1887
Volume 37, Issue 3
  • E-ISSN: 1365-2117
PDF

Abstract

[

By doing a Source‐to‐Sink quantification of sediments fluxes with three methods for all compartments of a coupled catchment–deep‐sea fan system, we illustrate the influence of external parameters, such as climate and tectonic, on the sedimentary dynamics and signal propagation in this system during the Pleistocene and Holocene.

, ABSTRACT

Quantifying sediment fluxes is an essential part of the Source‐to‐Sink approach in the understanding of sedimentary systems. However, the transfer of sediment from the source to the sink and the factors controlling it are still poorly understood. We focus on a small catchment coupled with its offshore deep‐sea fan: the Sithas system (Gulf of Corinth, Greece). We restore the volume of sediment eroded in the catchment using geomorphic constraints; quantify the volume of sediment deposited in the offshore basin, after revising the age model; and calculate erosional fluxes using the BQART model. This allows for the comparison of the reconstructed fluxes of sediment eroded and deposited since 800 ka across the entire source‐to‐sink system. For the Sithas coupled catchment‐deep‐sea fan system, we show an increase in sedimentary fluxes both in erosion and deposition since 800 ka and particularly since 400 ka, where cyclic variations of ~120 kyr are recorded in erosion and deposition compartments. We suggest that the overall increase in flux results from a change in the catchment size due to the tectonic evolution of the region. The record of cyclic variations from 400 kyr in fluxes matches with the maturity of the system and with the intensification of glacial cycles and tectonic constraints migration. We also suggest that the discrepancy between erosion and deposition reflects a temporary storage between source and sink areas, probably along the coast. This has changed since 30 ka, introducing the last phase of evolution characterised by phased source and sink dynamics, suggesting a lack of temporary storage and a connection between river outlet and submarine canyon head. This study shows that sediment fluxes are controlled by the catchment's size as well as by climatic and tectonic factors and that even a small sedimentary system can be affected by temporary sediment storage.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70044
2025-06-21
2025-07-20
Loading full text...

Full text loading...

/deliver/fulltext/bre/37/3/bre70044.html?itemId=/content/journals/10.1111/bre.70044&mimeType=html&fmt=ahah

References

  1. Allen, P. A.2008. “Time Scales of Tectonic Landscapes and Their Sediment Routing Systems.” Geological Society, London, Special Publications296: 7–28. https://doi.org/10.1144/SP296.2.
    [Google Scholar]
  2. Armijo, R., B.Meyer, G.King, A.Rigo, and D.Papanastassiou. 1996. “Quaternary Evolution of the Corinth Rift and Its Implications for the Late Cenozoic Evolution of the Aegean.” Geophysical Journal International126, no. 1: 11. https://doi.org/10.1111/j.1365‐246X.1996.tb05264.x.
    [Google Scholar]
  3. Armitage, J. J., P. M.Burgess, G. J.Hampson, and P. A.Allen. 2018. “Deciphering the Origin of Cyclical Gravel Front and Shoreline Progradation and Retrogradation in the Stratigraphic Record.” Basin Research30, no. S1: 15–35. https://doi.org/10.1111/bre.12203.
    [Google Scholar]
  4. Armitage, J. J., R. A.Duller, A. C.Whittaker, and P. A.Allen. 2011. “Transformation of Tectonic and Climatic Signals From Source to Sedimentary Archive.” Nature Geoscience4, no. 4: 231–235. https://doi.org/10.1038/ngeo1087.
    [Google Scholar]
  5. Baudin, F., C.Rabouille, and B.Dennielou. 2020. “Routing of Terrestrial Organic Matter From The Congo River to the Ultimate Sink in the Abyss: A Mass Balance Approach (André Dumont Medallist Lecture 2017).” Geologica Belgica23, no. 1–2: xx. https://doi.org/10.20341/gb.2020.004.
    [Google Scholar]
  6. Braun, J., C.Voisin, A. T.Gourlan, and C.Chauvel. 2015. “Erosional Response of an Actively Uplifting Mountain Belt to Cyclic Rainfall Variations.” Earth Surface Dynamics3, no. 1: 1–14. https://doi.org/10.5194/esurf‐3‐1‐2015.
