1887
Volume 37, Issue 5
  • E-ISSN: 1365-2117

Abstract

[ABSTRACT

Understanding the origin and evolution of fractures is critical for evaluating the long‐term sustainability of geothermal water production from carbonate reservoirs, an emerging low‐carbon energy source aligned with global carbon‐neutrality goals. In this study, we develop a fracture‐fluid evolution model for Mesoproterozoic carbonates of the North China Craton (NCC) by integrating U–Pb dating of fracture‐filling dolomites with petrological, micro‐CT, and multi‐isotopic (C, O, clumped and 87Sr/86Sr) analyses. Three principal phases were identified at ~1550 to 973 Ma, 669 to 597 Ma, and 106 to 58 Ma. Clumped isotope‐derived temperatures (57.1°C–93.6°C) and calculated burial depths (mostly < 2 km, with few reaching ~2.5 km) indicate predominantly shallow diagenetic conditions. Fluids responsible for Phases I–II fracturing were primarily seawater‐derived, whereas meteoric water dominated Phase III fracturing beginning in the late Mesozoic. Our results demonstrate that high reservoir connectivity—primarily driven by multiphase fracturing—exerts a first‐order control on reservoir quality, while porosity and pore‐throat dimensions play a secondary role. This connectivity, coupled with the absence of large karstic cavities, sustains high hydrostatic pressures and sustained geothermal yields. An estimated ~1.1 × 1022 J of geothermal energy—derived from meteoric recharge over recent geologic time—underscores the carbon‐neutral potential of these fractured carbonates. The integrated methodology presented here offers a transferable framework for evaluating fractured geothermal systems worldwide.

,

Tectonically Induced Fracturing and Fluid Evolution of Geothermal Mesoproterozoic Carbonates in the North China Craton.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70057
2025-09-15
2025-11-09
Loading full text...

Full text loading...

