1887
Volume 37, Issue 3
  • E-ISSN: 1365-2117

Abstract

[

(A) Tectonic model of the Putumayo Basin showing the several collisional events that triggered the inversion of preexistent Jurassic rift sequences during the Upper Cretaceous and their influence in the provenance sources from the synorogenic deposits. Brown arrows suggest Amazonian and Putumayo basement sources, dark green arrows suggest a provenance source from unroofing of the Cretaceous sedimentary cover and gray and light blue and green arrows suggest Andean sources from thrust slivers in the Central Cordillera basement and Jurassic arc respectively. (B) Paleogeographic maps of Middle Eocene to Miocene in the Northern Andes showing various events of marine incursions and their respective extensions, which are limited by the basement highs including the incipient Eastern Cordillera (ECH), Florencia (FH), Macarena (MH) and El Melon‐Vaupes (MV‐H) with the exception of the middle Miocene. During this period, the Pebas system was established in a significant portion of the Western Amazon Basin.

, ABSTRACT

The topographic growth of the Eastern Cordillera in the northern Andes of Colombia is a critical event in the tectonic and paleogeographic evolution of the western Amazon Basin. Documentation of early orogenic growth is enabled through multi‐proxy provenance signatures recorded in the adjacent retro‐foreland basin. In broken foreland basins, basement highs interrupt the lateral continuity of facies belts and potentially mask provenance signals. The Putumayo Basin is a broken foreland basin in western Amazonia at ~1°–3° N, where the Florencia, Macarena, and El Melón‐Vaupes basement highs have compartmentalised discrete depocentres during basin development. This study presents new evidence from stratigraphic, conglomerate clast count, sandstone petrography, detrital zircon U–Pb geochronology and novel apatite detrital U–Pb age trace element geochemistry analyses. The results show that the southern Eastern Cordillera (i.e., Garzon Massif) and Putumayo Basin basement highs were initially uplifted during the Late Cretaceous coeval with the Central Cordillera, most likely associated with the collision of the Caribbean Large Igneous Province (CLIP). Distinctive facies distributions and provenance changes characterise the Putumayo Basin over a ~300 km distance from south to north, in the Rumiyaco Formation and Neme Sandstone. Detrital zircon U–Pb ages record a sharp reversal from easterly derived Proterozoic to westerly sourced late Mesozoic–Cenozoic Andean zircons derived principally from the Central Cordillera. Provenance signatures of the synorogenic Eocene Pepino Formation demonstrate the continued exhumation of the Eastern Cordillera as a second‐order source area. However, the emergence of the northern intraplate highs modulated the provenance signature due to the rapid unroofing of relatively thinner marine sedimentary cover strata that overlie the Putumayo basement, in comparison to the thicker sequences of the southern basin. The provenance data and facies distributions of the Oligocene–Miocene Orito Group were more heterogeneous due to strike‐slip deformation, associated with major plate tectonic reorganisation as the Nazca Plate subducted under the South American margin.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70041
2025-06-20
2025-07-08
Loading full text...

Full text loading...

/deliver/fulltext/bre/37/3/bre70041.html?itemId=/content/journals/10.1111/bre.70041&mimeType=html&fmt=ahah

References

  1. Anderson, T. A.1972. “Paleogene Nonmarine Gualanday Group, Neiva Basin, Colombia, and Regional Development of the Colombian Andes.” Geological Society of America Bulletin83, no. 8: 2423–2438.
    [Google Scholar]
  2. Anderson, V. J., B. H.Horton, J. E.Saylor, et al. 2016. “Andean Topographic Growth and Basement Uplift in Southern Colombia: Implications for the Evolution of the Magdalena, Orinoco, and Amazon River Systems.” Geosphere12, no. 4: 1235–1256.
    [Google Scholar]
  3. ANH‐UPTC . 2009. “Cartografía Geológica de 5167.45 Km2 en la Cuenca Caguan‐Putumayo a Partir de Sensores Remotos a Escala 1:100000 y 739 Km2 con Control de Campo a Escala 1:50000 en las Planchas IGAC 413 y 414.” Departamentos de Meta, Caquetá y Putumayo. 111 p.
  4. Antonelli, A., J. A.Nylander, C.Persson, and I.Sanmartín. 2009. “Tracing the Impact of the Andean Uplift on Neotropical Plant Evolution.” Proceedings of the National Academy of Sciences of the United States of America106, no. 24: 9749–9754.
    [Google Scholar]
  5. Aspden, J. A., S. H.Harrison, and C. C.Rundle. 1992. “New Geochronological Control for the Tectono‐Magmatic Evolution of the Metamorphic Basement, Cordillera Real and El Oro Province of Ecuador.” Journal of South American Earth Sciences6, no. 1–2: 77–96.
    [Google Scholar]
  6. Baby, P., M.Rivadeneira, R.Barragán, and F.Christophoul. 2013. “Thick‐Skinned Tectonics in the Oriente Foreland Basin of Ecuador.” Geological Society, London, Special Publications377, no. 1: 59–76.
    [Google Scholar]
  7. Baker, P. A., S. C.Fritz, C. W.Dick, et al. 2014. “The Emerging Field of Geogenomics: Constraining Geological Problems With Genetic Data.” Earth‐Science Reviews135: 38–47. https://doi.org/10.1016/j.earscirev.2014.04.001.
    [Google Scholar]
  8. Ballesteros, C. I., H. A.Galvis, I. C.Higuera, et al. 2013. “Anotaciones Acerca de la Estratigrafía del Intervalo Cenomaniano‐Campaniano Atravesado por el pozo La Luna‐1, Cuenca del Valle Medio del Magdalena.” XVI Congreso Colombiano de Geología, Bogotá, p. 30–31.
  9. Barbosa‐Espitia, Á. A., G. D.Kamenov, D. A.Foster, S. A.Restrepo‐Moreno, and A.Pardo‐Trujillo. 2019. “Contemporaneous Paleogene Arc‐Magmatism Within Continental and Accreted Oceanic Arc Complexes in the Northwestern Andes and Panama.” Lithos348: 105185.
    [Google Scholar]
  10. Bayona, G.2018. “El Inicio de la Emergencia en los Andes del Norte: una Perspectiva a Partir del Registro Tectónico‐Sedimentológico del Coniaciano al Paleoceno.” Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales42, no. 165: 364–378.
    [Google Scholar]
  11. Bayona, G., M.Baquero, C.Ramírez, et al. 2020. “Unravelling the Widening of the Earliest Andean Northern Orogen: Maastrichtian to Early Eocene Intra‐Basinal Deformation in the Northern Eastern Cordillera of Colombia.” Basin Research33, no. 1: 809–845.
    [Google Scholar]
  12. Bayona, G., C.Bustamante, G.Nova, and A. M.Salazar–Franco. 2020. “Jurassic Evolution of the Northwestern Corner of Gondwana: Present Knowledge and Future Challenges in Studying Colombian Jurassic Rocks.” In The Geology of Colombia, Volume 2 Mesozoic, edited by J.Gómez and A. O.Pinilla–Pachon, 37. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36. https://doi.org/10.32685/pub.esp.36.2019.05.
    [Google Scholar]
  13. Bayona, G., A.Cardona, C.Jaramillo, et al. 2013. “Onset of Fault Reactivation in the Eastern Cordillera of Colombia and Proximal Llanos Basin; Response to Caribbean–South American Convergence in Early Palaeogene Time.” Geological Society, London, Special Publications377, no. 1: 285–314.
    [Google Scholar]
  14. Bayona, G., A.Cardona, C.Jaramillo, et al. 2012. “Early Paleogene Magmatism in the Northern Andes: Insights on the Effects of Oceanic Plateau–Continent Convergence.” Earth and Planetary Science Letters331: 97–111.
    [Google Scholar]
  15. Bayona, G., A.Cardona, G.Tellez, et al. 2015. “Magmatismo Paleoceno‐Eoceno Temprano (?) en la Cuenca Proximal de los Llanos.” In XV Congreso Colombiano de Geología, Bucaramanga, Colombia, 560–563.
  16. Bayona, G., M.Cortés, C.Jaramillo, G.Ojeda, J. J.Aristizabal, and A.Reyes‐Harker. 2008. “An Integrated Analysis of an Orogen–Sedimentary Basin Pair: Latest Cretaceous–Cenozoic Evolution of the Linked Eastern Cordillera Orogen and the Llanos Foreland Basin of Colombia.” Geological Society of America Bulletin120, no. 9–10: 1171–1197.