    [Google Scholar]
  7. Briole, P., A.Rigo, H.Lyon‐Caen, et al. 2000. “Active Deformation of the Corinth Rift, Greece: Results From Repeated Global Positioning System Surveys Between 1990 and 1995.” Journal of Geophysical Research: Solid Earth105, no. B11: 25605–25625. https://doi.org/10.1029/2000JB900148.
    [Google Scholar]
  8. Carretier, S., B.Poisson, R.Vassallo, E.Pepin, and M.Farias. 2009. “Tectonic Interpretation of Transient Stage Erosion Rates at Different Spatial Scales in an Uplifting Block.” Journal of Geophysical Research: Earth Surface114, no. F2. https://doi.org/10.1029/2008JF001080.
    [Google Scholar]
  9. Carretier, S., V.Regard, L.Leanni, and M.Farías. 2019. “Long‐Term Dispersion of River Gravel in a Canyon in the Atacama Desert, Central Andes, Deduced From Their 10Be Concentrations.” Scientific Reports9, no. 1: 17763. https://doi.org/10.1038/s41598‐019‐53806‐x.
    [Google Scholar]
  10. Castelltort, S., C.Fillon, É.Lasseur, et al. 2023. The Source‐To‐Sink Vade‐Mecum: History, Concepts and Tools|Vade‐Mecum de L'approche Source‐To‐Sink: Histoire, Concepts et Outils. SEPM (Society for Sedimentary Geology).
    [Google Scholar]
  11. Castelltort, S., and J.van den Driessche. 2003. “How Plausible Are High‐Frequency Sediment Supply‐Driven Cycles in the Stratigraphic Record?” Sedimentary Geology157, no. 1‐2: 3–13. https://doi.org/10.1016/S0037‐0738(03)00066‐6.
    [Google Scholar]
  12. Collier, R. E.1990. “Eustatic and Tectonic Controls Upon Quaternary Coastal Sedimentation in the Corinth Basin, Greece.” Journal of the Geological Society147, no. 2: 301–314. https://doi.org/10.1144/gsjgs.147.2.0301.
    [Google Scholar]
  13. Collier, R. E., M. R.Leeder, M.Trout, G.Ferentinos, E.Lyberis, and G.Papatheodorou. 2000. “High Sediment Yields and Cool, Wet Winters: Test of Last Glacial Paleoclimates in the Northern Mediterranean.” Geology28, no. 11: 999. https://doi.org/10.1130/0091‐7613(2000)28<999:HSYACW>2.0.CO;2.
    [Google Scholar]
  14. Collier, R. E. L., M. R.Leeder, P. J.Rowe, and T. C.Atkinson. 1992. “Rates of Tectonic Uplift in the Corinth and Megara Basins, Central Greece.” Tectonics11, no. 6: 1159–1167. https://doi.org/10.1029/92TC01565.
    [Google Scholar]
  15. de Gelder, G., D.Fernández‐Blanco, D.Melnick, et al. 2019. “Lithospheric Flexure and Rheology Determined by Climate Cycle Markers in the Corinth Rift.” Scientific Reports9, no. 1: 4260. https://doi.org/10.1038/s41598‐018‐36377‐1.
    [Google Scholar]
  16. de Gelder, G., J.Jara‐Muñoz, D.Melnick, et al. 2020. “How Do Sea‐Level Curves Influence Modeled Marine Terrace Sequences?” Quaternary Science Reviews229: 106132. https://doi.org/10.1016/j.quascirev.2019.106132.
    [Google Scholar]
  17. de Lavaissière, L., S.Bonnet, A.Guyez, and P.Davy. 2022. “Autogenic Knickpoints in Laboratory Landscape Experiments.” Earth Surface Dynamics10, no. 2: 229–246. https://doi.org/10.5194/esurf‐10‐229‐2022.
    [Google Scholar]
  18. Demoulin, A., A.Beckers, and A.Hubert‐Ferrari. 2015. “Patterns of Quaternary Uplift of the Corinth Rift Southern Border (N Peloponnese, Greece) Revealed by Fluvial Landscape Morphometry.” Geomorphology246: 188–204. https://doi.org/10.1016/j.geomorph.2015.05.032.
