1887
Volume 37, Issue 5
  • E-ISSN: 1365-2117

Abstract

[

Multiples calcites stages are plotted in the diagrams of δ13C, δ18O and TΔ values to clarify their origins. Potential thermal evolution paths and TΔ influenced by solid‐state reordering were modelled to reconstruct the thermal history of the Junggar Basin.

, ABSTRACT

Clumped isotopic thermometry of carbonate minerals is a valid method for revealing the thermal history of sedimentary basins. This method has been successfully applied to basins with carbonate strata, whereas its application in basins composed of clastic strata is limited. This study focused on calcite cements in the upper Permian to Triassic terrestrial clastic strata in the Junggar Basin, northwestern China. Petrological, elemental geochemical and clumped isotopic analyses were conducted in combination with vitrinite reflectance analysis and forward thermal modelling. The studied strata contain multiple generations of calcite cement: early‐ and late‐stage calcite. Relatively high δ13C values (−6.2‰ to −0.8‰), high δ18O values (−15.9‰ to −11.3‰) and low clumped isotopic temperatures (T(∆): 31°C–43°C) suggest that the Permian and Triassic early‐stage calcite precipitated during the penecontemporaneous stage. Considering the high MnO contents (2.22%~14.05%), extremely low δ13C values (−60.5‰ to −38.4‰) and high T(∆) values (95°C–132°C), the late‐stage calcite in the Triassic rocks is explained as the product of the oxidation of hydrocarbons by high‐valence Mn/Fe oxides during mesodiagenesis. The high δ13C values (−10.2‰ to −10.7‰) indicate that the late‐stage calcite in the Permian rocks is the product of the decarboxylation of organic acids. Constrained by the T(∆) values of the early‐ and late‐stage calcite and forward kinetic modelling, the maximum temperature of the upper Permian is confined to 150°C during the Late Jurassic. The thermal gradient of the study area exhibited an overall decreasing trend from 40°C·km−1 in the late Permian to 22°C·km−1 in the Cenozoic. The results are 2°C–4°C per km higher than those of previous works based on vitrinite reflectance and apatite fission track annealing. This research demonstrates that the combination of clumped isotope thermometry of multistage carbonate cements and kinetic modelling can quantitatively reveal a basin's thermal history.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70060
2025-09-02
2025-11-09
Loading full text...

Full text loading...

References

  1. Anderson, N. T., J. R.Kelson, S.Kele, et al. 2021. “A Unified Clumped Isotope Thermometer Calibration (0.5–1100°C) Using Carbonate‐Based Standardization.” Geophysical Research Letters48: e2020GL092069. https://doi.org/10.1029/2020GL092069.
    [Google Scholar]
  2. Bian, W., J.Hornung, Z.Liu, P.Wang, and M.Hinderer. 2010. “Sedimentary and Palaeoenvironmental Evolution of the Junggar Basin, Xinjiang, Northwest China.” Palaeobiodiversity and Palaeoenvironments90: 175–186. https://doi.org/10.1007/s12549‐010‐0038‐9.
    [Google Scholar]
  3. Cai, Z. X., F. J.Chen, and Z. Y.Jia. 2000. “Types and Tectonic Evolution of Junggar Basin.” Earth Science Frontiers7, no. 4: 431–440 (In Chinese with English abstract). http://ccj.pku.edu.cn/article/info?id=294029814.
    [Google Scholar]
  4. Cao, J., Y.Zhang, W.Hu, et al. 2005. “The Permian Hybrid Petroleum System in the Northwest Margin of the Junggar Basin, Northwest China.” Marine and Petroleum Geology22: 331–349. https://doi.org/10.1016/j.marpetgeo.2005.01.005.
    [Google Scholar]
  5. Carroll, A. R., S. A.Graham, M. S.Hendrix, D.Ying, and D.Zhou. 1995. “Late Paleozoic Tectonic Amalgamation of Northwestern China: Sedimentary Record of the Northern Tarim, Northwestern Turpan, and Southern Junggar Basins.” Geological Society of America Bulletin107, no. 5: 571–594. https://doi.org/10.1130/0016‐7606(1995)107<0571:LPTAON>2.3.CO;2.
    [Google Scholar]
  6. Chang, B., C.Li, D.Liu, et al. 2020. “Massive Formation of Early Diagenetic Dolomite in the Ediacaran Ocean: Constraints on the “Dolomite Problem”.” Proceedings of the National Academy of Sciences117: 14005–14014. https://doi.org/10.1073/pnas.1916673117.