    [Google Scholar]
  17. Bayona, G., D. F.García, and G.Mora. 1994. “La Formación Saldaña: Producto de la Actividad de Estratovolcanes Continentales en un Dominio de Retroarco.” In Estudios Geológicos del Valle Superior del Magdalena, edited by F.Etayo‐Serna, I–1–1–21. Universidad Nacional de Colombia–Ecopetrol.
    [Google Scholar]
  18. Bayona, G., F.Lamus, G.Jimenez, et al. 2009. “Conteo de Clastos Como Metodologia en el Reconocimiento de Unidades Conglomeraticas en el Valle Superior del Magdalena (VSM).” XII Congreso Colombiano de Geología, Paipa, Colombia.
  19. Beltrán, W., W.Espitia, D.Bello‐Palacios, J.Arias, and I. C. H.Díaz. 2022. “Structural Styles of the Southern Putumayo Foreland Basin, Northern Andes, Colombia.” In Andean Structural Styles, 227–234. Elsevier.
    [Google Scholar]
  20. Bicudo, T. C., V.Sacek, R. P.de Almeida, J. M.Bates, and C. C.Ribas. 2019. “Andean Tectonics and Mantle Dynamics as a Pervasive Influence on Amazonian Ecosystem.” Scientific Reports9, no. 1: 16879. https://doi.org/10.1038/s41598‐019‐53465‐y.
    [Google Scholar]
  21. Blanco‐Quintero, I. F., A.García‐Casco, L. M.Toro, et al. 2014. “Late Jurassic Terrane Collision in the Northwestern Margin of Gondwana (Cajamarca Complex, Eastern Flank of the Central Cordillera, Colombia).” International Geology Review56, no. 15: 1852–1872.
    [Google Scholar]
  22. Black, L. P., S. L.Kamo, C. M.Allen, et al. 2004. “Improved 206Pb/238U Microprobe Geochronology by the Monitoring of a Trace‐Element‐Related Matrix Effect; SHRIMP, ID–TIMS, ELA–ICP–MS and Oxygen Isotope Documentation for a Series of Zircon Standards.” Chemical Geology205, no. 1–2: 115–140.
    [Google Scholar]
  23. Borrero, C., A.Pardo, C. M.Jaramillo, et al. 2012. “Tectonostratigraphy of the Cenozoic Tumaco Forearc Basin (Colombian Pacific) and Its Relationship With the Northern Andes Orogenic Build Up.” Journal of South American Earth Sciences39: 75–92.
    [Google Scholar]
  24. Buchely, F., L.Gomez, J.Buitrago, et al. 2015. Elaboración de la Cartografía Geológica de un Conjunto de Planchas a Escala 1:100000 Ubicadas en Cuatro Bloques del Territorio Nacional Identificados Por el Servicio Geológico Colombiano Srupo 2: Zonas Sur A y Zona Sur B, 127. Geología de la Plancha 413‐Florencia.
    [Google Scholar]
  25. Bustamante, C., C. J.Archanjo, A.Cardona, A.Bustamante, and V. A.Valencia. 2017. “U‐Pb Ages and Hf Isotopes in Zircons From Parautochthonous Mesozoic Terranes in the Western Margin of Pangea: Implications for the Terrane Configurations in the Northern Andes.” Journal of Geology125, no. 5: 487–500.
    [Google Scholar]
  26. Bustamante, C., C. J.Archanjo, A.Cardona, and J. D.Vervoort. 2016. “Late Jurassic to Early Cretaceous Plutonism in the Colombian Andes: A Record of Long‐Term Arc Maturity.” Bulletin128, no. 11–12: 1762–1779.
    [Google Scholar]
  27. Bustamante, C., A.Cardona, C. J.Archanjo, G.Bayona, M.Lara, and V.Valencia. 2017. “Geochemistry and Isotopic Signatures of Paleogene Plutonic and Detrital Rocks of the Northern Andes of Colombia: A Record of Post‐Collisional Arc Magmatism.” Lithos277: 199–209.
    [Google Scholar]
  28. Caballero, V., A.Mora, I.Quintero, et al. 2013. “Tectonic Controls on Sedimentation in an Intermontane Hinterland Basin Adjacent to Inversion Structures: The Nuevo Mundo Syncline, Middle Magdalena Valley, Colombia.” Geological Society, London, Special Publications377, no. 1: 315–342.
    [Google Scholar]
  29. Cáceres, H., and P.Teatin. 1985. “Cuenca del Putumayo, provincia petrolífera meridional de Colombia.” In 2nd Simposio Bolivariano Exploracion Petrolera en las Cuencas Subandinas. (91 p) Extended Abstracts.
  30. Caicedo, J. C., and J.Roncancio. 1994. “El Grupo Gualanday Como Ejemplo de Acumulación Sintectónica, en el Valle Superior del Magdalena, Durante el Paleógeno.” In Estudios Geológicos del Valle Superior del Magdalena, Capítulo X (Fernando Etayo‐Serna., 1‐19). Universidad Nacional de Colombia, Facultad de ciencias.
    [Google Scholar]
  31. Calderon‐Diaz, L., S.Zapata, A.Cardona, et al. 2024. “Cretaceous Extensional and Contractional Stages in the Colombian Andes Unraveled by a Source‐to‐Sink Geochronological and Thermochronological Study in the Upper Magdalena Basin.” Tectonophysics878: 230303.
    [Google Scholar]
  32. Calvet, M., M.Delmas, Y.Gunnell, and B.Laumonier. 2022. “Basin Analysis: The Sedimentary Record of Orogenic Growth and Decay.” In Geology and Landscapes of the Eastern Pyrenees: A Field Guide With Excursions, 27–56. Springer International Publishing.
    [Google Scholar]
  33. Cardona, A., U. G.Cordani, J.Ruiz, et al. 2009. “U‐Pb Zircon Geochronology and Nd Isotopic Signatures of the Pre‐Mesozoic Metamorphic Basement of the Eastern Peruvian Andes: Growth and Provenance of a Late Neoproterozoic to Carboniferous Accretionary Orogen on the Northwest Margin of Gondwana.” Journal of Geology117: 285–305. https://doi.org/10.1086/597472.
    [Google Scholar]
  34. Cardona, A., S.León, J. S.Jaramillo, et al. 2018. “The Paleogene Arcs of the Northern Andes of Colombia and Panama: Insights on Plate Kinematic Implications From New and Existing Geochemical, Geochronological and Isotopic Data.” Tectonophysics749: 88–103.
    [Google Scholar]
  35. Cardona, A., V. A.Valencia, G.Bayona, et al. 2011. “Early‐Subduction‐Related Orogeny in the Northern Andes: Turonian to Eocene Magmatic and Provenance Record in the Santa Marta Massif and Rancheria Basin, Northern Colombia.” Terra Nova23, no. 1: 26–34.
    [Google Scholar]
  36. Cardona, A., V.Valencia, A.Garzon, et al. 2010. “Permian to Triassic I to S‐Type Magmatic Switch in the Northeast Sierra Nevada de Santa Marta and Adjacent Regions, Colombian Caribbean: Tectonic Setting and Implications Within Pangea Paleogeography.” Journal of South American Earth Sciences29: 772–783.
    [Google Scholar]
  37. Cardona, A., S.León, J. S.Jaramillo, et al. 2020. “Cretaceous Record From a Mariana to an Andean–Type Margin in the Central Cordillera of the Colombian Andes.” In The Geology of Colombia, Volume 2 Mesozoic, edited by J.Gómez and A. O.Pinilla‐Pachon, vol. 36, 335–373. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales. Bogotá.
    [Google Scholar]
  38. Carrillo, J. D., C.Jaramillo, F.Abadía, et al. 2023. “The Miocene La Venta Biome (Colombia): A Century of Research and Future Perspectives.” Geodiversitas45, no. 26: 739–767.
    [Google Scholar]
  39. Cediel, F., J.Mojica, and C.Macia. 1981. “Las Formaciones Luisa, Payandé y Saldaña sus Columnas Estratigraficas Características.” Geología Norandina3: 11–19.
    [Google Scholar]
  40. Chang, Z., J. D.Vervoort, W. C.McClelland, and C.Knaack. 2006. “U‐Pb Dating of Zircon by LA‐ICP‐MS.” Geochemistry, Geophysics, Geosystems7, no. 5: 1–14.
    [Google Scholar]
  41. Chavarría, L., C.Bustamante, A.Cardona, and G.Bayona. 2022. “Quantifying Crustal Thickness and Magmatic Temperatures of the Jurassic to Early Cretaceous North‐Andean arc.” International Geology Review64, no. 18: 2544–2564.