    [Google Scholar]
  19. Dia, A., A.Cohen, R.O'Nions, and J.Jackson. 1997. “Rates of Uplift Investigated Through 230Th Dating in the Gulf of Corinth (Greece).” Chemical Geology138, no. 3‐4: 171–184. https://doi.org/10.1016/S0009‐2541(97)00010‐7.
    [Google Scholar]
  20. Duller, R. A., J. J.Armitage, H. R.Manners, S.Grimes, and T. D.Jones. 2019. “Delayed Sedimentary Response to Abrupt Climate Change at the Paleocene‐Eocene Boundary, Northern Spain.” Geology47, no. 2: 159–162. https://doi.org/10.1130/G45631.1.
    [Google Scholar]
  21. Gawthorpe, R. L., N.Fabregas, S.Pechlivanidou, et al. 2022. “Late Quaternary Mud‐Dominated, Basin‐Floor Sedimentation of the Gulf of Corinth, Greece: Implications for Deep‐Water Depositional Processes and Controls on Syn‐Rift Sedimentation.” Basin Research34, no. 5: 1567–1600. https://doi.org/10.1111/bre.12671.
    [Google Scholar]
  22. Godard, V., G. E.Tucker, G.Burch Fisher, D. W.Burbank, and B.Bookhagen. 2013. “Frequency‐Dependent Landscape Response to Climatic Forcing.” Geophysical Research Letters40, no. 5: 859–863. https://doi.org/10.1002/grl.50253.
    [Google Scholar]
  23. Griffin, C., R. A.Duller, and K. M.Straub. 2023. “The Degradation and Detection of Environmental Signals in Sediment Transport Systems.” Science Advances9, no. 44: eadi8046. https://doi.org/10.1126/sciadv.adi8046.
    [Google Scholar]
  24. Guillocheau, F., D.Rouby, C.Robin, et al. 2012. “Quantification and Causes of the Terrigeneous Sediment Budget at the Scale of a Continental Margin: A New Method Applied to the Namibia–South Africa Margin.” Basin Research24, no. 1: 3–30. https://doi.org/10.1111/j.1365‐2117.2011.00511.x.
    [Google Scholar]
  25. Guyez, A., S.Bonnet, T.Reimann, S.Carretier, and J.Wallinga. 2023. “A Novel Approach to Quantify Sediment Transfer and Storage in Rivers—Testing Feldspar Single‐Grain pIRIR Analysis and Numerical Simulations.” Journal of Geophysical Research: Earth Surface128, no. 2: e2022JF006727. https://doi.org/10.1029/2022JF006727.
    [Google Scholar]
  26. Head, M. J., and P. L.Gibbard. 2015. “Early–Middle Pleistocene Transitions: Linking Terrestrial and Marine Realms.” Quaternary International389: 7–46. https://doi.org/10.1016/j.quaint.2015.09.042.
    [Google Scholar]
  27. Hinderer, M.2012. “From Gullies to Mountain Belts: A Review of Sediment Budgets at Various Scales.” Sedimentary Geology280: 21–59. https://doi.org/10.1016/j.sedgeo.2012.03.009.
    [Google Scholar]
  28. Jerolmack, D. J., and C.Paola. 2010. “Shredding of Environmental Signals by Sediment Transport.” Geophysical Research Letters37, no. 19. https://doi.org/10.1029/2010GL044638.
    [Google Scholar]
  29. Jones, M. A., P. L.Heller, E.Roca, M.Garcés, and L.Cabrera. 2004. “Time Lag of Syntectonic Sedimentation Across an Alluvial Basin: Theory and Example From the Ebro Basin, Spain.” Basin Research16, no. 4: 489–506. https://doi.org/10.1111/j.1365‐2117.2004.00244.x.
    [Google Scholar]
  30. Keraudren, B., and D.Sorel. 1987. “The Terraces of Corinth (Greece)—A Detailed Record of Eustatic Sea‐Level Variations During the Last 500,000 Years.” Marine Geology77, no. 1‐2: 99–107. https://doi.org/10.1016/0025‐3227(87)90085‐5.
