1887
Volume 37, Issue 3
  • E-ISSN: 1365-2117

Abstract

[ABSTRACT

Development of brittle fracture zones as passages for fluid migration within the shallow crust results in substantial petrophysical and rheological changes that strongly influence deformation localisation, promoting reactivation at evolved inhomogeneities in the host rock. A natural example of multi‐stage fault zone evolution with different generations of deformation elements and mode of silica cementation was investigated using combined structural, burial, micropetrographic, geochemical and geochronological analyses in a sandstone predating the main rifting phase. Deformation mechanisms progressively evolved from proto‐cataclasis, through advanced cataclasis connected with inhomogeneous silica cementation, to siliceous fluid‐enhanced slip along discrete fault planes or vein formation; all of these processes are well correlated with burial and volcanic phases. The established relationships allowed reconstruction of the evolutionary steps within the fault zones as the initially porous sediment was structurally and diagenetically hardened and then softened, and the geometry of the fault system changed during rifting. The age of silica‐associated fracture systems (syn‐tectonic silica cementation) is constrained by early type deformation bands (having the same pattern as silica‐associated fractures) occurring in the ~15.3 Ma pyroclastic rocks bordering the sandstone. Silica precipitation can be related primarily to structurally controlled fluid pulses and rapid cooling as fluids pass through the propagating syn‐rift fractures in an initially good siliciclastic aquifer. Such large‐scale hydrothermal fluid migration, resulting in tens of km2 siliceous cementation, was facilitated by the onset of volcanic activity. The accompanying general increase in fluid pressure may have led to the permutation of the maximum and the intermediate principal stress axes. As a result, the early syn‐rift extension switched to a transtension during the main syn‐rift phase. Meanwhile, vertical axis rotations also contributed to the change in the apparent stress field, resulting in the development of a fault pattern analogous to an oblique rift. The developed fault sets, with three characteristic orientations and frequent reactivation, may have formed in relation to an inherited structural weakness zone.

,

Evolution of deformation mechanism and associated silica precipitation with respect to stratigraphic and burial position during syn‐rift phases.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70043
2025-06-23
2025-07-20
Loading full text...

Full text loading...

/deliver/fulltext/bre/37/3/bre70043.html?itemId=/content/journals/10.1111/bre.70043&mimeType=html&fmt=ahah

References

  1. Alikarami, R., A.Torabi, D.Kolyukhin, and E.Skurtveit. 2013. “Geostatistical Relationships Between Mechanical and Petrophysical Properties of Deformed Sandstone.” International Journal of Rock Mechanics and Mining Sciences63: 27–38. https://doi.org/10.1016/j.ijrmms.2013.06.002.
    [Google Scholar]
  2. Anderson, E. M.1906. “The Dynamics of Faulting.” Journal of Geology14, no. 3: 254–257. https://doi.org/10.1086/621305.
    [Google Scholar]
  3. Angelier, J.1984. “Tectonic Analysis of Fault Slip Data Sets.” Journal of Geophysical Research89, no. B7: 5835–5848. https://doi.org/10.1029/jb089ib07p05835.
    [Google Scholar]
  4. Angelier, J., and S.Manoussis. 1980. “Classification Automatique et Distinction des Phases Superposées en Tectonique de Failles.” Comptes Rendus de l'Académie des Sciences290: 651–654.
    [Google Scholar]
  5. Aydin, A.1978. “Small Faults Formed as Deformation Bands in Sandstone.” Pure and Applied Geophysics116, no. 4–5: 913–930. https://doi.org/10.1007/bf00876546.
    [Google Scholar]
  6. Balázs, A., L.Mațenco, I.Magyar, F.Horváth, and S.Cloetingh. 2016. “The Link Between Tectonics and Sedimentation in Back‐Arc Basins: New Genetic Constraints From the Analysis of the Pannonian Basin.” Tectonics35: 1526–1559. https://doi.org/10.1002/2015TC004109.
    [Google Scholar]
  7. Báldi, T.1986. Mid‐Tertiary Stratigraphy and Paleogeographic Evolution of Hungary, 201. Akadémia Press.
    [Google Scholar]
  8. Báldi, T., M.Báldiné Beke, M.Horváth, T.Kecskeméti, M.Monostori, and A.Nagymarosy. 1976. “A Hárshegyi Homokkő Formáció Kora és Képződési Körülményei (Alter Und Bildungsverhältnisse des Hárshegyer Sandsteins).” Földtani Közlöny106, no. 4: 353–386.
    [Google Scholar]
  9. Báldi, T., and J.Kókay. 1970. “A Kismarosi Tufit Faunája és a Börzsönyi Andezitvulkánosság Kora.” Földtani Közlöny100: 274–284.
    [Google Scholar]
  10. Báldi, T., and A.Nagymarosy. 1976. “Silicification of the Hárshegy Sandstone and Its Hydrothermal Origin [In Hungarian With English Abstract].” Földtani Közlöny106, no. 3: 257–275.
    [Google Scholar]
  11. Balla, Z., and A.Dudko. 1989. “Large‐Scale Tertiary Strike‐Slip Displacements Recorded in the Structure of the Transdanubian Range.” Geophysical Transactions35, no. 1–2: 3–63.
    [Google Scholar]
  12. Balla, Z., and A.Dudko. 1990. “Folded Oligocene Beds in Budapest.” Acta Geologica Hungarica33: 31–42.
    [Google Scholar]
  13. Balla, Z., and L.Korpás. 1980. “Methodological Questions of the Mapping of Volcanics in the Dunazug Mountains, N Hungary.” Annual Report of the Geological Institute of Hungary From 1978, 233–238.
  14. Balla, Z., and E.Márton‐Szalay. 1979. “Magnetostratigraphy of the Börzsöny and Dunazug Mountains (in Hungarian With English Abstract).” Geofizikai Közlemények26: 57–77.
    [Google Scholar]
  15. Balsamo, F., and F.Storti. 2011. “Size‐Dependent Comminution, Tectonic Mixing, and Sealing Behavior of a “Structurally Oversimplified” Fault Zone in Poorly Lithified Sands: Evidence for a Coseismic Rupture?” Bulletin of the Geological Society of America123: 601–619. https://doi.org/10.1130/B30099.1.