    [Google Scholar]
  42. Chew, D. M., R. A.Donelick, and P.Sylvester. 2012. “Combined Apatite Fission Track and U‐Pb Dating by LA‐ICP‐MS and Its Application in Apatite Provenance Analysis.” In Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks: Mineralogical Association of Canada, Short Course, edited by P.Sylvester42, 219–247. Mineralogical Association of Canada.
    [Google Scholar]
  43. Chew, D. M., J. A.Petrus, and B. S.Kamber. 2014. “U‐Pb LA–ICPMS Dating Using Accessory Mineral Standards With Variable Common Pb.” Chemical Geology363: 185–199.
    [Google Scholar]
  44. Chew, D. M., M. G.Babechuk, N.Cogne, et al. 2016. “(LA, Q)‐ICPMS Trace‐Element Analyses of Durango and McClure Mountain Apatite and Implications for Making Natural LA‐ICPMS Mineral Standards.” Chemical Geology435: 35–48.
    [Google Scholar]
  45. Christophoul, F., P.Baby, and C.Dávila. 2002. “Stratigraphic Responses to a Major Tectonic Event in a Foreland Basin: The Ecuadorian Oriente Basin From Eocene to Oligocene Times.” Tectonophysics345, no. 1–4: 281–298.
    [Google Scholar]
  46. Cochrane, R., R. A.Spikings, D.Chew, et al. 2014. “High Temperature (> 350 C) Thermochronology and Mechanisms of Pb Loss in Apatite.” Geochimica et Cosmochimica Acta127: 39–56.
    [Google Scholar]
  47. Cochrane, R., R.Spikings, A.Gerdes, et al. 2014. “Permo‐Triassic Anatexis, Continental Rifting and the Disassembly of Western Pangaea.” Lithos190: 383–402.
    [Google Scholar]
  48. Cooper, M. A., F. T.Addison, R.Alvarez, et al. 1995. “Basin Development and Tectonic History of the Llanos Basin, Eastern Cordillera, and Middle Magdalena Valley, Colombia.” AAPG Bulletin79: 1421–1443.
    [Google Scholar]
  49. Copeland, P.2020. “On the Use of Geochronology of Detrital Grains in Determining the Time of Deposition of Clastic Sedimentary Strata.” Basin Research32, no. 6: 1532–1546.
    [Google Scholar]
  50. Cordani, U. G., A.Cardona, D. M.Jimenez, D.Liu, and A. P.Nutman. 2005. “Geochronology of Proterozoic Basement Inliers in the Colombian Andes: Tectonic History of Remnants of a Fragmented Grenville Belt.” Geological Society of London, Special Publication246: 329–346. https://doi.org/10.1144/GSL.SP.2005.246.01.13.
    [Google Scholar]
  51. Cordani, U. G., and W.Teixeira. 2007. “Proterozoic Accretionary Belts in the Amazonian Craton.” In Geological Society of America Memoirs, 297–320. Geological Society of America.
    [Google Scholar]
  52. Cordeirio‐Bicudo, T., V.Sacek, and R. P.de Almeida. 2019. “Reappraisal of the Relative Importance of Dynamic Topography and Andean Orogeny on Amazon Landscape Evolution.” Earth and Planetary Science Letters546: 116423.
    [Google Scholar]
  53. Corredor, F., N.Piragauta, N.Delgado, A.Cifuentes, and J.Palencia. 2019. “Active Reverse Faulting During the Late Cretaceous‐Early Tertiary in the Putumayo Basin, Colombia: Implications for the Exploration of Hydrocarbons.” Abstract Extended, I Cumbre del Petroleo & Gas, Noviembre 14–18, Bogotá, Colombia.
  54. Custódio, M. A., M.Roddaz, R. V.Santos, et al. 2023. “New Stratigraphic and Paleoenvironmental Constraints on the Paleogene Paleogeography of Western Amazonia.” Journal of South American Earth Sciences124: 104256.
    [Google Scholar]
  55. Custódio, M. A., M.Roddaz, R. V.Santos, et al. 2024. “Maastrichtian‐Cenozoic Erosional History of the Northern Peruvian Amazonian Andes Implications for the Eastern Cordillera Evolution (Huallaga Basin, Northern Peru).” Global and Planetary Change242: 104584.
    [Google Scholar]
  56. De la Parra, F., C.Higuera, R.Ramírez, et al. 2024. “Chronostratigraphy of the Upper Cretaceous Succession in the Middle Magdalena Valley of Colombia (Northern South America).” Cretaceous Research157: 105824.
    [Google Scholar]
  57. De La Parra, F., D.Pinzon, F.Mantilla‐Duran, G.Rodriguez, and V.Caballero. 2021. “Marine‐Lacustrine Systems During the Eocene in Northern South America–Palynological Evidence From Colombia.” Journal of South American Earth Sciences108: 103188.
    [Google Scholar]
  58. De La Parra, F., D.Pinzon, G.Rodriguez, O.Bedoya, and R.Benson. 2019. “Lacustrine Systems in the Early Miocene of Northern South America—Evidence From the Upper Magdalena Valley, Colombia.” PALAIOS34, no. 10: 490–505.
    [Google Scholar]
  59. DeCelles, P. G., B.Carrapa, B. K.Horton, and G. E.Gehrels. 2011. “Cenozoic Foreland Basin System in the Central Andes of Northwestern Argentina: Implications for Andean Geodynamics and Modes of Deformation.” Tectonics30, no. 6: 1–30. https://doi.org/10.1029/2011TC002948.
    [Google Scholar]
  60. DeCelles, P. G., G. E.Gehrels, J.Quade, T. P.Ojha, P. A.Kapp, and B. N.Upreti. 1998. “Neogene Foreland Basin Deposits, Erosional Unroofing, and the Kinematic History of the Himalayan Fold‐Thrust Belt, Western Nepal.” Geological Society of America Bulletin110: 2–21.
    [Google Scholar]
  61. Dickinson, W. R.1985. “Interpreting Provenance Relations From Detrital Modes of Sandstones.” In Provenance of Arenites, edited by G. G.Zuffa, 333–361. Springer.
    [Google Scholar]
  62. Dickinson, W. R., L. S.Beard, G. R.Brakenridge, et al. 1983. “Provenance of North American Phanerozoic Sandstones in Relation to Tectonic Setting.” Geological Society of America Bulletin94, no. 2: 222–235.
    [Google Scholar]
  63. Dickinson, W. R., and C. A.Suczek. 1979. “Plate Tectonics and Sandstone Composition.” American Association of Petroleum Geologists Bulletin63: 2164–2182.
    [Google Scholar]
  64. Duarte, E., G.Bayona, C.Jaramillo, M.Parra, I.Romero, and J. A.Mora. 2017. “Identificación de los máximos eventos de inundación marina Miocenos y su uso en la correlación y análisis de la cuenca de antepaís de los Llanos Orientales, Colombia.” Boletín de Geología39, no. 1: 19–40.
    [Google Scholar]
  65. Echeverri, S., A.Cardona, A.Pardo, et al. 2015. “Regional Provenance From Southwestern Colombia Fore‐Arc and Intra‐Arc Basins: Implications for Middle to Late Miocene Orogeny in the Northern Andes.” Terra Nova27, no. 5: 356–363.
    [Google Scholar]
  66. Etayo‐Serna, F.1994. “A Modo de Historia Geológica del Cretácico en el Valle Superior del Magdalena.” In Estudios Geológicos del Valle Superior del Magdalena, Capítulo XX, edited by F.Etayo‐Serna, 1–5. Universidad Nacional de Colombia, Facultad de ciencias.
    [Google Scholar]
  67. Folguera, A., G.Bottesi, I.Duddy, et al. 2015. “Exhumation of the Neuquén Basin in the Southern Central Andes (Malargüe Fold and Thrust Belt) From Field Data and Low‐Temperature Thermochronology.” Journal of South American Earth Sciences64: 381–398.
    [Google Scholar]
  68. Folk, R. L.1980. Petrology of Sedimentary Rocks. Hemphill Publishing Company.
    [Google Scholar]
  69. Gallagher, K.2012. “Uplift, Denudation, and Their Causes and Constraints Over Geological Timescales.” In Regional Geology and Tectonics: Principles of Geologic Analysis, edited by D. G.Roberts and A. W.Bally, 609–644. Elsevier.
    [Google Scholar]
  70. Garzanti, E.2016. “From Static to Dynamic Provenance Analysis—Sedimentary Petrology Upgraded.” Sedimentary Geology336: 3–13.
