1887
Volume 37, Issue 5
  • E-ISSN: 1365-2117

Abstract

[ABSTRACT

Rivers are highly sensitive to climate and tectonic change, and understanding how fluvial systems respond to greenhouse climates in dynamic tectono‐geomorphic settings is vital to projecting imminent landscape change in the face of global warming. We look to the southern Pyrenean Tremp‐Graus basin during the Early Eocene Climatic Optimum (EECO), analogous to future anthropogenic climate scenarios. We focus on the fluvial deposits of the Montllobat and Castissent Formations, deposited during the early Pyrenean orogeny. This succession records a significant shift in geomorphology involving a 20 km progradation of the shoreline and its feeder rivers in < 0.8 Myrs. Using field‐based quantitative palaeohydrology, we reconstruct the evolving morphometry and hydrodynamics of ancient river systems in a foreland basin. The transition from the Montllobat Formation into the Castissent Formation at c. 50.5 Ma is associated with a sharp change in palaeohydraulics: a statistically significant reduction in cross‐set height, a 40% increase in water discharge, and a 15% increase in total sediment flux. This intensification in hydrological regime implies a clear climate driver and is compounded with a switch in interpreted fluvial planform morphology from anastomosing to a dominantly braided planform at the onset of the Castissent interval and a 1.4‐fold increase in channel slope. We suggest the transient hydrological signature of the Castissent Formation was driven by Ypresian hyperthermal events superimposed on a levelling‐off in the global cooling trend at the end of the EECO and an increase in tectonic uplift rates at c. 50 Ma. This analysis holistically reconstructs the dynamics of ancient rivers in the Eocene Hothouse, and in conjunction with isotope and exhumation records, reveals the potential to extract complex tectono‐climatic signals from fluvial stratigraphy.

,

We use palaeohydrology to quantify landscape‐scale geomorphic change in the Eocene Southern Pyrenean foreland. In response to hyperthermal events and tectonics during mountain‐building, rivers became suddenly steeper and faster, with enhanced water and sediment flux and a marked change in planform.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70059
2025-09-01
2025-11-09
Loading full text...

Full text loading...

/deliver/fulltext/bre/37/5/bre70059.html?itemId=/content/journals/10.1111/bre.70059&mimeType=html&fmt=ahah

References

  1. Allen, P. A.2008. “From Landscapes Into Geological History.” Nature451: 274–276.
    [Google Scholar]
  2. Allmendinger, R. W. C. C., and D.Fisher. 2013. “Structural Geology Algorithms: Vectors & Tensors.”
  3. Armitage, J. J., R. A.Duller, A. C.Whittaker, and P. A.Allen. 2011. “Transformation of Tectonic and Climatic Signals From Source to Sedimentary Archive.” Nature Geoscience4: 231–235.
    [Google Scholar]
  4. Beck, H. E., N. E.Zimmermann, T. R.McVicar, N.Vergopolan, A.Berg, and E. F.Wood. 2018. “Present and Future Köppen‐Geiger Climate Classification Maps at 1‐Km Resolution.” Scientific Data5: 180214.
    [Google Scholar]
  5. Beniston, M., D. B.Stephenson, O. B.Christensen, et al. 2007. “Future Extreme Events in European Climate: An Exploration of Regional Climate Model Projections.” Climatic Change81: 71–95.
    [Google Scholar]
  6. Boyrie, C., F.Girard, J.Yans, et al. 2025. “Abrupt Changes in Continental Sedimentation Triggered by Monsoon‐Type Event During EECO Hyperthermals, Minervois Basin, Southern France.” Sedimentary Geology486: 106923.
    [Google Scholar]
  7. Bradley, R. W., and J. G.Venditti. 2017. “Reevaluating Dune Scaling Relations.” Earth‐Science Reviews165: 356–376.
    [Google Scholar]
  8. Broz, A. P., D.Pritchard‐Peterson, D.Spinola, S.Schneider, G.Retallack, and L. C. R.Silva. 2024. “Eocene (50–55 ma) Greenhouse Climate Recorded in Nonmarine Rocks of San Diego, CA, USA.” Scientific Reports14: 2613.