    [Google Scholar]
  16. Balsamo, F., F.Storti, and D. R.Gröcke. 2012. “Fault‐Related Fluid Flow History in Shallow Marine Sediments From Carbonate Concretions, Crotone Basin, South Italy.” Journal of the Geological Society169, no. 5: 613–626. https://doi.org/10.1144/0016‐76492011‐109.
    [Google Scholar]
  17. Balsamo, F., F.Storti, F.Salvini, A. T.Silva, and C. C.Lima. 2010. “Structural and Petrophysical Evolution of Extensional Fault Zones in Low‐Porosity, Poorly Lithified Sandstones of the Barreir as Formation, NE Brazil.” Journal of Structural Geology32: 1806–1826. https://doi.org/10.1016/j.jsg.2009.10.010.
    [Google Scholar]
  18. Beke, B., L.Fodor, L.Millar, and A.Petrik. 2019. “Deformation Band Formation as a Function of Progressive Burial: Depth Calibration and Mechanism Change in the Pannonian Basin (Hungary).” Marine and Petroleum Geology105: 1–16. https://doi.org/10.1016/j.marpetgeo.2019.04.006.
    [Google Scholar]
  19. Bell, F. G., and P.Lindsay. 1999. “The Petrographic and Geomechanical Properties of Some Sandstones From the Newspaper Member of the Natal Group Near Durban, South Africa.” Engineering Geology53, no. 1: 57–81. https://doi.org/10.1016/S0013‐7952(98)00081‐7.
    [Google Scholar]
  20. Bence, G., G.Császár, M.Darida‐Tichy, et al. 1991. “Geologische Und Ingenieurgeologische Beschreibung der Donaustufe Nagymaros.” In Jubiläumsschrift 20 Jahre Geologische Zusammenarbeit Österreich‐Ungarn 1, edited by H.Lobitzer and G.Császár, 385–400. Geologische Bundesanstalt.
    [Google Scholar]
  21. Bense, V. F., T.Gleeson, S. E.Loveless, O.Bour, and J.Scibek. 2013. “Fault Zone Hydrogeology.” Earth‐Science Reviews127: 171–192. https://doi.org/10.1016/j.earscirev.2013.09.008.
    [Google Scholar]
  22. Bense, V. F., E. H.Van den Berg, and R. T.Van Balen. 2003. “Deformation Mechanisms and Hydraulic Properties of Fault Zones in Unconsolidated Sediments; the Roer Valley Rift System, the Netherlands.” Hydrogeology Journal11: 319–332. https://doi.org/10.1007/s10040‐003‐0262‐8.
    [Google Scholar]
  23. Bezerra, F. H., F.Balsamo, J.Corsi, et al. 2021. “Hydrothermal Silicification in the Intraplate Samambaia Seismogenic Fault, Brazil: Implications for Fault Loss of Cohesion and Healing in Rifted Crust.” Tectonophysics815: 229002. https://doi.org/10.1016/j.tecto.2021.229002.
    [Google Scholar]
  24. Bjørlykke, K., and P. K.Egeberg. 1993. “Quartz Cementation in Sedimentary Basins.” American Association of Petroleum Geologists Bulletin77: 1538–1548. https://doi.org/10.1306/bdff8ee8‐1718‐11d7‐8645000102c1865d.
    [Google Scholar]
  25. Bjørlykke, K., M.Ramm, and G. C.Saigal. 1989. “Sandstone Diagenesis and Porosity Modification During Basin Evolution.” Geologische Rundschau78: 243–268.
    [Google Scholar]
  26. Bonnemains, D., J.Escartín, C.Mével, M.Andreani, and A.Verlaguet. 2017. “Pervasive Silicification and Hanging Wall Overplating Along the 13°20′N Oceanic Detachment Fault (Mid‐307 Atlantic Ridge).” Geochemistry, Geophysics, Geosystems18, no. 6: 2028–2053. https://doi.org/10.1002/2017GC00684.
    [Google Scholar]
  27. Borhara, K., and C. M.Onasch. 2020. “Evidence for Silica Gel and Its Role in Faulting in the Tuscarora Sandstone.” Journal of Structural Geology139: 104140. https://doi.org/10.1016/j.jsg.2020.104140.
    [Google Scholar]
  28. Bruhn, R. L., W. T.Parry, W. A.Yonkee, and T.Thompson. 1994. “Fracturing and Hydrothermal Alteration in Normal Fault Zones.” Pageoph142: 609–644. https://doi.org/10.1007/BF00876057.
    [Google Scholar]
  29. Caine, J. S., R. L.Bruhn, and C. B.Forster. 2010. “Internal Structure, Fault Rocks, and Inferences Regarding Deformation, Fluid Flow, and Mineralization in the Seismogenic Stillwater Normal Fault, Dixie Valley, Nevada.” Journal of Structural Geology32: 1576–1589. https://doi.org/10.1016/j.jsg.2010.03.004.
    [Google Scholar]
  30. Caine, J. S., J. P.Evans, and C. B.Forster. 1996. “Fault Zone Architecture and Permeability Structure.” Geology24: 1025–1028.
    [Google Scholar]
  31. Callahan, O. A., P. E.Eichhubl, J. E.Olson, and N. C.Davatzes. 2019. “Fracture‐Mechanical Properties of Damaged and Hydrothermally Altered Rocks, Dixie Valley ‐ Stillwater Fault Zone, Nevada, USA.” Journal of Geophysical Research ‐ Solid Earth124, no. 4: 4069–4090. https://doi.org/10.1029/2018jb016708.
    [Google Scholar]
  32. Cazarin, C. L., R.van der Velde, R. V.Santos, et al. 2021. “Hydrothermal Activity Along a Strike‐Slip Fault Zone and Host Units in the São Francisco Craton, Brazil—Implications for Fluid Flow in Sedimentary Basins.” Precambrian Research365: 106365. https://doi.org/10.1016/j.precamres.2021.106365.