    [Google Scholar]
  31. Leeder, M. R., C.Portman, J. E.Andrews, et al. 2005. “Normal Faulting and Crustal Deformation, Alkyonides Gulf and Perachora Peninsula, Eastern Gulf of Corinth Rift, Greece.” Journal of the Geological Society162, no. 3: 549–561. https://doi.org/10.1144/0016‐764904‐075.
    [Google Scholar]
  32. Lykousis, V., D.Sakellariou, I.Moretti, and H.Kaberi. 2007. “Late Quaternary Basin Evolution of the Gulf of Corinth: Sequence Stratigraphy, Sedimentation, Fault–Slip and Subsidence Rates.” Tectonophysics440, no. 1‐4: 29–51. https://doi.org/10.1016/j.tecto.2006.11.007.
    [Google Scholar]
  33. Masson‐Delmotte, V., B.Stenni, K.Pol, et al. 2010. “EPICA Dome C Record of Glacial and Interglacial Intensities.” Quaternary Science Reviews29, no. 1‐2: 113–128. https://doi.org/10.1016/j.quascirev.2009.09.030.
    [Google Scholar]
  34. McNab, F., T. F.Schildgen, J. M.Turowski, and A. D.Wickert. 2023. “Diverse Responses of Alluvial Rivers to Periodic Environmental Change.” Geophysical Research Letters50, no. 10: e2023GL103075. https://doi.org/10.1029/2023GL103075.
    [Google Scholar]
  35. McNeill, L. C., D. J.Shillington, G. D. O.Carter, et al. 2019. “High‐Resolution Record Reveals Climate‐Driven Environmental and Sedimentary Changes in an Active Rift.” Scientific Reports9, no. 1: 3116. https://doi.org/10.1038/s41598‐019‐40022‐w.
    [Google Scholar]
  36. Mohamed, M. A., R. E. L.Collier, D. M.Hodgson, et al. 2024. “Sediment Flux Variation as a Record of Climate Change in the Late Quaternary Deep‐Water Active Corinth Rift, Greece.” Basin Research36, no. 5: e12896. https://doi.org/10.1111/bre.12896.
    [Google Scholar]
  37. Mommersteeg, H. J. P. M., M. F.Loutre, R.Young, T. A.Wijmstra, and H.Hooghiemstra. 1995. “Orbital Forced Frequencies in the 975 000 Year Pollen Record From Tenagi Philippon (Greece).” Climate Dynamics11, no. 1: 4–24. https://doi.org/10.1007/BF00220674.
    [Google Scholar]
  38. Moretti, I., V.Lykousis, D.Sakellariou, J.‐Y.Reynaud, B.Benziane, and A.Prinzhoffer. 2004. “Sedimentation and Subsidence Rate in the Gulf of Corinth: What We Learn From the Marion Dufresne's Long‐Piston Coring.” Comptes Rendus Geoscience336, no. 4‐5: 291–299. https://doi.org/10.1016/j.crte.2003.11.011.
    [Google Scholar]
  39. Moretti, I., D.Sakellariou, V.Lykousis, and L.Micarelli. 2003. “The Gulf of Corinth: An Active Half Graben?” Journal of Geodynamics36, no. 1–2: 323–340. https://doi.org/10.1016/S0264‐3707(03)00053‐X.
    [Google Scholar]
  40. Moussirou, B., and S.Bonnet. 2018. “Modulation of the Erosion Rate of an Uplifting Landscape by Long‐Term Climate Change: An Experimental Investigation.” Geomorphology303: 456–466. https://doi.org/10.1016/j.geomorph.2017.12.010.
    [Google Scholar]
  41. Muravchik, M., G. A.Henstra, G. T.Eliassen, et al. 2020. “Deep‐Water Sediment Transport Patterns and Basin Floor Topography in Early Rift Basins: Plio‐Pleistocene Syn‐Rift of the Corinth Rift, Greece.” Basin Research32, no. 5: 1184–1212. https://doi.org/10.1111/bre.12423.