    [Google Scholar]
  9. Cabello, P., D.Domínguez, M. H.Murillo‐López, et al. 2018. “From Conventional Outcrop Datasets and Digital Outcrop Models to Flow Simulation in the Pont de Montanyana Point‐Bar Deposits (Ypresian, Southern Pyrenees).” Marine and Petroleum Geology94: 19–42.
    [Google Scholar]
  10. Caja, M. A., R.Marfil, D.Garcia, et al. 2010. “Provenance of Siliciclastic and Hybrid Turbiditic Arenites of the Eocene Hecho Group, Spanish Pyrenees: Implications for the Tectonic Evolution of a Foreland Basin.” Basin Research22: 157–180.
    [Google Scholar]
  11. Castelltort, S., and J.Van Den Driessche. 2003. “How Plausible Are High‐Frequency Sediment Supply‐Driven Cycles in the Stratigraphic Record?” Sedimentary Geology157: 3–13.
    [Google Scholar]
  12. Chamberlin, E. P., and E. A.Hajek. 2019. “Using Bar Preservation to Constrain Reworking in Channel‐Dominated Fluvial Stratigraphy.” Geology47: 531–534.
    [Google Scholar]
  13. Chanvry, E., R.Deschamps, P.Joseph, et al. 2018. “The Influence of Intrabasinal Tectonics in the Stratigraphic Evolution of Piggyback Basin Fills: Towards a Model From the Tremp‐Graus‐Ainsa Basin (South‐Pyrenean Zone, Spain).” Sedimentary Geology377: 34–62.
    [Google Scholar]
  14. Clark, J. D., and K. T.Pickering. 1996. “Architectural Elements and Growth Patterns of Submarine Channels: Application to Hydrocarbon Exploration1.” AAPG Bulletin80: 194–220 1.
    [Google Scholar]
  15. Colombera, L., O. J.Arévalo, and N. P.Mountney. 2017. “Fluvial‐System Response to Climate Change: The Paleocene‐Eocene Tremp Group, Pyrenees, Spain.” Global and Planetary Change157: 1–17.
    [Google Scholar]
  16. Cornard, P., and K.Pickering. 2020. “Submarine Topographic Control on Distribution of Supercritical‐Flow Deposits in Lobe and Related Environments, Middle Eocene, Jaca Basin, Spanish Pyrenees.” Journal of Sedimentary Research90: 1222–1243.
    [Google Scholar]
  17. Curry, M. E., P. V. D.Beek, R. S.Huismans, S. G.Wolf, C.Fillon, and J.‐A.Muñoz. 2021. “Spatio‐Temporal Patterns of Pyrenean Exhumation Revealed by Inverse Thermo‐Kinematic Modeling of a Large Thermochronologic Data Set.” Geology49: 738–742.
    [Google Scholar]
  18. Curry, M. E., P.van der Beek, R. S.Huismans, S. G.Wolf, and J.‐A.Muñoz. 2019. “Evolving Paleotopography and Lithospheric Flexure of the Pyrenean Orogen From 3D Flexural Modeling and Basin Analysis.” Earth and Planetary Science Letters515: 26–37.
    [Google Scholar]
  19. D'Arcy, M., and A. C.Whittaker. 2014. “Geomorphic Constraints on Landscape Sensitivity to Climate in Tectonically Active Areas.” Geomorphology204: 366–381.
    [Google Scholar]
  20. Das, D., V.Ganti, R.Bradley, J.Venditti, A.Reesink, and D. R.Parsons. 2022. “The Influence of Transport Stage on Preserved Fluvial Cross Strata.” Geophysical Research Letters49: e2022GL099808.
    [Google Scholar]
  21. Dixit, Y., D. A.Hodell, and C. A.Petrie. 2014. “Abrupt Weakening of the Summer Monsoon in Northwest India ~4100 Yr Ago.” Geology42: 339–342.