    [Google Scholar]
  71. Garzanti, E., C.Doglioni, G.Vezzoli, and S.Ando. 2007. “Orogenic Belts and Orogenic Sediment Provenance.” Journal of Geology115, no. 3: 315–334.
    [Google Scholar]
  72. Garzanti, E., and M. G.Malusà. 2008. “The Oligocene Alps: Domal Unroofing and Drainage Development During Early Orogenic Growth.” Earth and Planetary Science Letters268, no. 3–4: 487–500.
    [Google Scholar]
  73. Garzione, C. N., N.McQuarrie, N. D.Perez, et al. 2017. “The Tectonic Evolution of the Central Andean Plateau and Geodynamic Implications for the Growth of Plateaus.” Annual Review of Earth and Planetary Sciences45: 529–559. https://doi.org/10.1146/annurev‐earth‐063016‐020612.
    [Google Scholar]
  74. Gehrels, G.2014. “Detrital Zircon U‐Pb Geochronology Applied to Tectonics.” Annual Review of Earth and Planetary Sciences42: 127–149.
    [Google Scholar]
  75. Gehrels, G., and M.Pecha. 2014. “Detrital Zircon U‐Pb Geochronology and Hf Isotope Geochemistry of Paleozoic and Triassic Passive Margin Strata of Western North America.” Geosphere10, no. 1: 49–65.
    [Google Scholar]
  76. Gehrels, G., V.Valencia, and A.Pullen. 2006. “Detrital Zircon Geochronology by Laser Ablation Multicollector ICPMS at the Arizona LaserChron Center.” In Geochronology Emerging Opportunities, edited by T. D.Olszewski, vol. 12, 67–76. Paleontological Society.
    [Google Scholar]
  77. Gehrels, G. E., V. A.Valencia, and J.Ruiz. 2008. “Enhanced Precision, Accuracy, Efficiency, and Spatial Resolution of U‐Pb Ages by Laser Ablation–Multicollector–Inductively Coupled Plasma–Mass Spectrometry.” Geochemistry, Geophysics, Geosystems9, no. 3: 1–13.
    [Google Scholar]
  78. George, S. W., B. K.Horton, C.Vallejo, L. J.Jackson, and E. G.Gutierrez. 2021. “Did Accretion of the Caribbean Oceanic Plateau Drive Rapid Crustal Thickening in the Northern Andes?” Geology49, no. 8: 936–940.
    [Google Scholar]
  79. Gómez, E., T. E.Jordan, R. W.Allmendinger, K.Hegarty, and S.Kelley. 2005. “Syntectonic Cenozoic Sedimentation in the Northern Middle Magdalena Valley Basin of Colombia and Implications for Exhumation of the Northern Andes.” Geological Society of America Bulletin117, no. 5–6: 547–569.
    [Google Scholar]
  80. González, R., O.Oncken, C.Faccenna, E.Le Breton, M.Bezada, and A.Mora. 2023. “Kinematics and Convergent Tectonics of the Northwestern South American Plate During the Cenozoic.” Geochemistry, Geophysics, Geosystems24, no. 7: e2022GC010827.
    [Google Scholar]
  81. Govea, C., and H.Aguilera. 1980. “Geología de la Cuenca del Putumayo.” Boletín de Geología14, no. 28: 45–71.
    [Google Scholar]
  82. Guerrero, J., G.Sarmiento, and R. E.Narrete. 2000. “The Stratigraphy of the W Side of the Cretaceous Colombian Basin in the Upper Magdalena Valley. Reevaluation of Selected Areas and Type Localities Including Aipe, Guaduas, Ortega, and Piedras.” Geología Colombiana25: 45–110.
    [Google Scholar]
  83. Gutiérrez, E. G., B. K.Horton, C.Vallejo, L. J.Jackson, and S. W.George. 2019. “Provenance and Geochronological Insights into Late Cretaceous‐Cenozoic Foreland Basin Development in the Subandean Zone and Oriente Basin of Ecuador.” In Andean Tectonics, 237–268. Elsevier.
    [Google Scholar]
  84. Higley, D. K.2001. “The Putumayo‐Oriente‐Maranon Province of Colombia, Ecuador, and Peru.”Mesozoic‐Cenozoic and Paleozoic Petroleum Systems (No. 63).
  85. Hoorn, C., F. P.Wesselingh, H.Ter Steege, et al. 2010. “Amazonia Through Time: Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity.” Science330, no. 6006: 927–931.
    [Google Scholar]
  86. Horton, B. K.2018. “Sedimentary Record of Andean Mountain Building.” Earth‐Science Reviews178: 279–309.
    [Google Scholar]
  87. Horton, B. K., T. N.Capaldi, C.Mackaman‐Lofland, et al. 2022. “Broken Foreland Basins and the Influence of Subduction Dynamics, Tectonic Inheritance, and Mechanical Triggers.” Earth‐Science Reviews234: 104193.
    [Google Scholar]
  88. Horton, B. K., F.Fuentes, A.Boll, D.Starck, S. G.Ramirez, and D. F.Stockli. 2016. “Andean Stratigraphic Record of the Transition From Backarc Extension to Orogenic Shortening: A Case Study From the Northern Neuquén Basin, Argentina.” Journal of South American Earth Sciences71: 17–40.
    [Google Scholar]
  89. Horton, B. K., M.Parra, and A.Mora. 2020. “Construction of the Eastern Cordillera of Colombia: Insights From the Sedimentary Record.” In The Geology of Colombia, Volume 3 Paleogene – Neogene, edited by J.Gómez and D.Mateus‐Zabala, 22 p. Bogotá. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37. https://doi.org/10.32685/pub.esp.37.2019.03.
    [Google Scholar]
  90. Horton, B. K., J. E.Saylor, J.Nie, et al. 2010. “Linking Sedimentation in the Northern Andes to Basement Configuration, Mesozoic Extension, and Cenozoic Shortening: Evidence From Detrital Zircon U‐Pb Ages, Eastern Cordillera, Colombia.” Geological Society of America Bulletin122, no. 9–10: 1423–1442.
    [Google Scholar]
  91. Hurtado, C., M.Roddaz, R. V.Santos, P.Baby, P. O.Antoine, and E. L.Dantas. 2018. “Cretaceous‐Early Paleocene Drainage Shift of Amazonian Rivers Driven by Equatorial Atlantic Ocean Opening and Andean Uplift as Deduced From the Provenance of Northern Peruvian Sedimentary Rocks (Huallaga Basin).” Gondwana Research63: 152–168.
    [Google Scholar]
  92. Ibañez‐Mejia, M.2020. “The Putumayo Orogen of Amazonia: A Synthesis.” In The Geology of Colombia, Volume 1 Proterozoic – Paleozoic, edited by J.Gómez and D.Mateus‐Zabala, 101–131. Bogotá. Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 35. https://doi.org/10.32685/pub.esp.35.2019.06.
    [Google Scholar]
  93. Ibanez‐Mejia, M., E. M.Bloch, and J. D.Vervoort. 2018. “Timescales of Collisional Metamorphism From Sm‐Nd, Lu‐Hf and U‐Pb Thermochronology: A Case From the Proterozoic Putumayo Orogen of Amazonia.” Geochimica et Cosmochimica Acta235: 103–126.
    [Google Scholar]
  94. Ibanez‐Mejia, M., A.Pullen, J.Arenstein, et al. 2015. “Unraveling Crustal Growth and Reworking Processes in Complex Zircons From Orogenic Lower‐Crust: The Proterozoic Putumayo Orogen of Amazonia.” Precambrian Research267: 285–310.
    [Google Scholar]
  95. Ibanez‐Mejia, M., J.Ruiz, V. A.Valencia, A.Cardona, G. E.Gehrels, and A. R.Mora. 2011. “The Putumayo Orogen of Amazonia and Its Implications for Rodinia Reconstructions: New U‐Pb Geochronological Insights Into the Proterozoic Tectonic Evolution of Northwestern South America.” Precambrian Research191, no. 1–2: 58–77.
    [Google Scholar]
  96. Idárraga García, J., J. M.Kendall, and C. A.Vargas. 2016. “Shear Wave Anisotropy in Northwestern South America and Its Link to the Caribbean and Nazca Subduction Geodynamics.” Geochemistry, Geophysics, Geosystems17, no. 9: 3655–3673.
    [Google Scholar]
  97. Ingersoll, R. V., T. F.Bullard, R. L.Ford, J. P.Grimm, J. D.Pickle, and S. W.Sares. 1984. “The Effect of Grain Size on Detrital Modes: A Test of the Gazzi‐Dickinson Point‐ Counting Method.” Journal of Sedimentary Petrology54, no. 1: 103–116.