References

  1. Amidon, W. H., A. R.Kylander‐Clark, M. N.Barr, S. F.Graf, and D. P.West. 2022. “Pace of Passive Margin Tectonism Revealed by U‐Pb Dating of Fracture‐Filling Calcite.” Nature Communications13: 1–7.
    [Google Scholar]
  2. Bellefroid, E. J., N. J.Planavsky, N. R.Miller, U.Brand, and C.Wang. 2018. “Case Studies on the Utility of Sequential Carbonate Leaching for Radiogenic Strontium Isotope Analysis.” Chemical Geology497: 88–99.
    [Google Scholar]
  3. Blasco, M., L. F.Auqué, M. J.Gimeno, P.Acero, J.Gómez, and M. P.Asta. 2019. “Mineral Equilibria and Thermodynamic Uncertainties in the Geothermometrical Characterisation of Carbonate Geothermal Systems of Low Temperature. The Case of the Alhama‐Jaraba System (Spain).” Geothermics78: 170–182.
    [Google Scholar]
  4. Broothaers, M., D.Lagrou, B.Laenen, V.Harcouët‐Menou, and D.Vos. 2021. “Deep Geothermal Energy in the Lower Carboniferous Carbonates of the Campine Basin, Northern Belgium: An Overview From the 1950s to 2020.” Zeitschrift der Deutschen Gesellschaft für Geowissenschaften172: 211–225.
    [Google Scholar]
  5. Cui, Y., C.Zhu, N.Qiu, B.Tang, and S.Guo. 2019. “Radioactive Heat Production and Terrestrial Heat Flow in the Xiong'an Area, North China.” Energies12: 4608.
    [Google Scholar]
  6. Duan, W., X.Wang, M.Tan, L.Cui, X.Wang, and Z.Xiao. 2022. “Variable Phase Relationship Between Monsoon and Temperature in East Asia During Termination II Revealed by Oxygen and Clumped Isotopes of a Northern Chinese Stalagmite.” Geophysical Research Letters49: e2022GL098296.
    [Google Scholar]
  7. Duggal, R., R.Rayudu, J.Hinkley, J.Burnell, C.Wieland, and M.Keim. 2022. “A Comprehensive Review of Energy Extraction From Low‐Temperature Geothermal Resources in Hydrocarbon Fields.” Renewable and Sustainable Energy Reviews154: 111865.
    [Google Scholar]
  8. Fiebig, J., D.Bajnai, N.Löffler, et al. 2019. “Combined High‐Precision ∆48 and ∆47 Analysis of Carbonates.” Chemical Geology522: 186–191.
    [Google Scholar]
  9. Finn, C. A., P. A.Bedrosian, W. S.Holbrook, E.Auken, B. R.Bloss, and J.Crosbie. 2022. “Geophysical Imaging of the Yellowstone Hydrothermal Plumbing System.” Nature603: 643–647.
    [Google Scholar]
  10. Galili, N., A.Shemesh, R.Yam, et al. 2019. “The Geologic History of Seawater Oxygen Isotopes From Marine Iron Oxides.” Science365: 469–473.
    [Google Scholar]
  11. Goldscheider, N., J.Mádl‐Szőnyi, A.Erőss, and E.Schill. 2010. “Thermal Water Resources in Carbonate Rock Aquifers.” Hydrogeology Journal18: 1303–1318.
    [Google Scholar]
  12. Horita, J.2014. “Oxygen and Carbon Isotope Fractionation in the System Dolomite–Water–CO2 to Elevated Temperatures.” Geochimica et Cosmochimica Acta129: 111–124.
    [Google Scholar]
  13. Isson, T., and S.Rauzi. 2024. “Oxygen Isotope Ensemble Reveals Earth's Seawater, Temperature, and Carbon Cycle History.” Science383: 666–670.
    [Google Scholar]
  14. James, N. P., and P. W.Choquette. 1984. “Diagenesis 9. Limestones‐The Meteoric Diagenetic Environment.” Geoscience Canada11: 161–194.
    [Google Scholar]
  15. Jiang, L., C.Cai, R. H.Worden, et al. 2016. “Multiphase Dolomitization of Deeply Buried Cambrian Petroleum Reservoirs, Tarim Basin, North‐West China.” Sedimentology63: 2130–2157.
    [Google Scholar]
  16. Jiang, L., A.Hu, Y.Ou, et al. 2023. “Diagenetic Evolution and Effects on Reservoir Development of the Dengying and Longwangmiao Formations, Central Sichuan Basin, Southwestern China.” Petroleum Science20, no. 6: 3379–3393.
    [Google Scholar]
  17. Jiang, L., A.Shen, Z.Qiao, et al. 2024. “Hypogenic Karstic Cavities Formed by Tectonic‐Driven Fluid Mixing in the Ordovician Carbonates From the Tarim Basin, Northwestern China.” AAPG Bulletin108: 159–178.
    [Google Scholar]
  18. Jiang, L., A.Shen, Z.Wang, et al. 2022. “U–Pb Geochronology and Clumped Isotope Thermometry Study of Neoproterozoic Dolomites From China.” Sedimentology69: 2925–2945.
    [Google Scholar]
  19. Jiang, L., R. H.Worden, C.Cai, et al. 2014. “Dolomitization of Gas Reservoirs: The Upper Permian Changxing and Lower Triassic Feixianguan Formations, Northeast Sichuan Basin, China.” Journal of Sedimentary Research84: 792–815.