    [Google Scholar]
  22. Dutt, S., A. K.Gupta, B.Wünnemann, and D.Yan. 2018. “A Long Arid Interlude in the Indian Summer Monsoon During ∼4,350 to 3,450 Cal. Yr BP Contemporaneous to Displacement of the Indus Valley Civilization.” Quaternary International482: 83–92.
    [Google Scholar]
  23. Engelund, F., and E.Hansen. 1967. “A Monograph on Sediment Transport in Alluvial Streams.”
  24. Fielding, C. R., J.Alexander, and J. P.Allen. 2018. “The Role of Discharge Variability in the Formation and Preservation of Alluvial Sediment Bodies.” Sedimentary Geology365: 1–20.
    [Google Scholar]
  25. Fisher, Q. J., M.Casey, M. B.Clennell, and R. J.Knipe. 1999. “Mechanical Compaction of Deeply Buried Sandstones of the North Sea.” Marine and Petroleum Geology16: 605–618.
    [Google Scholar]
  26. Flannigan, M. D., B. D.Amiro, K. A.Logan, B. J.Stocks, and B. M.Wotton. 2006. “Forest Fires and Climate Change in the 21ST Century.” Mitigation and Adaptation Strategies for Global Change11: 847–859.
    [Google Scholar]
  27. Galeazzi, C. P., R. P.Almeida, and A. H.do Prado. 2021. “Linking Rivers to the Rock Record: Channel Patterns and Paleocurrent Circular Variance.” Geology49: 1402–1407.
    [Google Scholar]
  28. Ganti, V., A. C.Whittaker, M. P.Lamb, and W. W.Fischer. 2019. “Low‐Gradient, Single‐Threaded Rivers Prior to Greening of the Continents.” Proceedings of the National Academy of Sciences116: 11652–11657.
    [Google Scholar]
  29. Gariano, S. L., and F.Guzzetti. 2016. “Landslides in a Changing Climate.” Earth‐Science Reviews162: 227–252.
    [Google Scholar]
  30. Giosan, L., P. D.Clift, M. G.Macklin, et al. 2012. “Fluvial Landscapes of the Harappan Civilization.” Proceedings of the National Academy of Sciences of the United States of America109: E1688–E1694.
    [Google Scholar]
  31. Greenberg, E., V.Ganti, and E.Hajek. 2021. “Quantifying Bankfull Flow Width Using Preserved Bar Clinoforms From Fluvial Strata.” Geology49: 1038–1043.
    [Google Scholar]
  32. Greenwood, D. R., and M.Huber. 2011. “Eocene Precipitation: A Global Monsoon? 2011, T22C‐07.”
  33. Hansford, M. R., P.Plink‐Björklund, and E. R.Jones. 2020. “Global Quantitative Analyses of River Discharge Variability and Hydrograph Shape With Respect to Climate Types.” Earth‐Science Reviews200: 102977.
    [Google Scholar]
  34. Honegger, L., T.Adatte, J. E.Spangenberg, et al. 2020. “Alluvial Record of an Early Eocene Hyperthermal Within the Castissent Formation, the Pyrenees, Spain.” Climate of the Past16: 227–243.
    [Google Scholar]
  35. Huyghe, D., F.Mouthereau, and L.Emmanuel. 2012. “Oxygen Isotopes of Marine Mollusc Shells Record Eocene Elevation Change in the Pyrenees.” Earth and Planetary Science Letters345–348: 131–141.
    [Google Scholar]
  36. IPCC . 2022. IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
    [Google Scholar]
  37. Jaimes‐Gutierrez, R., T.Adatte, E.Pucéat, et al. 2024. “Deciphering Paleocene‐Eocene Thermal Maximum Climatic Dynamics: Insights From Oxygen and Hydrogen Isotopes in Clay Minerals of Paleosols From the Southern Pyrenees.” Paleoceanography and Paleoclimatology39: e2024PA004858.