    [Google Scholar]
  33. Clifton, A. E., R. W.Schlische, M. O.Withjack, and R. V.Ackermann. 2000. “Influence of Rift Obliquity on Fault‐Population Systematics: Results of Experimental Clay Models.” Journal of Structural Geology22: 1491–1509. https://doi.org/10.1016/s0191‐8141(00)00043‐2.
    [Google Scholar]
  34. Csontos, L., and A.Nagymarosy. 1998. “The Mid‐Hungarian Line: A Zone of Repeated Tectonic Inversion.” Tectonophysics297: 51–72. https://doi.org/10.1016/s0040‐1951(98)00163‐2.
    [Google Scholar]
  35. Danišík, M., L.Fodor, I.Dunkl, et al. 2015. “A Multi‐System Geochronology in the Ad‐3 Borehole, Pannonian Basin (Hungary) With Implications for Dating Volcanic Rocks by Low‐Temperature Thermochronology and for Interpretation of (U–Th)/he Data.” Terra Nova27: 258–269. https://doi.org/10.1111/ter.12155.
    [Google Scholar]
  36. Davatzes, N. C., P.Eichhubl, and A.Aydin. 2005. “Structural Evolution of Fault Zones in Sandstone by Multiple Deformation Mechanisms: Moab Fault, Southeast Utah.” Geological Society of America Bulletin117: 135–148. https://doi.org/10.1130/B25473.
    [Google Scholar]
  37. Del Sole, L., and M.Antonellini. 2019. “Microstructural, Petrophysical, and Mechanical Properties of Compactive Shear Bands Associated to Calcite Cement Concretions in Arkose Sandstone.” Journal of Structural Geology126: 51–68. https://doi.org/10.1016/j.jsg.2019.05.007.
    [Google Scholar]
  38. Dewhurst, D. N., and R. M.Jones. 2003. “Influence of Physical and Diagenetic Processes on Fault Geomechanics and Reactivation.” Journal of Geochemical Exploration78: 153–157. https://doi.org/10.1016/s0375‐6742(03)00124‐9.
    [Google Scholar]
  39. Drew, L., B. R.Berger, W. J.Bawiec, et al. 1999. “Mineral‐Rescource Assessment of the Mátra and Börzsöny‐Visegrád Mountains, North Hungary.” Geologica Hungarica24: 79–96.
    [Google Scholar]
  40. Duclaux, G., R. S.Huismans, and D.May. 2020. “Rotation, Narrowing, and Preferential Reactivation of Brittle Structures During Oblique Rifting.” Earth and Planetary Science Letters531: 115952. https://doi.org/10.1016/j.epsl.2019.115952.
    [Google Scholar]
  41. Esteban, M., T.Budai, E.Juhász, and P.Lapointe. 2009. “Alteration of Triassic Carbonates in the Buda Mountains – A Hydrothermal Model.” Central European Geology52, no. 1: 1–26.
    [Google Scholar]
  42. Exner, U., and C.Tschegg. 2012. “Preferential Cataclastic Grain Size Reduction of Feldspar in Deformation Bands in Poorly Consolidated Arkosic Sands.” Journal of Structural Geology43: 63–72. https://doi.org/10.1016/j.jsg.2012.08.005.
    [Google Scholar]
  43. Faulkner, D. R., C. A. L.Jackson, R. J.Lunn, et al. 2010. “A Review of Recent Developments Concerning the Structure, Mechanics and Fluid Flow Properties of Fault Zones.” Journal of Structural Geology32: 1557–1575. https://doi.org/10.1016/j.jsg.2010.06.009.
    [Google Scholar]
  44. Fekete, Z.1935. “Adatok a Hárshegyi Homokkő Geológiájához.” Földtani Közlöny65: 126–150.
    [Google Scholar]
  45. Fialowski, M., B.Beke, and L.Fodor. 2023. “Extension During the Miocene Syn‐Rift Phase in the Central Pannonian Basin (Pilis‐Buda Hills Region); Fault Geometry and Interpretation.” 19th Meeting of the Central European Tectonic Studies Group (CETEG), Abstract Book, 27.
  46. Fischer, C., S.Waldmann, and H.Von Eynatten. 2013. “Spatial Variation in Quartz Cement Type and Concentration: An Example From the Heidelberg Formation (Teufelsmauer Outcrops), Upper Cretaceous Subhercynian Basin, Germany.” Sedimentary Geology291: 48–61. https://doi.org/10.1016/j.sedgeo.2013.03.009.
    [Google Scholar]
  47. Fodor, L.2010. “Mesozoic‐Cenozoic Stress Fields and Fault Patterns in the Northwestern Part of the Pannonian Basin—Methodology and Structural Analysis (in Hungarian).” Doctoral Work, Hungarian Academy of Sciences, 129, 7 Appendices.
  48. Fodor, L.2000. “Uncovered geological map of the Buda Hills 1:50,000. Manuscript. Eötvös University, Department of Applied and Environmental Geology, Budapest, Hungary. In: Optimisation of the monitoring of the thermal karst area of the Rózsa Hill (Budapest).” edited by. A. Mindszenty and J. Mádlné Szőnyi, manuscript report.
  49. Fodor, L., A.Balázs, G.Csillag, et al. 2021. “Crustal Exhumation and Depocenter Migration From the Alpine Orogenic Margin Towards the Pannonian Extensional Back‐Arc Basin Controlled by Inheritance.” Global and Planetary Change201: 103475. https://doi.org/10.1016/j.gloplacha.2021.103475.
    [Google Scholar]
  50. Fodor, L., L.Csontos, G.Bada, I.Györfi, and L.Benkovics. 1999. “Tertiary Tectonic Evolution of the Pannonian Basin System and Neighbouring Orogens: A New Synthesis of Paleostress Data.” In The Mediterranean Basins: Tertiary Extension Within the Alpine Orogen, edited by B.Durand, L.Jolivet, F.Horváth, and M.Séranne, vol. 156, 295–334. Geological Society, Special Publications.
    [Google Scholar]
  51. Fodor, L., B.Jelen, E.Márton, D.Skaberne, J.Čar, and M.Vrabec. 1998. “Miocene‐Pliocene Tectonic Evolution of the Slovenian Periadriatic Line and Surrounding Area – Implication for Alpine‐Carpathian Extrusion Models.” Tectonics17: 690–709. https://doi.org/10.1029/98TC01605.