    [Google Scholar]
  98. Jaillard, E., H.Lapierre, M.Ordonez, J. T.Alava, A.Amortegui, and J.Vanmelle. 2009. “Accreted Oceanic Terranes in Ecuador: Southern Edge of the Caribbean Plate?” Geological Society, London, Special Publications328, no. 1: 469–485.
    [Google Scholar]
  99. Jaramillo, J. S., A.Cardona, S.León, V.Valencia, and C.Vinasco. 2017. “Geochemistry and Geochronology From Cretaceous Magmatic and Sedimentary Rocks at 6 35′ N, Western Flank of the Central Cordillera (Colombian Andes): Magmatic Record of Arc Growth and Collision.” Journal of South American Earth Sciences76: 460–481.
    [Google Scholar]
  100. Jaramillo, J. S., S.Zapata, M.Carvalho, et al. 2022. “Diverse Magmatic Evolutionary Trends of the Northern Andes Unraveled by Paleocene to Early Eocene Detrital Zircon Geochemistry.” Geochemistry, Geophysics, Geosystems23, no. 9: e2021GC010113.
    [Google Scholar]
  101. Jones, M. A., P. L.Heller, E.Roca, M.Garcés, and L.Cabrera. 2004. “Time Lag of Syntectonic Sedimentation Across an Alluvial Basin: Theory and Example From the Ebro Basin, Spain.” Basin Research16, no. 4: 489–506.
    [Google Scholar]
  102. Kern, A. K., M.Gross, C. P.Galeazzi, et al. 2020. “Re‐Investigating Miocene Age Control and Paleoenvironmental Reconstructions in Western Amazonia (Northwestern Solimões Basin, Brazil).” Palaeogeography, Palaeoclimatology, Palaeoecology545: 109652.
    [Google Scholar]
  103. Kerr, A. C., J.Tarney, A.Nivia, G.Marriner, and A.Saunders. 1996. “The Geochemistry and Tectonic Setting of Late Cretaceous Caribbean and Colombian Volcanism.” Journal of South American Earth Sciences9: 1–2.
    [Google Scholar]
  104. Laul, J. C.1979. “Neutron Activation Analysis of Geological Materials.” Atomic Energy Review17, no. 3: 603–695.
    [Google Scholar]
  105. Lawton, T. F.2019. “Laramide Sedimentary Basins and Sediment‐Dispersal Systems.” In The Sedimentary Basins of the United States and Canada, 529–557. Elsevier.
    [Google Scholar]
  106. Lawton, T. F., P.Homewood, and P. A.Allen. 1986. “Compositional Trends Within a Clastic Wedge Adjacent to a Fold‐Thrust Belt: Indianola Group, Central Utah, USA.” Foreland Basins8: 411–423.
    [Google Scholar]
  107. Leal‐Mejía, H., R. P.Shaw, and J. C.Melgarejo i Draper. 2019. “Spatial‐Temporal Migration of Granitoid Magmatism and the Phanerozoic Tectono‐Magmatic Evolution of the Colombian Andes.” In Geology and Tectonics of Northwestern South America. Frontiers in Earth Sciences, edited by F.Cediel and R. P.Shaw, 253–410. Springer. https://doi.org/10.1007/978‐3‐319‐76132‐9_5.
    [Google Scholar]
  108. León, S., S.Jiménez‐Rodríguez, A.Piraquive, et al. 2023. “Sediment Provenance Signal of the Discontinuous Retroarc Topography in the Northern Andes During the Early Cretaceous.” Terra Nova35, no. 5: 440–449.
    [Google Scholar]
  109. León, S., A.Cardona, M.Parra, et al. 2018. “Transition From Collisional to Subduction‐Related Regimes: An Example From Neogene Panama‐Nazca‐South America Interactions.” Tectonics37, no. 1: 119–139.
    [Google Scholar]
  110. León, S., G.Monsalve, and C.Bustamante. 2021. “How Much Did the Colombian Andes Rise by the Collision of the Caribbean Oceanic Plateau?” Geophysical Research Letters48, no. 7: e2021GL093362.
    [Google Scholar]
  111. Liu, X., and C. A.Currie. 2019. “Influence of Upper Plate Structure on Flat‐Slab Depth: Numerical Modeling of Subduction Dynamics.” Journal of Geophysical Research: Solid Earth124, no. 12: 13150–13167.
    [Google Scholar]
  112. Liu, L., M.Gurnis, M.Seton, J.Saleeby, R. D.Müller, and J. M.Jackson. 2010. “The Role of Oceanic Plateau Subduction in the Laramide Orogeny.” Nature Geoscience3, no. 5: 353–357.
    [Google Scholar]
  113. Londoño, J.2004. Foreland Basins: Lithospheric Flexure, Plate Strength and Regional Stratigraphy. Louisiana State University and Agricultural & Mechanical College.
    [Google Scholar]
  114. Londoño, J., J. M.Lorenzo, and V.Ramirez. 2012. Lithospheric Flexure and Related Base‐Level Stratigraphic Cycles in Continental Foreland Basins: An Example From the Putumayo Basin, Northern Andes.
  115. Louterbach, M., M.Roddaz, P. O.Antoine, et al. 2018. “Provenance Record of Late Maastrichtian–Late Palaeocene Andean Mountain Building in the Amazonian Retroarc Foreland Basin (Madre de Dios Basin, Peru).” Terra Nova30, no. 1: 17–23.
    [Google Scholar]
  116. Louterbach, M., M.Roddaz, J.Bailleul, et al. 2014. “Evidences for a Paleocene Marine Incursion in Southern Amazonia (Madre de Dios Sub‐Andean Zone, Peru).” Palaeogeography, Palaeoclimatology, Palaeoecology414: 451–471.
    [Google Scholar]
  117. Martinez, M.2010. “Petrogénesis de las vulcanitas estratificadas en sedimentitas del Cretácico Superior, Río Guaguaquí, flanco occidental de la Cordillera Oriental.” Undergraduate thesis, Universidad Nacional de Colombia.
  118. Martin‐Gombojav, N., and W.Winkler. 2008. “Recycling of Proterozoic Crust in the Andean Amazon Foreland of Ecuador: Implications for Orogenic Development of the Northern Andes.” Terra Nova20, no. 1: 22–31.
    [Google Scholar]
  119. Maya, M., and H.González. 1995. “Unidades Litodémicas en la Cordillera Central de Colombia.” Boletín Geológico35, no. 2–3: 44–57.
    [Google Scholar]
  120. McCourt, W. J., J. A.Aspden, and M.Brook. 1984. “New Geological and Geochronological Data From the Colombian Andes: Continental Growth by Multiple Accretion.” Journal of the Geological Society141: 14p–845p.
    [Google Scholar]
  121. Miall, A. D.1985. “Architectural‐Element Analysis: A New Method of Facies Analysis Applied to Fluvial Deposits.” Earth‐Science Reviews22, no. 4: 261–308.
    [Google Scholar]
  122. Miall, A. D.2006. “Lithofacies.” In The Geology of Fluvial Deposits, 99–130. Springer.
    [Google Scholar]
  123. Mojica, J.1980. “Observaciones Acerca del Estado Actual del Conocimiento de la Formación Payandé (Triásico Superior), Valle Superior del Río Magdalena, Colombia.” Geología Colombiana11: 67–88.
    [Google Scholar]
  124. Mojica, J., and P.Prinz‐Grimm. 2000. “La Fauna de Amonitas del Triásico Tardío en el Miembro Chicalá (Parte Baja de la Formación Saldaña) en Payandé, Tolima, Colombia.” Geología Colombiana25: 13–23.
    [Google Scholar]
  125. Montes, C., A.Cardona, R.McFadden, et al. 2012. “Evidence for Middle Eocene and Younger Land Emergence in Central Panama: Implications for Isthmus Closure.” Geological Society of America Bulletin124, no. 5–6: 780–799.
    [Google Scholar]
  126. Montes, C., and N.Hoyos. 2020. “Isthmian Bedrock Geology: Tilted, Bent, and Broken.” In The Geology of Colombia, Volume 3 Paleogene – Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, edited by J.Gómez and D.Mateus–Zabala, 37, 451–467. https://doi.org/10.32685/pub.esp.37.2019.15.
    [Google Scholar]
  127. Montes, C., A. F.Rodriguez‐Corcho, G.Bayona, N.Hoyos, S.Zapata, and A.Cardona. 2019. “Continental Margin Response to Multiple Arc‐Continent Collisions: The Northern Andes‐Caribbean Margin.” Earth‐Science Reviews198: 102903.