    [Google Scholar]
  38. Jerolmack, D. J., and C.Paola. 2010. “Shredding of Environmental Signals by Sediment Transport.” Geophysical Research Letters37: L19401. https://doi.org/10.1029/2010GL044638.
    [Google Scholar]
  39. Juvany, P., M.Garcés, M.López‐Blanco, et al. 2024. “Unraveling the Sediment Routing Systems Evolution of the South Pyrenean Foreland Basin During the Lower to Middle Paleogene Period.” Marine and Petroleum Geology167: 106913.
    [Google Scholar]
  40. Le Roux, J. P.1992. “Determining the Channel Sinuosity of Ancient Fluvial Systems From Paleocurrent Data.” Journal of Sedimentary Research62: 283–291.
    [Google Scholar]
  41. Leclair, S., and J.Bridge. 2001. “Quantitative Interpretation of Sedimentary Structures Formed by River Dunes.” Journal of Sedimentary Research71: 713–716.
    [Google Scholar]
  42. Liu, H., Y.Yi, and Z.Jin. 2021. “Sensitivity Analysis of Flash Flood Hazard on Sediment Load Characteristics.” Frontiers in Earth Science9: 683453.
    [Google Scholar]
  43. Long, D. G. F.2021. “Trickling Down the Paleoslope: An Empirical Approach to Paleohydrology.” Earth‐Science Reviews220: 103740.
    [Google Scholar]
  44. Loo, Y. Y., L.Billa, and A.Singh. 2015. “Effect of Climate Change on Seasonal Monsoon in Asia and Its Impact on the Variability of Monsoon Rainfall in Southeast Asia.” Geoscience Frontiers6: 817–823.
    [Google Scholar]
  45. Lyster, S. J., A. C.Whittaker, P. A.Allison, D. J.Lunt, and A.Farnsworth. 2020. “Predicting Sediment Discharges and Erosion Rates in Deep Time—Examples From the Late Cretaceous North American Continent.” Basin Research32: 1547–1573.
    [Google Scholar]
  46. Lyster, S. J., A. C.Whittaker, A.Farnsworth, and G. J.Hampson. 2023. “Constraining Flow and Sediment Transport Intermittency in the Geological Past.” GSA Bulletin136: 2425–2442.
    [Google Scholar]
  47. Lyster, S. J., A. C.Whittaker, and E. A.Hajek. 2022. “The Problem of Paleo‐Planforms.” Geology50: 822–826.
    [Google Scholar]
  48. Lyster, S. J., A. C.Whittaker, E. A.Hajek, and V.Ganti. 2022. “Field Evidence for Disequilibrium Dynamics in Preserved Fluvial Cross‐Strata: A Record of Discharge Variability or Morphodynamic Hierarchy?” Earth and Planetary Science Letters579: 117355.
    [Google Scholar]
  49. Lyster, S. J., A. C.Whittaker, G. J.Hampson, E. A.Hajek, P. A.Allison, and B. A.Lathrop. 2021. “Reconstructing the Morphologies and Hydrodynamics of Ancient Rivers From Source to Sink: Cretaceous Western Interior Basin, Utah, USA.” Sedimentology68: 2854–2886.
    [Google Scholar]
  50. Makaske, B.2001. “Anastomosing Rivers: A Review of Their Classification, Origin and Sedimentary Products.” Earth‐Science Reviews53: 149–196.
    [Google Scholar]
  51. Manning, R., J. P.Griffith, T. F.Pigot, and L. F.Vernon‐Harcourt. 1890. “On the Flow of Water in Open Channels and Pipes.” 161.
  52. Markwick, P. J.2019. “Palaeogeography in Exploration.” Geological Magazine156: 366–407.
    [Google Scholar]
  53. Marzo, M., W.Nijman, and C.Puigdefabregas. 1988. “Architecture of the Castissent Fluvial Sheet Sandstones, Eocene, South Pyrenees, Spain.” Sedimentology35: 719–738.