    [Google Scholar]
  52. Fodor, L., and M.Kázmér. 1989. “Clastic and Carbonate Sedimentation in an Eocene Strike‐Slip Basin at Budapest.” In Xth IAS Regional Meeting, Excursion Guidebook, edited by G.Császár, 227–259. Geological Institute of Hungary.
    [Google Scholar]
  53. Fodor, L., and Á.Magyari. 2002. “Late Eocene–Miocene Structural Evolution and Sedimentation on the Sas Hill, Budapest, Hungary (in Hungarian With English Abstract).” Földtani Közlöny132, no. 2: 247–264.
    [Google Scholar]
  54. Fodor, L., Á.Magyari, A.Fogarasi, and K.Palotás. 1994. “Tertiary Tectonics and Late Palaeogene Sedimentation in the Buda Hills, Hungary. A New Interpretation of the Buda Line.” Földtani Közlöny124, no. 2: 129–305.
    [Google Scholar]
  55. Fodor, L., Á.Magyari, M.Kázmér, and A.Fogarasi. 1992. “Gravity‐Flow Dominated Sedimentation on the Buda Paleoslope (Hungary): Record of Late Eocene Continental Escape of the Bakony Unit.” Geologische Rundschau81, no. 3: 695–716.
    [Google Scholar]
  56. Fossen, H., R.Schultz, Z.Shipton, and K.Mair. 2007. “Deformation Bands in Sandstone – A Review.” Journal of the Geological Society164: 755–769. https://doi.org/10.1144/0016‐76492006‐036.
    [Google Scholar]
  57. Fossen, H., R.Soliva, G.Ballas, B.Trzaskos, G. C.Cavalcante, and R. A.Schultz. 2017. “A Review of Deformation Bands in Reservoir Sandstones: Geometries, Mechanisms and Distribution.” Geological Society, London, Special Publications459: 9–33. https://doi.org/10.1144/sp459.4.
    [Google Scholar]
  58. Gál, B., Z.Poros, and F.Molnár. 2008. “Hydrothermal Events in the Hárshegy Sandstone Formation and Their Relationships to Regional Geological Processes, Buda Hills, Hungary (in Hungarian With English Abstract).” Földtani Közlöny138, no. 1: 49–60.
    [Google Scholar]
  59. Giles, M. R., S. L.Indrelid, G. V.Beynon, and J.Amthor. 2000. “The Origin of Large‐Scale Quartz Cementation: Evidence From Large Data Sets and Coupled Heat–Fluid Mass Transport Modelling.” In Quartz Cementation in Sandstones, edited by R. H.Worden and S.Morad, vol. 29, 21–38. Wiley‐Blackwell. https://doi.org/10.1002/9781444304237.ch2.
    [Google Scholar]
  60. Gudmundsson, A.2006. “How Local Stresses Control Magma‐Chamber Ruptures, Dyke Injections, and Eruptions in Composite Volcanoes.” Earth‐Science Reviews79: 1–31. https://doi.org/10.1016/j.earscirev.2006.06.006.
    [Google Scholar]
  61. Harangi, S., and L.Lenkey. 2007. “Genesis of the Neogene to Quaternary Volcanism in the Carpathian‐Pannonian Region: Role of Subduction, Extension, and Mantle Plume.” Geological Society of America Special Paper418: 67–92. https://doi.org/10.1130/2007.2418(04).
    [Google Scholar]
  62. Harangi, S., H.Downes, L.Kósa, et al. 2001. “Almandine Garnet in Calc‐Alkaline Volcanic Rocks of the Northern Pannonian Basin (Eastern‐Central Europe): Geochemistry, Petrogenesis and Geodynamic Implications.” Journal of Petrology42, no. 10: 1813–1843. https://doi.org/10.1093/petrology/42.10.1813.
    [Google Scholar]
  63. Heaney, P. J.1993. “A Proposed Mechanism for the Growth of Chalcedony.” Contributions to Mineralogy and Petrology115: 66–74.
    [Google Scholar]
  64. Héja, G., M.Palotai, G.Maros, et al. 2024. “Thin‐Skinned vs. Thick‐Skinned Shortening of the Transdanubian Range (West Hungary): The Switch From Neothetyan Obduction to the Formation of the Eoalpine Orogeny.” 20th Meeting of the Central European Tectonic Studies Group (CETEG), Abstract Book, 88.
  65. Héja, G. H., Z.Kercsmár, S.Kövér, T.Budai, Y. M.Noui, and L.Fodor. 2022. “The Role of Rheology and Fault Geometry on Fault Reactivation: A Case‐Study From the Zsámbék‐Mány Basin, Central Hungary.” Geosciences12, no. 12: 433. https://doi.org/10.3390/geosciences12120433.
    [Google Scholar]
  66. Hendry, J. P., and N. H.Trewin. 1995. “Authigenic Quartz Microfabrics in Cretaceous Turbidites; Evidence for Silica Transfer Processes in Sandstones.” SEPM Journal of Sedimentary Research65: 380–392.
    [Google Scholar]
  67. Hesse, R.1989. “Silica Diagenesis: Origin of Inorganic and Replacement Cherts.” Earth‐Science Reviews26, no. 1–3: 253–284.
    [Google Scholar]
  68. Hír, J., T.Bíró, and D.Karátson. 2024. “Documentation of Middle Miocene Continental Vertebrate Fauna From Northern Hungary and the Visegrád Mountains.” Földtani Közlöny157, no. 1: 27–45. https://doi.org/10.23928/foldt.kozl.2024.154.1.27.
    [Google Scholar]
  69. Hohenegger, J., S.Ćorić, and M.Wagreich. 2014. “Timing of the Middle Miocene Badenian Stage of the Central Paratethys.” Geologica Carpathica65: 55–66. https://doi.org/10.2478/geoca‐2014‐0004.
    [Google Scholar]
  70. Horstwood, M. S. A., J.Košler, G.Gehrels, et al. 2016. “Community‐Derived Standards for LA‐ICP‐MS U‐(Th‐)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting.” Geostandards and Geoanalytical Research40: 311–332. https://doi.org/10.1111/j.1751‐908X.2016.00379.x.