    [Google Scholar]
  7. Chen, F., X.Wang, and X.Wang. 2005. “Prototype and Tectonic Evolution of the Junggar Basin, Northwestern China.” Earth Science Frontiers12, no. 3: 77–89 (in Chinese with English abstract). http://ccj.pku.edu.cn/Article/info?aid=294025513.
    [Google Scholar]
  8. Chew, D. M., and R. A.Spikings. 2015. “Geochronology and Thermochronology Using Apatite: Time and Temperature, Lower Crust to Surface.” Elements11, no. 3: 189–194. https://doi.org/10.2113/gselements.11.3.189.
    [Google Scholar]
  9. Choulet, F., M.Faure, D.Cluzel, Y.Chen, W.Lin, and B.Wang. 2012. “From Oblique Accretion to Transpression in the Evolution of the Altaid Collage: New Insights From West Junggar, Northwestern China.” Gondwana Research21, no. 2–3: 530–547. https://doi.org/10.1016/j.gr.2011.07.015.
    [Google Scholar]
  10. Curtis, C. D., M. L.Coleman, and L. G.Love. 1986. “Pore Water Evolution During Sediment Burial From Isotopic and Mineral Chemistry of Calcite, Dolomite and Siderite Concretions.” Geochimica et Cosmochimica Acta50: 2321–2334. https://doi.org/10.1016/0016‐7037(86)90085‐2.
    [Google Scholar]
  11. Defliese, W. F., and K. C.Lohmann. 2015. “Non‐Linear Mixing Effects on Mass‐47 CO2 Clumped Isotope Thermometry: Patterns and Implications.” Rapid Communications in Mass Spectrometry29: 901–909. https://doi.org/10.1002/rcm.7175.
    [Google Scholar]
  12. Dennis, K. J., H. P.Affek, B. H.Passey, D. P.Schrag, and J. M.Eiler. 2011. “Defining an Absolute Reference Frame for “Clumped” Isotope Studies of CO2.” Geochimica et Cosmochimica Acta75: 7117–7131. https://doi.org/10.1016/j.gca.2011.09.025.
    [Google Scholar]
  13. Gallagher, T. M., N. D.Sheldon, J. L.Mauk, S. V.Petersen, N.Gueneli, and J. J.Brocks. 2017. “Constraining the Thermal History of the North American Midcontinent Rift System Using Carbonate Clumped Isotopes and Organic Thermal Maturity Indices.” Precambrian Research294: 53–66. https://doi.org/10.1016/j.precamres.2017.03.022.
    [Google Scholar]
  14. Ghosh, P., J.Adkins, H.Affek, et al. 2006. “13C–18O Bonds in Carbonate Minerals: A New Kind of Paleothermometer.” Geochimica et Cosmochimica Acta70: 1439–1456. https://doi.org/10.1016/j.gca.2005.11.014.
    [Google Scholar]
  15. Gillespie, J., S.Glorie, G.Jepson, W.Xiao, and A. S.Collins. 2020. “Late Paleozoic Exhumation of the West Junggar Mountains, NW China.” Journal of Geophysical Research: Solid Earth125, no. 1: e2019JB018013. https://doi.org/10.1029/2019JB018013.
    [Google Scholar]
  16. Gleadow, A. J. W., I. R.Duddy, P. F.Green, and J. F.Lovering. 1986. “Confined Fission‐Track Lengths in Apatite: A Diagnostic Tool for Thermal History Analysis.” Contributions to Mineralogy and Petrology94: 405–415. https://doi.org/10.1007/BF00376334.
    [Google Scholar]
  17. Greenwood, P. J., and S. M.Habesch. 1997. “Diagenesis of the Sherwood Sandstone Group in the Southern East Irish Sea Basin (Blocks 110/13, 110/14 and 110/15): Constraints From Preliminary Isotopic and Fluid Inclusion Studies.” Geological Society, London, Special Publications124: 353–371. https://doi.org/10.1144/GSL.SP.1997.124.01.21.
    [Google Scholar]
  18. Guenthner, W. R., P. W.Reiners, R. A.Ketcham, L.Nasdala, and G.Giester. 2013. “Helium Diffusion in Natural Zircon: Radiation Damage, Anisotropy, and the Interpretation of Zircon (U‐Th)/He Thermochronology.” American Journal of Science313, no. 3: 145–198. https://doi.org/10.2475/03.2013.01.