    [Google Scholar]
  54. McInerney, F., and S.Wing. 2011. “The Paleocene‐Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate, and Biosphere With Implications for the Future.” Annual Review of Earth and Planetary Sciences39: 489–516.
    [Google Scholar]
  55. McLeod, J. S., A. C.Whittaker, R. E.Bell, et al. 2024. “Landscapes on the Edge: River Intermittency in a Warming World.” Geology52: 512–516.
    [Google Scholar]
  56. McLeod, J. S., J.Wood, S. J.Lyster, J. M.Valenza, A. R. T.Spencer, and A. C.Whittaker. 2023. “Quantitative Constraints on Flood Variability in the Rock Record.” Nature Communications14: 3362.
    [Google Scholar]
  57. Meyer‐Peter, E., and R.Müller. 1948. “Formulas for Bed‐Load Transport.”
  58. Miall, A. D.1994. “Reconstructing Fluvial Macroform Architecture From Two‐Dimensional Outcrops; Examples From the Castlegate Sandstone, Book Cliffs, Utah.” Journal of Sedimentary Research64: 146–158.
    [Google Scholar]
  59. Milliman, J. D., and R. H.Meade. 1983. “World‐Wide Delivery of River Sediment to the Oceans.” Journal of Geology91: 1–21.
    [Google Scholar]
  60. Molnar, P., R. S.Anderson, G.Kier, and J.Rose. 2006. “Relationships Among Probability Distributions of Stream Discharges in Floods, Climate, Bed Load Transport, and River Incision.” Journal of Geophysical Research‐Earth Surface111: F02001. https://doi.org/10.1029/2005JF000310.
    [Google Scholar]
  61. Mutti, E., and M.Sgavetti. 1987. “Sequence Stratigraphy of the Upper Cretaceous Aren Strata in the Orcau‐Aren Region, South‐Central Pyrenees, Spain: Distinction Between Eustatically and Tectonically Controlled Depositional Sequences.” Annali Dell'università di Ferrara Sezione Scienze Della Terra1: 1–21.
    [Google Scholar]
  62. Nijman, W.1998. “Cyclicity and Basin Axis Shift in a Piggyback Basin: Towards Modelling of the Eocene Tremp‐Ager Basin, South Pyrenees, Spain.” SP134: 135–162.
    [Google Scholar]
  63. Nijman, W., and S. D.Nio. 1975. The Eocene Montañana Delta: Tremp‐Graus Basin, Provinces of Lérida and Huesca, Southern Pyrenees, N. Spain, 20. Vakgroep Sedimentologie.
    [Google Scholar]
  64. Nijman, W., and C.Puigdefàbregas. 1977. “Coarse‐Grained Point Bar Structure in a Molasse‐Type Fluvial System, Eocene Castisent Sandstone Formation, South Pyrenean Basin.”
  65. Paola, C., and L.Borgman. 1991. “Reconstructing Random Topography From Preserved Stratification.” Sedimentology38: 553–565.
    [Google Scholar]
  66. Parker, G.1976. “On the Cause and Characteristic Scales of Meandering and Braiding in Rivers.” Journal of Fluid Mechanics76: 457–480.
    [Google Scholar]
  67. Peucker‐Ehrenbrink, B.2009. “Land2Sea Database of River Drainage Basin Sizes, Annual Water Discharges, and Suspended Sediment Fluxes.” Geochemistry, Geophysics, Geosystems10: Q06014. https://doi.org/10.1029/2008GC002356.
    [Google Scholar]
  68. Picart, J., J.Samso, J. L.Cuevas, L.Mercade, and P.Arbues. 2010. “Mapa Geologic de Catalunya 1:2500. Espills 251–2‐2 (64–22).”
  69. Piras, M., G.Mascaro, R.Deidda, and E. R.Vivoni. 2016. “Impacts of Climate Change on Precipitation and Discharge Extremes Through the Use of Statistical Downscaling Approaches in a Mediterranean Basin.” Science of the Total Environment543: 952–964.