    [Google Scholar]
  42. Nixon, C. W., L. C.McNeill, J. M.Bull, et al. 2016. “Rapid Spatiotemporal Variations in Rift Structure During Development of the Corinth Rift, Central Greece.” Tectonics35, no. 5: 1225–1248. https://doi.org/10.1002/2015TC004026.
    [Google Scholar]
  43. Nixon, C. W., L. C.McNeill, R. L.Gawthorpe, et al. 2024. “Increasing Fault Slip Rates Within the Corinth Rift, Greece: A Rapidly Localising Active Rift Fault Network.” Earth and Planetary Science Letters636: 118716. https://doi.org/10.1016/j.epsl.2024.118716.
    [Google Scholar]
  44. Nyberg, B., W.Helland‐Hansen, R.Gawthorpe, F.Tillmans, and P.Sandbakken. 2021. “Assessing First‐Order BQART Estimates for Ancient Source‐To‐Sink Mass Budget Calculations.” Basin Research33, no. 4: 2435–2452. https://doi.org/10.1111/bre.12563.
    [Google Scholar]
  45. Ori, G. G.1989. “Geologic History of the Extensional Basin of the Gulf of Corinth (?Miocene‐Pleistocene), Greece.” Geology17, no. 10: 918. https://doi.org/10.1130/0091‐7613(1989)017<0918:GHOTEB>2.3.CO;2.
    [Google Scholar]
  46. Pazzaglia, F. J., and M. T.Brandon. 1996. “Macrogeomorphic Evolution of the Post‐Triassic Appalachian Mountains Determined by Deconvolution of the Offshore Basin Sedimentary Record.” Basin Research8, no. 3: 255–278. https://doi.org/10.1046/j.1365‐2117.1996.00274.x.
    [Google Scholar]
  47. Pedoja, K., L.Husson, M. E.Johnson, et al. 2014. “Coastal Staircase Sequences Reflecting Sea‐Level Oscillations and Tectonic Uplift During the Quaternary and Neogene.” Earth‐Science Reviews132: 13–38. https://doi.org/10.1016/j.earscirev.2014.01.007.
    [Google Scholar]
  48. Railsback, L. B., P. L.Gibbard, M. J.Head, N. R. G.Voarintsoa, and S.Toucanne. 2015. “An Optimized Scheme of Lettered Marine Isotope Substages for the Last 1.0 Million Years, and the Climatostratigraphic Nature of Isotope Stages and Substages.” Quaternary Science Reviews111: 94–106. https://doi.org/10.1016/j.quascirev.2015.01.012.
    [Google Scholar]
  49. Repasch, M., H.Wittmann, J. S.Scheingross, et al. 2020. “Sediment Transit Time and Floodplain Storage Dynamics in Alluvial Rivers Revealed by Meteoric 10 be.” Journal of Geophysical Research: Earth Surface125, no. 7: e2019JF005419. https://doi.org/10.1029/2019JF005419.
    [Google Scholar]
  50. Rohais, S., S.Bonnet, and R.Eschard. 2012. “Sedimentary Record of Tectonic and Climatic Erosional Perturbations in an Experimental Coupled Catchment‐Fan System.” Basin Research24, no. 2: 198–212. https://doi.org/10.1111/j.1365‐2117.2011.00520.x.
    [Google Scholar]
  51. Rohais, S., R.Eschard, M.Ford, F.Guillocheau, and I.Moretti. 2007. “Stratigraphic Architecture of the Plio‐Pleistocene Infill of the Corinth Rift: Implications for Its Structural Evolution.” Tectonophysics440, no. 1‐4: 5–28. https://doi.org/10.1016/j.tecto.2006.11.006.
    [Google Scholar]
  52. Rohais, S., J. P.Lovecchio, V.Abreu, M.Miguez, and S.Paulin. 2021. “High‐Resolution Sedimentary Budget Quantification—Example From the Cenozoic Deposits in the Pelotas Basin, South Atlantic.” Basin Research33, no. 4: 2252–2280. https://doi.org/10.1111/bre.12556.