    [Google Scholar]
  19. Guo, W.2020. “Kinetic Clumped Isotope Fractionation in the DIC‐H2O‐CO2 System: Patterns, Controls, and Implications.” Geochimica et Cosmochimica Acta268: 230–257. https://doi.org/10.1016/j.gca.2019.07.055.
    [Google Scholar]
  20. He, D., G.Zhai, J.Kuang, Y.Zhang, and X.Shi. 2005. “Distribution and Tectonic Features of Paleo‐Uplifts in the Junggar Basin.” Chinese Journal of Geology40, no. 2: 248–261 (In Chinese with English abstract). http://www.dzkx.org/CN/abstract/abstract9466.shtml.
    [Google Scholar]
  21. Hemingway, J. D., and G. A.Henkes. 2021. “A Disordered Kinetic Model for Clumped Isotope Bond Reordering in Carbonates.” Earth and Planetary Science Letters566: 116962. https://doi.org/10.1016/j.epsl.2021.116962.
    [Google Scholar]
  22. Henkes, G. A., B. H.Passey, E. L.Grossman, B. J.Shenton, A.Perez‐Huerta, and T. E.Yancey. 2014. “Temperature Limits for Preservation of Primary Calcite Clumped Isotope Paleotemperatures.” Geochimica et Cosmochimica Acta139: 362–382. https://doi.org/10.1016/j.gca.2014.04.040.
    [Google Scholar]
  23. Hu, W. X., X.Kang, J.Cao, X. L.Wang, B.Fu, and H. G.Wu. 2018. “Thermochemical Oxidation of Methane Induced by High‐Valence Metal Oxides in a Sedimentary Basin.” Nature Communications9: 5131. https://doi.org/10.1038/s41467‐018‐07267‐x.
    [Google Scholar]
  24. Inoue, A., N.Kohyama, R.Kitagawa, and T.Watanabe. 1987. “Chemical and Morphological Evidence for the Conversion of Smectite to Illite.” Clays and Clay Minerals35: 111–120. https://doi.org/10.1346/CCMN.1987.0350203.
    [Google Scholar]
  25. Irwin, H., C.Curtis, and M.Coleman. 1977. “Isotopic Evidence for Source of Diagenetic Carbonates Formed During Burial of Organic‐Rich Sediments.” Nature269: 209–213. https://doi.org/10.1038/269209a0.
    [Google Scholar]
  26. Kang, X., W.Hu, J.Cao, et al. 2018. “Selective Dissolution of Alkali Feldspars and Its Effect on Lower Triassic Sandy Conglomerate Reservoirs in the Junggar Basin, Northwestern China.” Geological Journal53: 475–499. https://doi.org/10.1002/gj.2905.
    [Google Scholar]
  27. Kang, X., J.Tan, F.Lu, R.Hu, and W.Hu. 2024. “Strontium Isotopic Variations of Authigenic Calcite in Clastic Strata Record Its Sediment Provenance and Fluid−Rock Interactions.” Lithosphere2024, no. 2: 1–19. https://doi.org/10.2113/2024/lithosphere_2024_120.
    [Google Scholar]
  28. Kang, X., J.Tan, H. M.Schulz, et al. 2024. “Clumped and in Situ Carbon and Oxygen Isotopes of Calcite as Tracers for Oxidation of Hydrocarbons in Deep Siliciclastic Strata.” Geological Society of America Bulletin136, no. 11/12: 4689–4704. https://doi.org/10.1130/B37326.1.
    [Google Scholar]
  29. Karner, G. D., M. S.Steckler, and J. A.Thorne. 1983. “Long‐Term Thermo‐Mechanical Properties of the Continental Lithosphere.” Nature304, no. 5923: 250–253. https://doi.org/10.1038/304250a0.
    [Google Scholar]
  30. King, J. D., J. Q.Yang, and F.Pu. 1994. “Thermal History of the Periphery of the Junggar Basin, Northwestern China.” Organic Geochemistry21, no. 3–4: 393–405. https://doi.org/10.1016/0146‐6380(94)90201‐1.
    [Google Scholar]
  31. Liu, X., N.Qiu, and Q.Feng. 2024. “The Thermal History of Permian Carbonate Strata Reconstructed With Clumped Isotopes and U–Pb Dating: Eastern Sichuan Basin, SW China.” Marine and Petroleum Geology163: 106767. https://doi.org/10.1016/j.marpetgeo.2024.106767.