    [Google Scholar]
  70. Plink‐Bjorklund, P.2015. “Morphodynamics of Rivers Strongly Affected by Monsoon Precipitation: Review of Depositional Style and Forcing Factors.” Sedimentary Geology323: 110–147. https://doi.org/10.1016/j.sedgeo.2015.04.004.
    [Google Scholar]
  71. Plint, A. G., and D.Nummedal. 2000. “The Falling Stage Systems Tract: Recognition and Importance in Sequence Stratigraphic Analysis.” Geological Society, London, Special Publications172: 1–17.
    [Google Scholar]
  72. Prieur, M., C.Robin, J.Braun, et al. 2025. “Climate Control on Erosion: Evolution of Sediment Flux From Mountainous Catchments During a Global Warming Event, PETM, Southern Pyrenees, Spain.” Geophysical Research Letters52: e2024GL112404.
    [Google Scholar]
  73. Puig, J. M., P.Cabello, J.Howell, and P.Arbués. 2019. “Three‐Dimensional Characterisation of Sedimentary Heterogeneity and Its Impact on Subsurface Flow Behaviour Through the Braided‐to‐Meandering Fluvial Deposits of the Castissent Formation (Late Ypresian, Tremp‐Graus Basin, Spain).” Marine and Petroleum Geology103: 661–680.
    [Google Scholar]
  74. Rezwan, N., A. C.Whittaker, J. S.McLeod, J.Hook, S.Castelltort, and F.Schlunegger. 2025. “Decoding Normal‐Fault Controlled Trends in Stratigraphic Grain Size: Examples From the Kerinitis Gilbert‐Type Delta, Greece.” Basin Research37: e70014.
    [Google Scholar]
  75. Romans, B. W., S.Castelltort, J. A.Covault, A.Fildani, and J. P.Walsh. 2016. “Environmental Signal Propagation in Sedimentary Systems Across Timescales.” Earth‐Science Reviews153: 7–29.
    [Google Scholar]
  76. Rowley, T., K.Konsoer, E. J.Langendoen, Z.Li, M.Ursic, and M. H.Garcia. 2021. “Relationship of Point Bar Morphology to Channel Curvature and Planform Evolution.” Geomorphology375: 107541.
    [Google Scholar]
  77. Rush, A. W. D., A. J. T.Kiehl, A. C. A.Shields, and A. J. C.Zachos. 2021. “Increased Frequency of Extreme Precipitation Events in the North Atlantic During the PETM: Observations and Theory.” Palaeogeography, Palaeoclimatology, Palaeoecology568: 110289.
    [Google Scholar]
  78. Selley, R. C.1968. “A Classification of Paleocurrent Models.” Journal of Geology76: 99–110.
    [Google Scholar]
  79. Sharma, N., A. C.Whittaker, S. E.Watkins, et al. 2023. “Water Discharge Variations Control Fluvial Stratigraphic Architecture in the Middle Eocene Escanilla Formation, Spain.” Scientific Reports13: 6834.
    [Google Scholar]
  80. Tramblay, Y., and S.Somot. 2018. “Future Evolution of Extreme Precipitation in the Mediterranean.” Climatic Change151: 289–302.
    [Google Scholar]
  81. Trampush, S. M., S.Huzurbazar, and B.McElroy. 2014. “Empirical Assessment of Theory for Bankfull Characteristics of Alluvial Channels.” Water Resources Research50: 9211–9220.
    [Google Scholar]
  82. Turner, S. K.2018. “Constraints on the Onset Duration of the Paleocene‐Eocene Thermal Maximum.” Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences376: 20170082.
    [Google Scholar]
  83. Van der Meulen, S.1989. “The Distribution of Pyrenean Erosion Material, Deposited by Eocene Sheetflood Systems and Associated Fan‐Deltas: A Fossil Record in the Monllobat and Adjacent Castigaleu Formations, in the Drainage Area of the Present Rio Noguerra Ribagorzana, Provinces of Huesca and Lérida, Spain.” Rijksuniversiteit, Mineralogisch‐Geologisch Instituut, Utrecht, pp. 125.