    [Google Scholar]
  71. Horváth, F., B.Musitz, A.Balázs, et al. 2015. “Evolution of the Pannonian Basin and Its Geothermal Resources.” Geothermics53: 328–352. https://doi.org/10.1016/j.geothermics.2014.07.009.
    [Google Scholar]
  72. Jackson, S. E., N. J.Pearson, W. L.Griffin, and E. A.Belousova. 2004. “The Application of Laser Ablation‐Inductively Coupled Plasma‐Mass Spectrometry to In Situ U–Pb Zircon Geochronology.” Chemical Geology211: 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017.
    [Google Scholar]
  73. Juhász, D., L.Chiara, Z.Benkó, et al. 2025. “Miocene Dyke Emplacement and Its Interaction With Fracture Systems and Regional Stress Fields: A Multidisciplinary Case Study at Cserhát Hills, Hungary.” Tectonophysics906: 230722.
    [Google Scholar]
  74. Karátson, D., T.Biró, M.Portnyagin, et al. 2022. “Large–Magnitude (VEI ≥ 7) ‘Wet’ Explosive Silicic Eruption Preserved a Lower Miocene Habitat at the Ipolytarnóc Fossil Site, North Hungary.” Scientific Reports12, no. 1: 9743. https://doi.org/10.1038/s41598–022–13586–3.
    [Google Scholar]
  75. Karátson, D., E.Márton, S.Harangi, et al. 2000. “Volcanic Evolution and Stratigraphy of the Miocene Börzsöny Mts., Hungary. An Integrated Study.” Geologica Carpathica51: 325–343.
    [Google Scholar]
  76. Karátson, D., I.Oláh, Z.Pécskay, et al. 2007. “Miocene Volcanism in the Visegrád Mountains, Hungary: An Integrated Approach to Regional Stratigraphy.” Geologica Carpathica58, no. 6: 541–563.
    [Google Scholar]
  77. Kastner, M., J. B.Keene, and J. M.Gieskes. 1977. “Diagenesis of Siliceous Oozes ‐ I. Chemical Controls on the Rate of Opal‐A to Opal‐CT Transformation ‐ An Experimental Study.” Geochimica et Cosmochimica Acta41: 1041–1059.
    [Google Scholar]
  78. Kaszanitzky, F.1956. “Az Alsóoligocén (Hárshegyi) Homokkő Ásvány‐Kőzettani Vizsgálata.” Földtani Közlöny86: 244–256.
    [Google Scholar]
  79. Kennedy, A., J.‐F.Wotzlaw, J.Crowley, M.Schmitz, and U.Schaltegger. 2014. “Eocene Zircon Reference Material for Microanalysis of U‐Th‐Pb Isotopes and Trace Elements.” Canadian Mineralogist52: 409–421. https://doi.org/10.3749/canmin.52.3.409.
    [Google Scholar]
  80. Korpás, L., ed. 1998. Explanations to the Geological Map of the Börzsöny and Visegrád Mountains (in Hungarian With English Abstract), 216. Geological Institute of Hungary.
    [Google Scholar]
  81. Kováč, M., E.Halásová, N.Hudáčková, et al. 2018. “Towards Better Correlation of the Central Paratethys Regional Time Scale With the Standard Geological Time Scale of the Miocene Epoch.” Geologica Carpathica69, no. 3: 283–300. https://doi.org/10.1515/geoca‐2018‐0017.
    [Google Scholar]
  82. Littke, R., C.Büker, A.Lückge, R. F.Sachsenhofer, and D. H.Welte. 1994. “A New Evaluation of Paleo‐Heat Flows and Eroded Thicknesses for the Carboniferous Ruhr Basin, Western Germany.” International Journal of Coal Geology26: 155–183.
    [Google Scholar]
  83. Lukács, R., M.Guillong, O.Bachmann, L.Fodor, and S.Harangi. 2021. “Tephrostratigraphy and Magma Evolution Based on Combined Zircon Trace Element and U‐Pb Age Data: Fingerprinting Miocene Silicic Pyroclastic Rocks in the Pannonian Basin.” Frontiers in Earth Science9: 615768. https://doi.org/10.3389/feart.2021.615768.
    [Google Scholar]
  84. Lukács, R., S.Harangi, M.Guillong, et al. 2018. “Early to Mid‐Miocene Syn‐Extensional Massive Silicic Volcanism in the Pannonian Basin (East‐Central Europe): Eruption Chronology, Correlation Potential and Geodynamic Implications.” Earth‐Science Reviews179: 1–19. https://doi.org/10.1016/j.earscirev.2018.02.005.
    [Google Scholar]
  85. Magyari, Á.1994. “Late Eocene Hydraulic Rebrecciation in the Southern Buda Mountains, Hungary (in Hungarian With English Abstract).” Földtani Közlöny124, no. 1: 89–107.
    [Google Scholar]
  86. Magyari, Á.1996. “Eocene Syn‐Sedimentary Tectonic Features and Their Effect on Sedimentation in the Buda Hills, Hungary (in Hungarian With English Abstract).” Ph.D Thesis, Department of Geology, Eötvös University, 289.
  87. Mahboubi, A., Z.Nowrouzi, I. S.Al‐Aasm, R.Moussavi‐Harami, and M. H.Mahmudy‐Gharaei. 2016. “Dolomitization of the Silurian Niur Formation, Tabas Block, East Central Iran: Fluid Flow and Dolomite Evolution.” Marine and Petroleum Geology77: 791–805. https://doi.org/10.1016/j.marpetgeo.2016.07.023.
    [Google Scholar]
  88. Mair, K., I.Main, and S.Elphick. 2000. “Sequential Growth of Deformation Bands in the Laboratory.” Journal of Structural Geology22: 25–42.
    [Google Scholar]
  89. Márton, E., and L.Fodor. 1995. “Combination of Paleomagnetic and Stress Data: A Case Study From North Hungary.” Tectonophysics242: 99–114.