    [Google Scholar]
  32. Liu, Y., N.Qiu, J.Chang, J.Jia, H.Li, and A.Ma. 2020. “Application of Clumped Isotope Thermometry to Thermal Evolution of Sedimentary Basins: A Case Study of Shuntuoguole Area in Tarim Basin.” Chinese Journal of Geophysics63, no. 2: 597–611 (In Chinese with English abstract). https://doi.org/10.6038/cjg2020N0152.
    [Google Scholar]
  33. Magoon, L. B., and W. G.Dow. 1994. “The Petroleum System—From Source to Trap.” AAPG Memoir60: 3–24. https://doi.org/10.1306/M60585C1.
    [Google Scholar]
  34. Mangenot, X., J. F.Deçoninck, M.Bonifacie, et al. 2019. “Thermal and Exhumation Histories of the Northern Subalpine Chains (Bauges and Bornes—France): Evidence From Forward Thermal Modeling Coupling Clay Mineral Diagenesis, Organic Maturity and Carbonate Clumped Isotope (Δ47) Data.” Basin Research31, no. 2: 361–379. https://doi.org/10.1111/bre.12324.
    [Google Scholar]
  35. Mata, M. P., A. M.Casas, A.Canals, A.Gil, and A.Pocovi. 2001. “Thermal History During Mesozoic Extension and Tertiary Uplift in the Cameros Basin, Northern Spain.” Basin Research13, no. 1: 91–111. https://doi.org/10.1046/j.1365‐2117.2001.00138.x.
    [Google Scholar]
  36. Morad, S., J. M.Ketzer, and L. F.De Ros. 2000. “Spatial and Temporal Distribution of Diagenetic Alterations in Siliciclastic Rocks: Implications for Mass Transfer in Sedimentary Basins.” Sedimentology47: 95–120. https://doi.org/10.1046/j.1365‐3091.2000.00007.x.
    [Google Scholar]
  37. Naylor, H. N., W. F.Defliese, E. L.Grossman, and C. R.Maupin. 2020. “Investigation of the Thermal History of the Delaware Basin (West Texas, USA) Using Carbonate Clumped Isotope Thermometry.” Basin Research32, no. 5: 1140–1155. https://doi.org/10.1111/bre.12419.
    [Google Scholar]
  38. O'Neil, J. R., R. N.Clayton, and T. K.Mayeda. 1969. “Oxygen Isotope Fractionation in Divalent Metal Carbonates.” Journal of Chemical Physics51: 5547–5558. https://doi.org/10.1063/1.1671982.
    [Google Scholar]
  39. Passey, B. H., and G. A.Henkes. 2012. “Carbonate Clumped Isotope Bond Reordering and Geospeedometry.” Earth and Planetary Science Letters351: 223–236. https://doi.org/10.1016/j.epsl.2012.07.021.
    [Google Scholar]
  40. Passey, B. H., N. E.Levin, T. E.Cerling, F. H.Brown, and J. M.Eiler. 2010. “High‐Temperature Environments of Human Evolution in East Africa Based on Bond Ordering in Paleosol Carbonates.” Proceedings of the National Academy of Sciences107: 11245–11249. https://doi.org/10.1073/pnas.1001824107.
    [Google Scholar]
  41. Petersen, S. V., W. F.Defliese, C.Saenger, et al. 2019. “Effects of Improved 17O Correction on Interlaboratory Agreement in Clumped Isotope Calibrations, Estimates of Mineral‐Specific Offsets, and Temperature Dependence of Acid Digestion Fractionation.” Geochemistry, Geophysics, Geosystems20: 3495–3519. https://doi.org/10.1029/2018GC008127.
    [Google Scholar]
  42. Qiu, N., H.Yang, and X.Wang. 2002. “Tectono‐Thermal Evolution in the Junggar Basin.” Chinese Journal of Geology37, no. 4: 423–429 (In Chinese with English abstract). http://en.dzkx.org/article/id/geology_9614.
    [Google Scholar]
  43. Qiu, N., M.Zha, X.Wang, and H.Yang. 2005. “Tectono‐Thermal Evolution of the Junggar Basin, NW China: Constraints From Ro and Apatite Fission Track Modelling.” Petroleum Geoscience11, no. 4: 361–372. https://doi.org/10.1144/1354‐079304‐655.
