O. V., and C.Andersen. 2002. “Post Mid‐Cretaceous Inversion Tectonics in the Danish Central Graben ‐ Regionally Synchronous Tectonic Events?” Bulletin of the Geological Society of Denmark49, no. 2: 139–144.
    [Google Scholar]
  99. Vejbæk, O. V., S.Stouge, and K. D.Poulsen. 1994. “Palaeozoic Tectonic and Sedimentary Evolution and Hyrdrocarbon Prospectivity in the Bornholm Area.” Danmarks Geologiske Undersøgelse Serie A34: 1–23. https://doi.org/10.34194/seriea.v34.7054.
    [Google Scholar]
  100. Voigt, T., J.Kley, and S.Voigt. 2021. “Dawn and Dusk of Late Cretaceous Basin Inversion in Central Europe.” Solid Earth12, no. 6: 1443–1471. https://doi.org/10.5194/se‐12‐1443‐2021.
    [Google Scholar]
  101. Voigt, T., H.von Eynatten, and H. J.Franzke. 2004. “Late Cretaceous Unconformities in the Subhercynian Cretaceous Basin (Germany).” Acta Geologica Polonica54, no. 4: 673–694.
    [Google Scholar]
  102. Wolfgring, E., M.Wagreich, J.Dinarès‐Turell, et al. 2018. “The Santonian–Campanian Boundary and the End of the Long Cretaceous Normal Polarity‐Chron: Isotope and Plankton Stratigraphy of a Pelagic Reference Section in the NW Tethys (Austria).” Newsletters on Stratigraphy51, no. 4: 445–476. https://doi.org/10.1127/nos/2018/0392.
    [Google Scholar]
  103. Ziegler, P. A.1987. “Late Cretaceous and Cenozoic Intra‐Plate Compressional Deformations in the Alpine Foreland–A Geodynamic Model.” Tectonophysics137, no. 1–4: 389–420. https://doi.org/10.1016/0040‐1951(87)90330‐1.
    [Google Scholar]
  104. Ziegler, P. A.1989. “Geodynamic Model for Alpine Intra‐Plate Compressional Deformation in Western and Central Europe.” Geological Society, London, Geological Society Special Publication44, no. 44: 63–85. https://doi.org/10.1144/GSL.SP.1989.044.01.05.
    [Google Scholar]
/content/journals/10.1111/bre.70040
Loading
/content/journals/10.1111/bre.70040
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error