    [Google Scholar]
  90. Márton, E., and P.Márton. 1996. “Large Scale Rotation in North Hungary During the Neogene as Indicated by Palaeomagnetic Data.” In Paleomagnetism and Tectonics of the Peri‐Mediterranean Region, edited by A.Morris and D. H.Tarling, vol. 105, 153–173. Geological Society, London, Special Publications.
    [Google Scholar]
  91. Márton, E., and Z.Pécskay. 1998. “Complex Evaluation of Paleomagnetic and K/Ar Isotope Data of the Miocene Ignimbritic Volcanics in the Bükk Foreland, Hungary.” Acta Geologica Hungarica41: 467–476.
    [Google Scholar]
  92. Márton, E., T.Zelenka, and P.Márton. 2007. “Paleomagnetic Correlation of Miocene Pyroclastics of the Bükk Mts. and Their Forelands.” Central European Geology50, no. 1: 47–57. https://doi.org/10.1556/CeuGeol.50.2007.1.4.
    [Google Scholar]
  93. McBride, E. F.1989. “Quartz Cement in Sandstones: A Review.” Earth‐Science Reviews26: 6–112. https://doi.org/10.1016/0012‐8252(89)90019‐6.
    [Google Scholar]
  94. Menezes, C. P., F. H. R.Bezerra, F.Balsamo, M.Mozafari, and M. M.Vieira. 2019. “Hydrothermal Silicification Along Faults Affecting Carbonate‐Sandstone Units and Its Impact on Reservoir Quality, Potiguar Basin, Brazil.” Marine and Petroleum Geology110: 198–217. https://doi.org/10.1016/j.marpetgeo.2019.07.018.
    [Google Scholar]
  95. Molenaar, N., J.Cyziene, and S.Sliaupa. 2007. “Quartz Cementation Mechanisms and Porosity Variation in Baltic Cambrian Sandstones.” Sedimentary Geology195: 135–159. https://doi.org/10.1016/j.sedgeo.2006.07.009.
    [Google Scholar]
  96. Morad, S., K.Al‐Ramadan, J. M.Ketzer, and D. L. F.Ros. 2010. “The Impact of Diagenesis on the Heterogeneity of Sandstone Reservoirs: A Review of the Role of Depositional Facies and Sequence Stratigraphy.” American Association of Petroleum Geologists Bulletin94: 1267–1309. https://doi.org/10.1306/04211009178.
    [Google Scholar]
  97. Morad, S., J. M.Ketzer, and L. F.De Ros. 2000. “Spatial and Temporal Distribution of Diagenetic Alterations in Siliciclastic Rocks: Implications for Mass Transfer in Sedimentary Basins.” Sedimentology47: 95–120. https://doi.org/10.1046/j.1365‐3091.2000.00007.x.
    [Google Scholar]
  98. Nicchio, M. A., F.Balsamo, F. C. C.Nogueira, et al. 2022. “The Effect of Fault‐Induced Compaction on Petrophysical Properties of Deformation Bands in Poorly Lithified Sandstones.” Journal of Structural Geology166: 104758. https://doi.org/10.1016/j.jsg.2022.104758.
    [Google Scholar]
  99. Nicchio, M. A., F. C. C.Nogueira, F.Balsamo, J. A. B.de Souza, B. R. B. M.Carvalho, and F. H. R.Bezerra. 2018. “Development of Cataclastic Foliation in Deformation Bands in Feldspar‐Rich Conglomerates of the Rio Do Peixe Basin, NE Brazil.” Journal of Structural Geology107: 132–141. https://doi.org/10.1016/j.jsg.2017.12.013.
    [Google Scholar]
  100. Nuriel, P., G.Rosenbaum, J.‐X.Zhao, et al. 2012. “U‐Th Dating of Striated Fault Planes.” Geology40: 647–650.
    [Google Scholar]
  101. Oláh, P., L.Fodor, T.Tóth, A.Deák, G.Drijkoningen, and F.Horváth. 2014. “Geological Results of the Seismic Surveys Around Szentendre Island, Danube River, North Hungary.” Földtani Közlöny144, no. 4: 359–380.
    [Google Scholar]
  102. Palhano, L. C., F. C. C.Nogueira, F. O.Marques, et al. 2023. “Influence of Hydrothermal Silicification on the Physical Properties of a Basin‐Boundary Fault Affecting Arkosic Porous Sandstones, Rio Do Peixe Basin, Brazil.” Marine and Petroleum Geology148: 106062. https://doi.org/10.1016/j.marpetgeo.2022.106062.
    [Google Scholar]
  103. Palotai, M., and L.Csontos. 2010. “Strike‐Slip Reactivation of a Paleogene to Miocene Fold and Thrust Belt Along the Central Part of the Mid‐Hungarian Shear Zone.” Geologica Carpathica61, no. 6: 483–493. https://doi.org/10.2478/v10096‐010‐0030‐3.
    [Google Scholar]
  104. Palotai, M., L.Csontos, and P.Dövényi. 2006. “Field and Geoelectric Study of the Mesozoic (Upper Jurassic) Occurrence at Kesztölc.” Földtani Közlöny136, no. 3: 347–368.
    [Google Scholar]
  105. Paton, C., J.Hellstrom, B.Paul, J.Woodhead, and J.Hergt. 2011. “Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data.” Journal of Analytical Atomic Spectrometry26: 2508–2518. https://doi.org/10.1039/C1JA10172B.
    [Google Scholar]
  106. Petit, J. P., and E.Laville. 1987. “Morphology and Microstructures of Hydroplastic Slickenlines in Sandstone.” In Deformation in Sediments and Sedimentary Rocks, edited by M. E.Jones and R. M. F.Preston, vol. 29, 107–121. Geological Society Special Publications, London.
    [Google Scholar]
  107. Petrik, A., B.Beke, and L.Fodor. 2014. “Combined Analysis of Faults and Deformation Bands Reveals the Cenozoic Structural Evolution of the Southern Bükk Foreland (Hungary).” Tectonophysics633: 43–62. https://doi.org/10.1016/j.tecto.2014.06.029.
    [Google Scholar]
  108. Petrik, A., B.Beke, L.Fodor, and R.Lukács. 2016. “Cenozoic Structural Evolution of the Southwestern Bükk Mts. and the Southern Part of the Darnó Deformation Belt (NE Hungary).” Geologica Carpathica67: 83–104. https://doi.org/10.1515/geoca‐2016‐0005.