    [Google Scholar]
  53. Rohais, S., and I.Moretti. 2017. Structural and Stratigraphic Architecture of the Corinth Rift (Greece): An Integrated Onshore to Offshore Basin‐Scale Synthesis: Lithosphere Dynamics and Sedimentary Basins of the Arabian Plate and Surrounding Areas, 89–120. https://doi.org/10.1007/978‐3‐319‐44726‐1_5.
    [Google Scholar]
  54. Romans, B. W., S.Castelltort, J. A.Covault, A.Fildani, and J. P.Walsh. 2016. “Environmental Signal Propagation in Sedimentary Systems Across Timescales.” Earth‐Science Reviews153: 7–29. https://doi.org/10.1016/j.earscirev.2015.07.012.
    [Google Scholar]
  55. Ronov, A. B., V. E.Khain, A. N.Balukhovsky, and K. B.Seslavinsky. 1980. “Quantitative Analysis of Phanerozoic Sedimentation.” Sedimentary Geology25, no. 4: 311–325. https://doi.org/10.1016/0037‐0738(80)90067‐6.
    [Google Scholar]
  56. Rouby, D., S.Bonnet, F.Guillocheau, et al. 2009. “Sediment Supply to the Orange Sedimentary System Over the Last 150My: An Evaluation From Sedimentation/Denudation Balance.” Marine and Petroleum Geology26, no. 6: 782–794. https://doi.org/10.1016/j.marpetgeo.2008.08.004.
    [Google Scholar]
  57. Rouby, D., J.Ye, D.Chardon, A.Loparev, M.Wildman, and M.Dall'Asta. 2023. “Source‐To‐Sink Sedimentary Budget of the African Equatorial Atlantic Rifted Margin.” Geochemistry, Geophysics, Geosystems24, no. 12: e2023GC010901. https://doi.org/10.1029/2023GC010901.
    [Google Scholar]
  58. Sadler, P. M.1999. “The Influence of Hiatuses on Sediment Accumulation Rates.” GeoResearch Forum5: 15–40.
    [Google Scholar]
  59. Sakellariou, D., V.Lykousis, S.Alexandri, et al. 2007. “Faulting, Seismic‐Stratigraphic Architecture and Late Quaternary Evolution of the Gulf of Alkyonides Basin–East Gulf of Corinth, Central Greece.” Basin Research19, no. 2: 273–295. https://doi.org/10.1111/j.1365‐2117.2007.00322.x.
    [Google Scholar]
  60. Schumer, R., and D. J.Jerolmack. 2009. “Real and Apparent Changes in Sediment Deposition Rates Through Time.” Journal of Geophysical Research: Earth Surface114, no. F3. https://doi.org/10.1029/2009JF001266.
    [Google Scholar]
  61. Schumm, S. A., and D. K.Rea. 1995. “Sediment Yield From Disturbed Earth Systems.” Geology23, no. 5: 391. https://doi.org/10.1130/0091‐7613(1995)023<0391:SYFDES>2.3.CO;2.
    [Google Scholar]
  62. Sébrier, M.1977. Tectonique recente d'une transversale a l'Arc Egeen: le Golfe de Corinthe et ses regions peripheriques Thèse de doctorat, Paris XI Orsay.
  63. Shillington, D. J., L. C.McNeill, and G. D. O.Carter. 2019. “Expedition 381 Preliminary Report: Corinth Active Rift Development.” International Ocean Discovery Program. https://doi.org/10.14379/iodp.pr.381.2019.
  64. Simpson, G., and S.Castelltort. 2012. “Model Shows That Rivers Transmit High‐Frequency Climate Cycles to the Sedimentary Record.” Geology40, no. 12: 1131–1134. https://doi.org/10.1130/G33451.1.
    [Google Scholar]
  65. Somme, T. O., D. J. W.Piper, M. E.Deptuck, and W.Helland‐Hansen. 2011. “Linking Onshore‐Offshore Sediment Dispersal in the Golo Source‐to‐Sink System (Corsica, France) During the Late Quaternary.” Journal of Sedimentary Research81, no. 2: 118–137. https://doi.org/10.2110/jsr.2011.11.