    [Google Scholar]
  20. John, C. M., and D.Bowen. 2016. “Community Software for Challenging Isotope Analysis: First Applications of ‘Easotope’ to Clumped Isotopes.” Rapid Communications in Mass Spectrometry30: 2285–2300.
    [Google Scholar]
  21. Klimchouk, A.2017. “Types and Settings of Hypogene Karst.” In Hypogene Karst Regions and Caves of the World, 1–39. Springer.
    [Google Scholar]
  22. Kusky, T., A.Polat, B. F.Windley, et al. 2016. “Insights Into the Tectonic Evolution of the North China Craton Through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents.” Earth‐Science Reviews162: 387–432.
    [Google Scholar]
  23. Kusky, T. M., B. F.Windley, and M.‐G.Zhai. 2007. “Tectonic Evolution of the North China Block: From Orogen to Craton to Orogen.” Geological Society, London, Special Publications280: 1–34.
    [Google Scholar]
  24. Li, P., Z.He, Z.Hu, Y.Zhang, and J.Feng. 2024. “Conditions for the Enrichment of Karst Hydrothermal Resources in Bohai Bay Basin.” Energy Geoscience5: 100234.
    [Google Scholar]
  25. Liu, Y., M.Zhao, T.He, X.Li, and S. W.Poulton. 2023. “Formation of Molar Tooth Structures in Low Sulfate Precambrian Oceans.” Geochimica et Cosmochimica Acta354: 62–73.
    [Google Scholar]
  26. Loucks, R. G.1999. “Paleocave Carbonate Reservoirs: Origins, Burial‐Depth Modifications, Spatial Complexity, and Reservoir Implications.” AAPG Bulletin83: 1795–1834.
    [Google Scholar]
  27. Mangenot, X., M.Gasparrini, A.Gerdes, M.Bonifacie, and V.Rouchon. 2018. “An Emerging Thermochronometer for Carbonate‐Bearing Rocks: ∆47/(U‐Pb).” Geology46: 1067–1070.
    [Google Scholar]
  28. Mangenot, X., M.Gasparrini, V.Rouchon, and M.Bonifacie. 2018. “Basin‐Scale Thermal and Fluid Flow Histories Revealed by Carbonate Clumped Isotopes (Δ47)–Middle Jurassic Carbonates of the Paris Basin Depocentre.” Sedimentology65: 123–150.
    [Google Scholar]
  29. Matthews, A., and A.Katz. 1977. “Oxygen Isotope Fractionation During the Dolomitization of Calcium Carbonate.” Geochimica et Cosmochimica Acta41: 1431–1438.
    [Google Scholar]
  30. Meng, Q.‐R., H.‐H.Wei, Y.‐Q.Qu, and S.‐X.Ma. 2011. “Stratigraphic and Sedimentary Records of the Rift to Drift Evolution of the Northern North China Craton at the Paleo‐To Mesoproterozoic Transition.” Gondwana Research20: 205–218.
    [Google Scholar]
  31. Montanari, D., A.Minissale, M.Doveri, et al. 2017. “Geothermal Resources Within Carbonate Reservoirs in Western Sicily (Italy): A Review.” Earth‐Science Reviews169: 180–201.
    [Google Scholar]
  32. Newell, R. G., and D.Raimi. 2020. Global Energy Outlook Comparison Methods: 2020 Update. Resources for the Future.
    [Google Scholar]
  33. Nuriel, P., R.Weinberger, A. R. C.Kylander‐Clark, B. R.Hacker, and J. P.Craddock. 2017. “The Onset of the Dead Sea Transform Based on Calcite Age‐Strain Analyses.” Geology45: 587–590.
    [Google Scholar]
  34. Paton, C., J.Hellstrom, B.Paul, J.Woodhead, and J.Hergt. 2011. “Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data.” Journal of Analytical Atomic Spectrometry26: 2508–2518.
    [Google Scholar]
  35. Peng, P., H.Xu, C.Wang, X.Su, F.Sun, and X.Wang. 2022. “Spatiotemporal Evolution of Large Igneous Provinces and Their Related Rifts in the North China Craton: Role in Craton Breakup and Destruction.” Geological Society, London, Special Publications518: 129–147.
    [Google Scholar]
  36. Qiao, H., C.Liu, J.Han, et al. 2025. “Deep Structure and Geothermal Genesis Model of Xiong'an New Area, Northern China: Insights From 3D Joint Inversion of Magnetotelluric and Gravity Data.” Geothermics131: 103382.
    [Google Scholar]
  37. Qiu, N.‐s., W.Xu, Y.‐h.Zuo, J.Chang, and C.‐l.Liu. 2017. “Evolution of Meso‐Cenozoic Thermal Structure and Thermal‐Rheological Structure of the Lithosphere in the Bohai Bay Basin, Eastern North China Craton.” Earth Science Frontiers24: 13–26.
    [Google Scholar]
  38. Roberts, N. M., K.Drost, M. S.Horstwood, et al. 2020. “Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA‐ICP‐MS) U–Pb Carbonate Geochronology: Strategies, Progress, and Limitations.” Geochronology2: 33–61.