    [Google Scholar]
  128. Montenegro, G., and M.Barragán. 2011. Caguan and Putumayo Basins. Vol. 4, 126. ANH‐University EAFIT. Department of Geology.
    [Google Scholar]
  129. Montes, C., C. A.Silva, G. A.Bayona, et al. 2021. “A Middle to Late Miocene Trans‐Andean Portal: Geologic Record in the Tatacoa Desert.” Frontiers in Earth Science8. https://doi.org/10.3389/feart.2020.587022.
    [Google Scholar]
  130. Mora, A., T.Gaona, J.Kley, et al. 2009. “The Role of Inherited Extensional Fault Segmentation and Linkage in Contractional Orogenesis: A Reconstruction of Lower Cretaceous Inverted Rift Basins in the Eastern Cordillera of Colombia.” Basin Research21, no. 1: 111–137.
    [Google Scholar]
  131. Mora, A., M.Parra, M. R.Strecker, A.Kammer, C.Dimaté, and F.Rodríguez. 2006. “Cenozoic Contractional Reactivation of Mesozoic Extensional Structures in the Eastern Cordillera of Colombia.” Tectonics25, no. 2: 1–19.
    [Google Scholar]
  132. Mora, A., D.Venegas, and L.Vergara. 1998. “Estratigrafía del Cretácico Superior y Terciario Inferior en el Sector Norte de la Cuenca del Putumayo, Departamento del Caquetá, Colombia.” Geología Colombiana23: 31–77.
    [Google Scholar]
  133. Mora, A., A.Reyes‐Harker, G.Rodriguez, et al. 2013. “Inversion Tectonics Under Increasing Rates of Shortening and Sedimentation: Cenozoic Example From the Eastern Cordillera of Colombia.” Geological Society, London, Special Publications377, no. 1: 411–442. https://doi.org/10.1144/sp377.6.
    [Google Scholar]
  134. Mora, A., D.Villagómez, M.Parra, et al. 2020. “Late Cretaceous to Cenozoic Uplift of the Northern Andes: Paleogeographic Implications.” In The Geology of Colombia, Volume 3 Paleogene – Neogene, edited by J.Gómez and D.Mateus–Zabala, 89–121. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37. https://doi.org/10.32685/pub.esp.37.2019.04.
    [Google Scholar]
  135. Moyano‐Nieto, I. E., G. A.Prieto, and M.Ibañez‐Mejia. 2022. “Tectonic Domains in the NW Amazonian Craton From Geophysical and Geological Data.” Precambrian Research377: 106735.
    [Google Scholar]
  136. Mulch, A.2016. “Stable Isotope Paleoaltimetry and the Evolution of Landscapes and Life.” Earth and Planetary Science Letters433: 180–191.
    [Google Scholar]
  137. Najman, Y., A.Carter, G.Oliver, and E.Garzanti. 2005. “Provenance of Eocene Foreland Basin Sediments, Nepal: Constraints to the Timing and Diachroneity of Early Himalayan Orogenesis.” Geology33, no. 4: 309–312.
    [Google Scholar]
  138. Nie, J., B. K.Horton, A.Mora, et al. 2010. “Tracking Exhumation of Andean Ranges Bounding the Middle Magdalena Valley Basin, Colombia.” Geology38, no. 5: 451–454.
    [Google Scholar]
  139. Nie, J., B. K.Horton, J. E.Saylor, et al. 2012. “Integrated Provenance Analysis of a Convergent Retroarc Foreland System: U‐Pb Ages, Heavy Minerals, Nd Isotopes, and Sandstone Compositions of the Middle Magdalena Valley Basin, Northern Andes, Colombia.” Earth‐Science Reviews110, no. 1–4: 111–126.
    [Google Scholar]
  140. Núñez, A.2003. Reconocimiento geológico regional de las planchas 411 La Cruz, 412 San Juan de Villalobos, 430 Mocoa, 431 Piamonte, 448 Monopamba, 449 Fiorito y 465 Churuyaco. Memoria explicativa, escala, 1(100.000).
  141. Odlum, M. L., D. F.Stockli, T. N.Capaldi, et al. 2019. “Tectonic and Sediment Provenance Evolution of the South Eastern Pyrenean Foreland Basins During Rift Margin Inversion and Orogenic Uplift.” Tectonophysics765: 226–248.
    [Google Scholar]
  142. Osorio, C., D.Michoux, and G.Tellez. 2002. Stratigraphy of the Tertiary Sequences‐Upper Magdalena and the Putumayo Basins, a Different Point of View for Hydrocarbon Exploration, 10. Memorias de la Segunda Convención técnica de la Asociación Colombiana de Geólogos y Geofísicos del Petróleo.
    [Google Scholar]
  143. O'Sullivan, G., D.Chew, G.Kenny, I.Henrichs, and D.Mulligan. 2020. “The Trace Element Composition of Apatite and Its Application to Detrital Provenance Studies.” Earth‐Science Reviews201: 103044.
    [Google Scholar]
  144. O'Sullivan, G. J., D. M.Chew, A. C.Morton, C.Mark, and I. A.Henrichs. 2018. “An Integrated Apatite Geochronology and Geochemistry Tool for Sedimentary Provenance Analysis.” Geochemistry, Geophysics, Geosystems19, no. 4: 1309–1326.
    [Google Scholar]
  145. Paces, J. B., and J. D.MillerJr.1993. “Precise U‐Pb ages of Duluth Complex and Related Mafic Intrusions, Northeastern Minnesota: Geochronological Insights to Physical, Petrogenetic, Paleomagnetic, and Tectonomagmatic Processes Associated With the 1.1 Ga Midcontinent Rift System.” Journal of Geophysical Research: Solid Earth98, no. B8: 13997–14013.
    [Google Scholar]
  146. Pachón‐Parra, L. F., P.Mann, and N.Cardozo. 2020. “Regional Subsurface Mapping and 3D Flexural Modeling of the Obliquely Converging Putumayo Foreland Basin, Southern Colombia.” Interpretation8, no. 4: ST15–ST48.
    [Google Scholar]
  147. Parra, M., A.Mora, C.Jaramillo, et al. 2009. “Orogenic Wedge Advance in the Northern Andes: Evidence From the Oligocene‐Miocene Sedimentary Record of the Medina Basin, Eastern Cordillera, Colombia.” Geological Society of America Bulletin121, no. 5–6: 780–800.
    [Google Scholar]
  148. Parra, M., A.Mora, C.Lopez, L.Ernesto Rojas, and B. K.Horton. 2012. “Detecting Earliest Shortening and Deformation Advance in Thrust Belt Hinterlands: Example From the Colombian Andes.” Geology40, no. 2: 175–178.
    [Google Scholar]
  149. Parra, M., A.Mora, C.Jaramillo, V.Torres, G.Zeilinger, and M. R.Strecker. 2010. “Tectonic Controls on Cenozoic Foreland Basin Development in the North‐Eastern Andes, Colombia.” Basin Research22, no. 6: 874–903.
    [Google Scholar]
  150. Paton, C., J.Hellstrom, B.Paul, J.Woodhead, and J.Hergt. 2011. “Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data.” Journal of Analytical Atomic Spectrometry26, no. 12: 2508–2518.
    [Google Scholar]
  151. Paul, A. N., R. A.Spikings, D.Chew, and J. S.Daly. 2019. “The Effect of Intra‐Crystal Uranium Zonation on Apatite U‐Pb Thermochronology: A Combined ID‐TIMS and LA‐MC‐ICP‐MS Study.” Geochimica et Cosmochimica Acta251: 15–35.
    [Google Scholar]
  152. Pindell, J. L., and L.Kennan. 2009. “Tectonic Evolution of the Gulf of Mexico, Caribbean and Northern South America in the Mantle Reference Frame: An Update.” Geological Society, London, Special Publications328, no. 1: 1–55.
    [Google Scholar]
  153. Priem, H. N. A., S. B.Kroonenberg, N. A. I. M.Boelrijk, and E. H.Hebeda. 1989. “Rb‐Sr and K‐Ar Evidence for the Presence of a 1.6 Ga Basement Underlying the 1.2 Ga Garzón‐Santa Marta Granulite Belt in the Colombian Andes.” Precambrian Research42, no. 3–4: 315–324.
    [Google Scholar]
  154. Ramos, V. A., and A.Folguera. 2005. “Tectonic Evolution of the Andes of Neuquén: Constraints Derived From the Magmatic Arc and Foreland Deformation.” Geological Society, London, Special Publications252, no. 1: 15–35.