    [Google Scholar]
  66. Spratt, R. M., and L. E.Lisiecki. 2016. “A Late Pleistocene Sea Level Stack.” Climate of the Past12, no. 4: 1079–1092. https://doi.org/10.5194/cp‐12‐1079‐2016.
    [Google Scholar]
  67. Straub, K. M., R. A.Duller, B. Z.Foreman, and E. A.Hajek. 2020. “Buffered, Incomplete, and Shredded: The Challenges of Reading an Imperfect Stratigraphic Record.” Journal of Geophysical Research: Earth Surface125, no. 3: e2019JF005079. https://doi.org/10.1029/2019JF005079.
    [Google Scholar]
  68. Syvitski, J. P. M., and J. D.Milliman. 2007. “Geology, Geography, and Humans Battle for Dominance Over the Delivery of Fluvial Sediment to the Coastal Ocean.” Journal of Geology115, no. 1: 1–19. https://doi.org/10.1086/509246.
    [Google Scholar]
  69. Taylor, B., J. R.Weiss, A. M.Goodliffe, M.Sachpazi, M.Laigle, and A.Hirn. 2011. “The Structures, Stratigraphy and Evolution of the Gulf of Corinth Rift, Greece.” Geophysical Journal International185, no. 3: 1189–1219. https://doi.org/10.1111/j.1365‐246X.2011.05014.x.
    [Google Scholar]
  70. Toby, S. C., R. A.Duller, S.de Angelis, and K. M.Straub. 2019. “A Stratigraphic Framework for the Preservation and Shredding of Environmental Signals.” Geophysical Research Letters46, no. 11: 5837–5845. https://doi.org/10.1029/2019GL082555.
    [Google Scholar]
  71. Tofelde, S., A.Bernhardt, L.Guerit, and B. W.Romans. 2021. “Times Associated With Source‐to‐Sink Propagation of Environmental Signals During Landscape Transience.” Frontiers in Earth Science9: 628315. https://doi.org/10.3389/feart.2021.628315.
    [Google Scholar]
  72. Tzedakis, P. C., H.Hooghiemstra, and H.Pälike. 2006. “The Last 1.35 Million Years at Tenaghi Philippon: Revised Chronostratigraphy and Long‐Term Vegetation Trends.” Quaternary Science Reviews25, no. 23–24: 3416–3430. https://doi.org/10.1016/j.quascirev.2006.09.002.
    [Google Scholar]
  73. Watkins, S. E., A. C.Whittaker, R. E.Bell, et al. 2019. “Are Landscapes Buffered to High‐Frequency Climate Change? A Comparison of Sediment Fluxes and Depositional Volumes in the Corinth Rift, Central Greece, Over the Past 130 k.y.” GSA Bulletin131, no. 3‐4: 372–388. https://doi.org/10.1130/B31953.1.
    [Google Scholar]
  74. Whipple, K. X.2001. “Fluvial Landscape Response Time: How Plausible Is Steady‐State Denudation?” American Journal of Science301, no. 4‐5: 313–325. https://doi.org/10.2475/ajs.301.4‐5.313.
    [Google Scholar]
  75. Whipple, K. X., and G. E.Tucker. 2002. “Implications of Sediment‐Flux‐Dependent River Incision Models for Landscape Evolution.” Journal of Geophysical Research: Solid Earth107, no. B2: ETG‐3–1–ETG‐3–20. https://doi.org/10.1029/2000JB000044.
    [Google Scholar]
  76. Zelilidis, A.2000. “Drainage Evolution in a Rifted Basin, Corinth Graben, Greece.” Geomorphology35, no. 1–2: 69–85. https://doi.org/10.1016/S0169‐555X(00)00023‐4.
    [Google Scholar]
  77. Zhou, Z., A. C.Whittaker, R. E.Bell, and G. J.Hampson. 2024. “Unravelling Tectonic and Lithological Effects on Transient Landscapes in the Gulf of Corinth, Greece.” Basin Research36, no. 5: e12901. https://doi.org/10.1111/bre.12901.
    [Google Scholar]
/content/journals/10.1111/bre.70044
Loading
/content/journals/10.1111/bre.70044
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error