    [Google Scholar]
  44. Rao, S., Y.Zhu, D.Hu, S.Hu, and Q.Wang. 2018. “The Thermal History of Junggar Basin: Constraints on the Tectonic Attribute of the Early‐Middle Permian Basin.” Acta Geologica Sinica92, no. 6: 1176–1195. https://www.geojournals.cn/dzxbe/dzxbe/article/pdf/2017149.
    [Google Scholar]
  45. Reiners, P. W.2005. “Zircon (U‐Th)/He Thermochronometry.” Reviews in Mineralogy and Geochemistry58, no. 1: 151–179. https://doi.org/10.2138/rmg.2005.58.6.
    [Google Scholar]
  46. Ryb, U., C.Ponton, C.France‐Lanord, K.Yoshida, and J. M.Eiler. 2024. “Late Miocene Uplift and Exhumation of the Lesser Himalaya Recorded by Clumped Isotope Compositions of Detrital Carbonate.” Geophysical Research Letters51, no. 21: e2024GL109643. https://doi.org/10.1029/2024GL109643.
    [Google Scholar]
  47. Stolper, D. A., and J. M.Eiler. 2015. “The Kinetics of Solid‐State Isotope‐Exchange Reactions for Clumped Isotopes: A Study of Inorganic Calcites and Apatites From Natural and Experimental Samples.” American Journal of Science315: 363–411. https://doi.org/10.2475/05.2015.01.
    [Google Scholar]
  48. Sweeney, J. J., and A. K.Burnham. 1990. “Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics.” American Association of Petroleum Geologists Bulletin74: 1559–1570. https://doi.org/10.1306/0C9B251F‐1710‐11D7‐8645000102C1865D.
    [Google Scholar]
  49. Tang, W., Y.Zhang, G.Pe‐Piper, D. J. W.Piper, Z.Guo, and W.Li. 2021. “Permian Rifting Processes in the NW Junggar Basin, China: Implications for the Post‐Accretionary Successor Basins.” Gondwana Research98: 107–124. https://doi.org/10.1016/j.gr.2021.06.005.
    [Google Scholar]
  50. Tang, Y., J.Cao, W.He, Y.Liu, Z.Qin, and L.Huang. 2024. “The Whole Petroleum System With Ordered Coexistence of Conventional and Unconventional Hydrocarbons: Case From the Junggar Basin, China.” AAPG Bulletin108: 1261–1290. https://doi.org/10.1306/06192322086.
    [Google Scholar]
  51. Tang, Y., Z. S.Hou, X. T.Wang, et al. 2022. “Progress of the Carboniferous and Permian Stratigraphic Framework and Correlation of the Junggar Basin, Xinjiang, Northwest China.” Geological Review68, no. 2: 385–407 (in Chinese with English abstract). https://doi.org/10.16509/j.georeview.2022.01.011.
    [Google Scholar]
  52. Wang, S. E., Q. Q.Pang, and D. N.Wang. 2012. “New Advances in the Study of Jurassic‐Cretaceous Biostratigraphy and Isotopic Ages of the Junggar Basin in Xinjiang and Their Significance.” Geological Bulletin of China31, no. 4: 493–502 (in Chinese with English abstract). http://en.cgsjournals.com/article/id/dztb_20120401.
    [Google Scholar]
  53. Wang, S. J., S. B.Hu, and J. Y.Wang. 2000. “The Characteristics of Heat Flow and Geothermal Field in Junggar Basin.” Chinese Journal of Geophysics43, no. 6: 816–824. https://doi.org/10.1002/cjg2.98.
    [Google Scholar]
  54. Xiao, W., B. F.Windley, S.Sun, et al. 2015. “A Tale of Amalgamation of Three Permo‐Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion.” Annual Review of Earth and Planetary Sciences43: 477–507. https://doi.org/10.1146/annurev‐earth‐060614‐105254.
    [Google Scholar]
  55. Zhi, D. M., Y.Tang, W. J.He, X. G.Guo, M. L.Zheng, and L. L.Huang. 2021. “Orderly Coexistence and Accumulation Models of Conventional and Unconventional Hydrocarbons in Lower Permian Fengcheng Formation, Mahu Sag, Junggar Basin [in Chinese With English Abstract].” Petroleum Exploration and Development48: 43–59. https://doi.org/10.1016/S1876‐3804(21)60004‐6.
    [Google Scholar]
/content/journals/10.1111/bre.70060
Loading
/content/journals/10.1111/bre.70060
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error