    [Google Scholar]
  109. Petrik, A. B.2016. “Structural Evolution of the Southern Bükk Foreland.” PhD Thesis, Eötvös University, Dept. of Geology, 208.
  110. Petrus, J. A., and B. S.Kamber. 2012. “VizualAge: A Novel Approach to Laser Ablation ICP‐MS U‐Pb Geochronology Data Reduction.” Geostandards and Geoanalytical Research36: 247–270. https://doi.org/10.1111/j.1751‐908X.2012.00158.x.
    [Google Scholar]
  111. Pisani, L., M.Antonellini, F. H. R.Bezerra, et al. 2022. “Silicification, Flow Pathways, and Deep‐Seated Hypogene Dissolution Controlled by Structural and Stratigraphic Variability in a Carbonate‐Siliciclastic Sequence (Brazil).” Marine and Petroleum Geology139: 105611. https://doi.org/10.1016/j.marpetgeo.2022.105611.
    [Google Scholar]
  112. Pizzati, M., F.Balsamo, F.Storti, and P.Iacumin. 2019. “Physical and Chemical Strain Hardening During Faulting in Poorly Lithified Sandstone: The Role of Kinematic Stress Field and Selective Cementation.” GSA Bulletin132: 1183–1200. https://doi.org/10.1130/B35296.1.
    [Google Scholar]
  113. Pontes, C. C. C., F. C. C.Nogueira, F. H. R.Bezerra, et al. 2019. “Petrophysical Properties of Deformation Bands in High Porous Sandstones Across Fault Zones in the Rio Do Peixe Basin, Brazil.” International Journal of Rock Mechanics and Mining Sciences114: 153–163. https://doi.org/10.1016/j.ijrmms.2018.12.009.
    [Google Scholar]
  114. Poros, Z., A.Mindszenty, F.Molnár, et al. 2012. “Imprints of Hydrocarbon‐Bearing Basinal Fluids on a Karst System: Mineralogical and Fluid Inclusion Studies From the Buda Hills, Hungary.” International Journal of Earth Sciences101, no. 2: 429–452. https://doi.org/10.1007/s00531‐011‐0677‐8.
    [Google Scholar]
  115. Rawling, G. C., L. B.Goodwin, and J. L.Wilson. 2001. “Internal Architecture, Permeability Structure, and Hydrologic Significance of Contrasting Fault‐Zone Types.” Geology29: 43–46. https://doi.org/10.1130/0091‐7613.
    [Google Scholar]
  116. Rubatto, D., and J.Hermann. 2007. “Experimental Zircon/Melt and Zircon/Garnet Trace Element Partitioning and Implications for the Geochronology of Crustal Rocks.” Chemical Geology241: 38–61. https://doi.org/10.1016/j.chemgeo.2007.01.027.
    [Google Scholar]
  117. Salánki, Z.1996. “Structural Geological Investigation of the Pilis Fault (in Hungarian).” MSc Thesis, Eötvös Univ., Department of Applied and Environmental Geology.
  118. Sant, K., D. V.Palcu, O.Mandic, and W.Krijgsman. 2017. “Changing Seas in the Early–Middle Miocene of Central Europe: A Mediterranean Approach to Paratethyan Stratigraphy.” Terra Nova29: 273–281. https://doi.org/10.1111/ter.12273.
    [Google Scholar]
  119. Šarinová, K., S.Rybár, F.Jourdan, et al. 2021. “40Ar/39Ar Geochronology of Burdigalian Paleobotanical Localities in the Central Paratethys (South Slovakia).” Geologica Acta19: 1–19. https://doi.org/10.1344/GeologicaActa2021.19.5.
    [Google Scholar]
  120. Schärer, U.1984. “The Effect of Initial230th Disequilibrium on Young U‐Pb Ages: The Makalu Case, Himalaya.” Earth and Planetary Science Letters67: 191–204. https://doi.org/10.1016/0012‐821X(84)90114‐6.
    [Google Scholar]
  121. Scherf, E.1922. “Hidrotermale Gesteinsmetamorphose im Buda‐Pilischer Gebirge.” Hidrológiai KözlönyII: 19–88.
    [Google Scholar]
  122. Schréter, Z.1912. “Harmadkori és Pleisztocén Hévforrások Tevékenységének Nyomai a Budai Hegyekben.” Annals of the Geological Institute of Hungary19: 181–231.
    [Google Scholar]
  123. Selmeczi, I., L.Fodor, R.Lukács, et al. 2023. “Alsó és középső miocén.” In Magyarország Litosztratigráfiai Egységeinek Leírása II. Kainozoós Képződmények, edited by E.Babinszki, O.Piros, G.Csillag, et al., 52–107. Szabályozott Tevékenységek Felügyeleti Hatósága.
    [Google Scholar]
  124. Sippel, R. F.1968. “Sandstone Petrology: Evidence From Luminescence Petrography.” Journal of Sedimentary Petrology38: 530–554.
    [Google Scholar]
  125. Skurtveit, E., A.Torabi, R.Alikarami, and A.Braathen. 2015. “Fault Baffle to Conduit Developments: Reactivation and Calcite Cementation of Deformation Band Fault in Aeolian Sandstone.” Petroleum Geoscience21: 3–16. https://doi.org/10.1144/petgeo2014‐031.
    [Google Scholar]
  126. Sláma, J., J.Košler, D. J.Condon, et al. 2008. “Plešovice Zircon—A New Natural Reference Material for U–Pb and hf Isotopic Microanalysis.” Chemical Geology249: 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005.
    [Google Scholar]
  127. Sliwinski, J. T., M.Guillong, C.Liebske, I.Dunkl, A.von Quadt, and O.Bachmann. 2017. “Improved Accuracy of LA‐ICP‐MS U‐Pb Ages of Cenozoic Zircons by Alpha Dose Correction.” Chemical Geology472: 8–21. https://doi.org/10.1016/j.chemgeo.2017.09.014.