    [Google Scholar]
  155. Restrepo, M., C.Bustamante, A.Cardona, et al. 2021. “Tectonic Implications of the Jurassic Magmatism and the Metamorphic Record at the Southern Colombian Andes.” Journal of South American Earth Sciences111: 103439.
    [Google Scholar]
  156. Riel, N., J. C.Duarte, J.Almeida, et al. 2023. “Subduction Initiation Triggered the Caribbean Large Igneous Province.” Nature Communications14, no. 1: 786.
    [Google Scholar]
  157. Roddaz, M., W.Hermoza, A.Mora, et al. 2010. “Cenozoic Sedimentary Evolution of the Amazonian Foreland Basin System.” In Amazonia, Landscape and Species Evolution: a Look Into the Past, vol. 5, 61–88. Blackwell‐Wiley.
    [Google Scholar]
  158. Rodríguez, G., M. I.Arango, G.Zapata, and J. G.Bermúdez. 2018. “Petrotectonic Characteristics, Geochemistry, and U‐Pb Geochronology of Jurassic Plutons in the Upper Magdalena Valley‐Colombia: Implications on the Evolution of Magmatic Arcs in the NW Andes.” Journal of South American Earth Sciences81: 10–30.
    [Google Scholar]
  159. Rodríguez, G., G.Zapata, M. I.Arango, and J. G.Bermúdez. 2017. “Petrographic, Geochemistry and Geochronological Characterization of Permian Granitoids Rocks to the West of la Plata and Pacarní‐Huila, Upper Magdalena Valley‐Colombia.” Boletín de Geología39, no. 1: 41–68.
    [Google Scholar]
  160. Roncancio, J., and M.Martínez. 2011. “Upper Magdalena Basin.” In Geology and Hydrocarbon Potential Regional Geology of Colombia Vol 14. Agencia Nacional de Hidrocarburos. 182 p.
    [Google Scholar]
  161. Ruiz, G. M. H.2002. “Exhumation of the Northern Sub‐Andean Zone of Ecuador and its Source Regions: A Combined Thermochronological and Heavy Mineral Approach.” Doctoral dissertation, ETH Zurich.
  162. Ruiz, G. M. H., D.Seward, and W.Winkler. 2004. “Detrital Thermochronology; a New Perspective on Hinterland Tectonics, an Example From the Andean Amazon Basin, Ecuador.” Basin Research16: 413–430.
    [Google Scholar]
  163. Sacek, V.2014. “Drainage Reversal of the Amazon River due to the Coupling of Surface and Lithospheric Processes.” Earth and Planetary Science Letters401: 301–312.
    [Google Scholar]
  164. Saeid, E., K. B.Bakioglu, J.Kellogg, A.Leier, J. A.Martinez, and E.Guerrero. 2017. “Garzón Massif Basement Tectonics: Structural Control on Evolution of Petroleum Systems in Upper Magdalena and Putumayo Basins, Colombia.” Marine and Petroleum Geology88: 381–401.
    [Google Scholar]
  165. Santos, C., C.Jaramillo, G.Bayona, M.Rueda, and V.Torres. 2008. “Late Eocene Marine Incursion in North‐Western South America.” Palaeogeography, Palaeoclimatology, Palaeoecology264, no. 1–2: 140–146.
    [Google Scholar]
  166. Sandoval, J. R., N.Pérez‐Consuegra, A.Mora, et al. 2024. “Discrimination of Tectonic Provinces Using Zircon U‐Pb Ages From Bedrock and Detrital Samples in the Northern Andes.” Geological Society of America Bulletin136, no. 11–12: 5231–5248.
    [Google Scholar]
  167. Sarmiento‐Rojas, L. F., J. D.Van Wess, and S.Cloetingh. 2006. “Mesozoic Transtensional Basin History of the Eastern Cordillera, Colombian Andes: Inferences From Tectonic Models.” Journal of South American Earth Sciences21, no. 4: 383–411.
    [Google Scholar]
  168. Saylor, J. E., B. K.Horton, J.Nie, J.Corredor, and A.Mora. 2011. “Evaluating Foreland Basin Partitioning in the Northern Andes Using Cenozoic Fill of the Floresta Basin, Eastern Cordillera, Colombia.” Basin Research23: 377–402. https://doi.org/10.1111/j.1365‐2117.2010.00493.x.
    [Google Scholar]
  169. Schildgen, T. F., and P. A.van der Beek. 2019. “The Application of Low‐Temperature Thermochronology to the Geomorphology of Orogenic Systems.” In Fission‐Track Thermochronology and Its Application to Geology, 335–350. Springer.
    [Google Scholar]
  170. Schoene, B., and S. A.Bowring. 2006. “U‐Pb Systematics of the McClure Mountain Syenite: Thermochronological Constraints on the Age of the 40Ar/39Ar Standard MMhb.” Contributions to Mineralogy and Petrology151, no. 5: 615–630.
    [Google Scholar]
  171. SGC‐ANH . 2022. “Unificación información geológica de superficie en un sistema integral basado en la cartografía para la subcuenca Caguán.” 459p.
  172. Siravo, G., C.Faccenna, M.Gérault, et al. 2019. “Slab Flattening and the Rise of the Eastern Cordillera, Colombia.” Earth and Planetary Science Letters512: 100–110.
    [Google Scholar]
  173. Soares, C. J., S.Guedes, J. C.Hadler, R.Mertz‐Kraus, and T.Zack. 2014. “Novel Calibration for LA‐ICP‐MS‐Based Fission‐Track Thermochronology.” Physics and Chemistry of Minerals41: 65–73. https://doi.org/10.1007/s00269‐013‐0624‐2.
    [Google Scholar]
  174. Somoza, R.1998. “Updated Nazca (Farallon)—South America Relative Motions During the Last 40 My: Implications for Mountain Building in the Central Andean Region.” Journal of South American Earth Sciences11, no. 3: 211–215.
    [Google Scholar]
  175. Spikings, R. A., P. V.Crowhurst, W.Winkler, and D.Villagomez. 2010. “Syn‐and Post‐Accretionary Cooling History of the Ecuadorian Andes Constrained by Their In‐Situ and Detrital Thermochronometric Record.” Journal of South American Earth Sciences30, no. 3–4: 121–133.
    [Google Scholar]
  176. Spikings, R. A., D.Seward, W.Winkler, and G. M.Ruiz. 2000. “Low‐Temperature Thermochronology of the Northern Cordillera Real, Ecuador: Tectonic Insights From Zircon and Apatite Fission Track Analysis.” Tectonics19, no. 4: 649–668.
    [Google Scholar]
  177. Spikings, R., and G.Simpson. 2014. “Rock Uplift and Exhumation of Continental Margins by the Collision, Accretion, and Subduction of Buoyant and Topographically Prominent Oceanic Crust.” Tectonics33, no. 5: 635–655.
    [Google Scholar]
  178. Spikings, R. A., W.Winkler, D.Seward, and R.Handler. 2001. “Along‐Strike Variations in the Thermal and Tectonic Response of the Continental Ecuadorian Andes to the Collision With Heterogeneous Oceanic Crust.” Earth and Planetary Science Letters186, no. 1: 57–73.
    [Google Scholar]
  179. Spotila, J. A.2005. “Applications of Low‐Temperature Thermochronometry to Quantification of Recent Exhumation in Mountain Belts.” Reviews in Mineralogy and Geochemistry58, no. 1: 449–466.
    [Google Scholar]
  180. Strecker, M. R., G. E.Hilley, B.Bookhagen, and E. R.Sobel. 2011. “Structural, Geomorphic, and Depositional Characteristics of Contiguous and Broken Foreland Basins: Examples From the Eastern Flanks of the Central Andes in Bolivia and NW Argentina.” In Tectonics of Sedimentary Basins: Recent Advances, 508–521. Blackwell.
    [Google Scholar]
  181. Sylvester, P. J., A. K.Souders, and R.Liu. 2022. “Significance of U‐Pb Detrital Zircon Geochronology for Mudstone Provenance.” Geology50, no. 6: 670–675.
    [Google Scholar]
  182. Tassinari, C. C., and M. J.Macambira. 1999. “Geochronological Provinces of the Amazonian Craton.” Episodes22, no. 3: 174–182.
    [Google Scholar]
  183. Thomson, S. N., G. E.Gehrels, J.Ruiz, and R.Buchwaldt. 2012. “Routine Low‐Damage Apatite U‐Pb Dating Using Laser Ablation–Multicollector–ICPMS.” Geochemistry, Geophysics, Geosystems13, no. 2: 1–23.