  84. Van Eden, J. G.1970. “A Reconnaissance of Deltaic Environment in the Middle Eocene of the South‐Central Pyrenees, Spain,” 4th. Geologie en Mijnbouw.
  85. Wang, B., and Q.Ding. 2008. “Global Monsoon: Dominant Mode of Annual Variation in the Tropics.” Dynamics of Atmospheres and Oceans44: 165–183.
    [Google Scholar]
  86. Wentworth, C. K.1922. “A Scale of Grade and Class Terms for Clastic Sediments.” Journal of Geology30: 377–392.
    [Google Scholar]
  87. Westerhold, T., A. J.Drury, D.Liebrand, et al. 2020. “An Astronomically Dated Record of Earth's Climate and Its Predictability Over the Last 66 Million Years.” Science (New York, N.Y.)369: 1383–1387.
    [Google Scholar]
  88. Westerhold, T., U.Röhl, B.Donner, and J. C.Zachos. 2018. “Global Extent of Early Eocene Hyperthermal Events: A New Pacific Benthic Foraminiferal Isotope Record From Shatsky Rise (ODP Site 1209).” Paleoceanography and Paleoclimatology33: 626–642.
    [Google Scholar]
  89. Westerhold, T., U.Röhl, T.Frederichs, et al. 2017. “Astronomical Calibration of the Ypresian Timescale: Implications for Seafloor Spreading Rates and the Chaotic Behavior of the Solar System?” Climate of the Past13: 1129–1152.
    [Google Scholar]
  90. Westra, S., H. J.Fowler, J. P.Evans, et al. 2014. “Future Changes to the Intensity and Frequency of Short‐Duration Extreme Rainfall: Future Intensity of Sub‐Daily Rainfall.” Reviews of Geophysics52: 522–555.
    [Google Scholar]
  91. Whitchurch, A. L., A.Carter, H. D.Sinclair, R. A.Duller, A. C.Whittaker, and P. A.Allen. 2011. “Sediment Routing System Evolution Within a Diachronously Uplifting Orogen: Insights From Detrital Zircon Thermochronological Analyses From the South‐Central Pyrenees.” American Journal of Science311: 442–482.
    [Google Scholar]
  92. Whittaker, A. C.2012. “How Do Landscapes Record Tectonics and Climate?” Lithosphere4: 160–164.
    [Google Scholar]
  93. Winnick, M. J., J. K.Caves, and C. P.Chamberlain. 2015. “A Mechanistic Analysis of Early Eocene Latitudinal Gradients of Isotopes in Precipitation.” Geophysical Research Letters42: 8216–8224.
    [Google Scholar]
  94. Wolman, M. G.1954. “A Method of Sampling Coarse River‐Bed Material.” Eos, Transactions American Geophysical Union35: 951–956.
    [Google Scholar]
  95. Wong, M., and G.Parker. 2006. “Reanalysis and Correction of Bed‐Load Relation of Meyer‐Peter and Müller Using Their Own Database.” Journal of Hydraulic Engineering132: 1159–1168.
    [Google Scholar]
  96. Wood, J., J. S.McLeod, S. J.Lyster, and A. C.Whittaker. 2022. “Rivers of the Variscan Foreland: Fluvial Morphodynamics in the Pennant Formation of South Wales, UK.” Journal of the Geological Society180: jgs2022‐048.
    [Google Scholar]
  97. Wood, J., J. S.McLeod, S. J.Lyster, and A. C.Whittaker. 2025. “Reply to Comment on Rivers of the Variscan Foreland: Fluvial Morphodynamics in the Pennant Formation of South Wales, UK.” Journal of the Geological Society182: jgs2025‐087.
    [Google Scholar]
/content/journals/10.1111/bre.70059
Loading
/content/journals/10.1111/bre.70059
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): foreland basin; landscape dynamics; palaeohydrology; sedimentology; stratigraphy

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error