    [Google Scholar]
  128. Soliva, R., G.Ballas, H.Fossen, and S.Philit. 2016. “Tectonic Regime Controls Clustering of Deformation Bands in Porous Sandstone.” Geology44, no. 6: 423–426. https://doi.org/10.1130/G37585.1.
    [Google Scholar]
  129. Sztanó, O., Á.Magyari, and A.Nagymarosy. 1998. “Az Esztergomi‐Medence Oligocén Képződményeinek Integrált Sztratigráfiai Vizsgálata: II. Oligocén Szekvenciák és Értelmezésük.” Földtani Közlöny128, no. 2–3: 455–486.
    [Google Scholar]
  130. Sztanó, O., and G.Tari. 1993. “Early Miocene Basin Evolution in Northern Hungary: Tectonics and Eustacy.” Tectonophysics226: 485–502.
    [Google Scholar]
  131. Tari, G.1994. “Alpine Tectonics of the Pannonian Basin.” PhD Thesis, Rice University, 501.
  132. Tari, G., G.Bada, D. R.Boote, et al. 2023. “The Pannonian Super Basin: A Brief Overview.” AAPG Bulletin107, no. 8: 1391–1417. https://doi.org/10.1306/02172322098.
    [Google Scholar]
  133. Tari, G., T.Báldi, and M.Báldi‐Beke. 1993. “Paleogene Retroarc Flexural Basin Beneath the Neogene Pannonian Basin: A Geodynamical Model.” Tectonophysics226: 433–455. https://doi.org/10.1016/0040‐1951(93)90131‐3.
    [Google Scholar]
  134. Tari, G., F.Horváth, and J.Rumpler. 1992. “Styles of Extension in the Pannonian Basin.” Tectonophysics208: 203–219. https://doi.org/10.1016/b978‐0‐444‐89912‐5.50016‐8.
    [Google Scholar]
  135. Torabi, A., F.Balsamo, F. C. C.Nogueira, et al. 2021. “Variation of Thickness, Internal Structure and Petrophysical Properties in a Deformation Band Fault Zone in Siliciclastic Rocks.” Marine and Petroleum Geology133: 105297. https://doi.org/10.1016/j.marpetgeo.2021.105297.
    [Google Scholar]
  136. Torabi, A., and H.Fossen. 2009. “Spatial Variation of Microstructure and Petrophysical Properties Along Deformation Bands in Reservoir Sandstones.” AAPG Bulletin93: 919–938. https://doi.org/10.1306/03270908161.
    [Google Scholar]
  137. Underhill, J. R., and N. H.Woodcock. 1987. “Faulting Mechanisms in High‐Porosity Sandstones; New Red Sandstone, Arran, Scotland.” Geological Society, London, Special Publications29: 91–100.
    [Google Scholar]
  138. von Quadt, A., J.‐F.Wotzlaw, Y.Buret, S. J. E.Large, I.Peytcheva, and A.Trinquier. 2016. “High‐Precision Zircon U/pb Geochronology by ID‐TIMS Using New 1013 Ohm Resistors.” Journal of Analytical Atomic Spectrometry31: 658–665. https://doi.org/10.1039/C5JA00457H.
    [Google Scholar]
  139. Walderhaug, O.1996. “Kinetic Modeling of Quartz Cementation and Porosity Loss in Deeply Buried Sandstone Reservoirs.” AAPG Bulletin80: 731–745.
    [Google Scholar]
  140. Wang, Z., W.Li, Q.Wang, S.Liu, Y.Hu, and K.Fan. 2019. “Relationships Between the Petrographic, Physical and Mechanical Characteristics of Sedimentary Rocks in Jurassic Weakly Cemented Strata.” Environment and Earth Science78: 131. https://doi.org/10.1007/s12665‐019‐8130‐6.
    [Google Scholar]
  141. Webb, P., M.Wiedenbeck, and J.Glodny. 2020. “G‐Chron 2019 – Round 1: An International Proficiency Test for U‐Pb Geochronology Laboratories; Report on the 2019 Round of G‐Chron Based on Palaeozoic Zircon Rak‐17 (Distribution: September 2019),” (Scientific Technical Report STR ‐ Data; 21/06), GFZ German Research Centre for Geosciences, 8. https://doi.org/10.48440/GFZ.B103‐21061.
  142. Wei, D., Z.Gao, T.Fan, Y.Niu, and R.Guo. 2021. “Volcanic Events‐Related Hydrothermal Dolomitisation and Silicification Controlled by Intra‐Cratonic Strike‐Slip Fault Systems: Insights From the Northern Slope of the Tazhong Uplift, Tarim Basin, China.” Basin Research33, no. 4: 2411–2434. https://doi.org/10.1111/bre.12562.
    [Google Scholar]
  143. Wein, G.1977. Tectonics of the Buda Mts (in Hungarian), 76. Occasional Publications of the Geological Institute of Hungary.
    [Google Scholar]
  144. Wiedenbeck, M., P.Allé, F.Corfu, et al. 1995. “Three Natural Zircon Standards for U‐Th‐Pb, Lu‐Hf, Trace Element and Ree Analyses.” Geostandards Newsletter19: 1–23. https://doi.org/10.1111/j.1751‐908X.1995.tb00147.x.
    [Google Scholar]
  145. Williams, L. A., and D. A.Crerar. 1985. “Silica Diagenesis; 2, General Mechanisms.” Journal of Sedimentary Petrology55: 312–321.
    [Google Scholar]
  146. Williams, R. T., L. B.Goodwin, and P. S.Mozley. 2017. “Diagenetic Controls on the Evolution of Fault‐Zone Architecture and Permeability Structure: Implications for Episodicity of Fault‐Zone Fluid Transport in Extensional Basins.” Bulletin Geological Society of America129: 464–478. https://doi.org/10.1130/B31443.1.
    [Google Scholar]
  147. Worden, R. H., and S.Morad. 2000. “Quartz Cementation in Sandstones: A Review of the Key Controversies.” In Quartz Cementation in Sandstones: International Association of Sedimentologists Special Publication 29, edited by R. H.Worden and S.Morad, 1–20. Blackwell Science. https://doi.org/10.1002/9781444304237.
    [Google Scholar]
/content/journals/10.1111/bre.70043
Loading
/content/journals/10.1111/bre.70043
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error