    [Google Scholar]
  184. Valencia‐Gómez, J. C., A.Cardona, G.Bayona, V.Valencia, and S.Zapata. 2020. “Análisis de Procedencia del Registro Sin‐Orogénico Maastrichtiano de la Formación Cimarrona, Flanco Occidental de la Cordillera Oriental Colombiana.” Boletín de Geología42, no. 3: 171–204.
    [Google Scholar]
  185. Vallejo, C., C.Romero, B. K.Horton, et al. 2021. “Jurassic to Early Paleogene Sedimentation in the Amazon Region of Ecuador: Implications for the Paleogeographic Evolution of Northwestern South America.” Global and Planetary Change204: 103555.
    [Google Scholar]
  186. Vallejo, C., R. A.Spikings, L.Luzieux, W.Winkler, D.Chew, and L.Page. 2006. “The Early Interaction Between the Caribbean Plateau and the NW South American Plate.” Terra Nova18, no. 4: 264–269.
    [Google Scholar]
  187. Vallejo, C., D.Tapia, J.Gaibor, et al. 2017. “Geology of the Campanian M1 Sandstone Oil Reservoir of Eastern Ecuador: A Delta System Sourced From the Amazon Craton.” Marine and Petroleum Geology86: 1207–1223.
    [Google Scholar]
  188. van Der Wiel, A. M.1991. Uplift and Volcanism of the SE Colombian Andes in Relation to Neogene Sedimentation in the Upper Magdalena Valley. Wageningen University and Research.
    [Google Scholar]
  189. van Hinsbergen, D. J., and L. M.Boschman. 2019. “How High Were These Mountains?” Science363, no. 6430: 928–929.
    [Google Scholar]
  190. van Houten, F. B., and R. B.Travis. 1968. “Cenozoic Deposits, Upper Magdalena Valley, Colombia.” AAPG Bulletin52, no. 4: 675–702.
    [Google Scholar]
  191. Vargas Gómez, Á.2020. “Modelamiento del basamento y de la geometría de las cuencas presentes en la zona occidental de la región amazónica de Colombia y del norte del Ecuador, aplicando magnetometría y técnicas de inversión gravimétrica tridimensional.” Master thesis, Universidad Nacional de Colombia. 97p.
  192. Vallejo, C., W.Winkler, R. A.Spikings, L.Luzieux, F.Heller, and F.Bussy. 2009. “Mode and timing of terrane accretion in the forearc of the Andes in Ecuador.” In Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision. Geological Society of America. https://doi.org/10.1130/2009.1204(09).
    [Google Scholar]
  193. Vermeesch, P.2018. “IsoplotR: A Free and Open Toolbox for Geochronology.” Geoscience Frontiers9: 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001.
    [Google Scholar]
  194. Vermeesch, P.2021. “Maximum Depositional Age Estimation Revisited.” Geoscience Frontiers12, no. 2: 843–850.
    [Google Scholar]
  195. Villagomez, D.2010. “Thermochronology, Geochronology and Geochemistry of the Western and Central Cordilleras and Sierra Nevada de Santa Marta, Colombia: The Tectonic Evolution of NW South America.” Doctoral dissertation, University of Geneva.
  196. Villagómez, D., and R.Spikings. 2013. “Thermochronology and Tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous–Tertiary Evolution of the Northern Andes.” Lithos160: 228–249.
    [Google Scholar]
  197. Villagómez, D., R.Spikings, T.Magna, A.Kammer, W.Winkler, and A.Beltrán. 2011. “Geochronology, Geochemistry and Tectonic Evolution of the Western and Central Cordilleras of Colombia.” Lithos125, no. 3–4: 875–896.
    [Google Scholar]
  198. Villamil, T., and C.Arango. 1998. “Integrated Stratigraphy of Latest Cenomanian and Early Turonian Facies of Colombia.” In Eustacy and Tectonostratigraphic Evolution of Northern South America, edited by J.Pindell and C.Drake, 129–159. Society for Sedimentary Geology, Special Publication, Tulsa. https://doi.org/10.2110/pec.98.58.0129.
    [Google Scholar]
  199. Villamizar‐Escalante, N., M.Bernet, C.Urueña‐Suárez, et al. 2021. “Thermal History of the Southern Central Cordillera and Its Exhumation Record in the Cenozoic Deposits of the Upper Magdalena Valley, Colombia.” Journal of South American Earth Sciences107: 103105.
    [Google Scholar]
  200. Vinasco, C., and U.Cordani. 2012. “Reactivation Episodes of the Romeral Fault System in the Northwestern Part of Central Andes, Colombia, Through 39AR‐40AR and K‐Ar Results.” Boletín de Ciencias de la Tierra32: 111–124.
    [Google Scholar]
  201. Weltje, G. J., and H.von Eynatten. 2004. “Quantitative Provenance Analysis of Sediments: Review and Outlook.” Sedimentary Geology171, no. 1–4: 1–11.
    [Google Scholar]
  202. Wesselingh, F. P., J.Guerrero, M. E.Räsänen, L.Romero Pitmann, and H. B.Vonhof. 2006. “Landscape Evolution and Depositional Processes in the Miocene Pebas Lake/Wetland System: Evidence From Exploratory Boreholes in Northeastern Peru.” Scripta Geologica133: 323–361.
    [Google Scholar]
  203. Wesselingh, F. P., M. E.Räsänen, G.Irion, et al. 2002. “Lake Pebas: A Palaeoecological Reconstruction of a Miocene, Long‐Lived Lake Complex in Western Amazonia.” Cainozoic Research1: 35–81.
    [Google Scholar]
  204. Wolaver, B. D., J. C.Coogan, B. K.Horton, et al. 2015. “Structural and Hydrogeologic Evolution of the Putumayo Basin and Adjacent Fold‐Thrust Belt, Colombia.” AAPG Bulletin99, no. 10: 1893–1927.
    [Google Scholar]
  205. Wolf, S. G., R. S.Huismans, J. A.Muñoz, M. E.Curry, and P.van der Beek. 2021. “Growth of Collisional Orogens From Small and Cold to Large and Hot—Inferences From Geodynamic Models.” Journal of Geophysical Research: Solid Earth126, no. 2: e2020JB021168. https://doi.org/10.1029/2020JB021168.
    [Google Scholar]
  206. Yonkee, W. A., and A. B.Weil. 2015. “Tectonic Evolution of the Sevier and Laramide Belts Within the North American Cordillera Orogenic System.” Earth Science Reviews150: 531–593.
    [Google Scholar]
  207. Zambrano, I., M.Ordoñez, and N.Jiménez. 1999. “Micropaleontologia de 63 muestras de afloramientos de la Cuenca Oriental Ecuatoriana.” Informe tecnico No. 016‐PPG‐99, LABOGEO, Petroproducción, distrito de Guayaquil.
  208. Zapata, S., L.Calderon‐Diaz, C.Jaramillo, et al. 2023. “Drainage and Sedimentary Response of the Northern Andes and the Pebas System to Miocene Strike‐Slip Tectonics: A Source to Sink Study of the Magdalena Basin.” Basin Research35, no. 5: 1674–1717.
    [Google Scholar]
  209. Zapata, S., A.Cardona, J. S.Jaramillo, et al. 2019. “Cretaceous Extensional and Compressional Tectonics in the Northwestern Andes, Prior to the Collision With the Caribbean Oceanic Plateau.” Gondwana Research66: 207–226.
    [Google Scholar]
  210. Zapata, S., A.Cardona, C.Jaramillo, V.Valencia, and J.Vervoort. 2016. “U‐Pb LA‐ICP‐MS Geochronology and Geochemistry of Jurassic Volcanic and Plutonic Rocks From the Putumayo Region (Southern Colombia): Tectonic Setting and Regional Correlations.” Boletín de Geología38, no. 2: 21–38.
    [Google Scholar]
  211. Zapata‐García, G., and G.Rodríguez‐García. 2020. “New Contributions to the Knowledge of the Chocó–Panamá Arc in Colombia, Including a New Segment South of Colombia.” In The Geology of Colombia, Volume 3 Paleogene – Neogene, edited by J.Gómez and D.Mateus‐Zabala. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, 34 p. https://doi.org/10.32685/pub.esp.37.2019.14.
    [Google Scholar]
/content/journals/10.1111/bre.70041
Loading
/content/journals/10.1111/bre.70041
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Amazon Basin; Broken Foreland; Northern Andes; Orogenic Growth; Provenance Analysis

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error