    [Google Scholar]
  39. Roberts, N. M. W., E. T.Rasbury, R. R.Parrish, C. J.Smith, M. S. A.Horstwood, and D. J.Condon. 2017. “A Calcite Reference Material for LA‐ICP‐MS U‐Pb Geochronology.” Geochemistry, Geophysics, Geosystems18: 2807–2814.
    [Google Scholar]
  40. Saibi, H.2009. “Geothermal Resources in Algeria.” Renewable and Sustainable Energy Reviews13: 2544–2552.
    [Google Scholar]
  41. Shields, G., and J.Veizer. 2002. “Precambrian Marine Carbonate Isotope Database: Version 1.1.” Geochemistry, Geophysics, Geosystems3: 1–12.
    [Google Scholar]
  42. Spencer, C. J., R. N.Mitchell, and M.Brown. 2021. “Enigmatic Mid‐Proterozoic Orogens: Hot, Thin, and Low.” Geophysical Research Letters48: e2021GL093312.
    [Google Scholar]
  43. Swart, P. K., S. T.Murray, P. T.Staudigel, and D. A.Hodell. 2019. “Oxygen Isotopic Exchange Between CO2 and Phosphoric Acid: Implications for the Measurement of Clumped Isotopes in Carbonates.” Geochemistry, Geophysics, Geosystems20: 3730–3750.
    [Google Scholar]
  44. Wang, S., Z.Pang, J.Liu, P.Lin, S.Liu, and M.Yin. 2013. “Origin and Evolution Characteristics of Geothermal Water in the Niutuozhen Geothermal Field, North China Plain.” Journal of Earth Science24: 891–902.
    [Google Scholar]
  45. Wang, X., L.Cui, Y.Li, X.Huang, J.Zhai, and Z.Ding. 2016. “Determination of Clumped Isotopes in Carbonate Using Isotope Ratio Mass Spectrometry: Toward a Systematic Evaluation of a Sample Extraction Method Using a Static Porapak Q Absorbent Trap.” International Journal of Mass Spectrometry403: 8–14.
    [Google Scholar]
  46. Wang, Y., F.Ma, H.Xie, G.Wang, and Z.Wang. 2021. “Fracture Characteristics and Heat Accumulation of Jixianian Carbonate Reservoirs in the Rongcheng Geothermal Field, Xiong'an New Area.” Acta Geologica Sinica‐English Edition95: 1902–1914.
    [Google Scholar]
  47. Wang, Y., L.Wang, Y.Bai, et al. 2021. “Assessment of Geothermal Resources in the North Jiangsu Basin, East China, Using Monte Carlo Simulation.” Energies14: 259.
    [Google Scholar]
  48. Wang, Z., G.Jiang, C.Zhang, X.Tang, and S.Hu. 2019. “Estimating Geothermal Resources in Bohai Bay Basin, Eastern China, Using Monte Carlo Simulation.” Environmental Earth Sciences78: 1–13.
    [Google Scholar]
  49. Wu, F.‐Y., J.‐H.Yang, Y.‐G.Xu, S. A.Wilde, and R. J.Walker. 2019. “Destruction of the North China Craton in the Mesozoic.” Annual Review of Earth and Planetary Sciences47: 173–195.
    [Google Scholar]
  50. Yue, J., J.Xiao, X.Wang, J.Fan, and B.Qin. 2021. “Clumped Isotope Analysis of Lacustrine Endogenic Carbonates and Implications for Paleo‐Temperature Reconstruction: A Case Study From Dali Lake.” Science China Earth Sciences64: 294–306.
    [Google Scholar]
  51. Zhai, M., B.Hu, T.Zhao, P.Peng, and Q.Meng. 2015. “Late Paleoproterozoic–Neoproterozoic Multi‐Rifting Events in the North China Craton and their Geological Significance: A Study Advance and Review.” Tectonophysics662: 153–166. https://doi.org/10.1016/j.tecto.2015.01.019.
    [Google Scholar]
  52. Zhang, K., X.Zhu, R. A.Wood, Y.Shi, Z.Gao, and S. W.Poulton. 2018. “Oxygenation of the Mesoproterozoic Ocean and the Evolution of Complex Eukaryotes.” Nature Geoscience11: 345–350.
    [Google Scholar]
  53. Zhao, W., S.Hu, Z.Wang, S.Zhang, and T.Wang. 2018. “Petroleum Geological Conditions and Exploration Importance of Proterozoic to Cambrian in China.” Petroleum Exploration and Development45: 1–14.
    [Google Scholar]
  54. Zhu, R., and Y.Xu. 2019. “The Subduction of the West Pacific Plate and the Destruction of the North China Craton.” Science China Earth Sciences62: 1340–1350.
    [Google Scholar]
  55. Zhu, R., Y.Xu, G.Zhu, H.Zhang, Q.Xia, and T.Zheng. 2012. “Destruction of the North China Craton.” Science China Earth Sciences55: 1565–1587.
    [Google Scholar]
  56. Zhu, X., G.Wang, X.Wang, et al. 2021. “Hydrogeochemical and Isotopic Analyses of Deep Geothermal Fluids in the Wumishan Formation in Xiong'an New Area, China.” Lithosphere2021: 2576752.
    [Google Scholar]
/content/journals/10.1111/bre.70057
Loading
/content/journals/10.1111/bre.70057
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error