1887
Volume 37, Issue 5
  • E-ISSN: 1365-2117
PDF

Abstract

[

Depositional evolution of the upper Miocene complex.

, ABSTRACT

To achieve net‐zero carbon emissions by 2050, gigatonnes of CO must be captured and stored in the subsurface. Screening and exploration of prospective storage sites have thus gained momentum in recent years. The Miocene‐age Lille John Member in the Danish Central Graben represents a promising, yet underexplored, CO storage candidate due to its lack of commercial hydrocarbon potential. This study integrates high‐resolution 3D seismic data, core analyses, and wireline logs within a sequence stratigraphic framework to characterise the depositional environment within the targeted Miocene interval. Seismic attributes such as RMS amplitude and spectral decomposition are used to define the three‐dimensional architecture of the geobodies and evaluate their potential for CO storage by comprehending reservoir distribution, heterogeneity, and connectivity. The reservoir consists of two unconsolidated sand units, informally termed the lower and upper sand units, separated by a mudstone interval. The lower sand unit represents a basin floor fan emplaced by gravity flows during the falling stage systems tract, while the upper unit comprises unconfined gravity flow deposits associated with the lowstand systems tract. The reservoir sands of the Lille John Member are predominantly localised in the southeastern portion of the Central Graben at depths suitable for storing supercritical CO. Theoretical P50 storage capacity is estimated at approximately 1108 million tonnes for the lower sand unit and 51 million tonnes for the upper unit. Heterogeneities such as silt beds, mudstones, and carbonate concretions may act as flow baffles, enhancing storage efficiency through plume dispersion, residual trapping, CO dissolution, and geochemical interactions. This study situates the Lille John Member within a broader regional framework by integrating a larger 3D seismic dataset with advanced seismic interpretation workflows, extending beyond the scope of previous investigations. The results provide new insights with implications for unlocking CO storage potential in analogous depositional settings.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70061
2025-09-18
2025-11-09
Loading full text...

Full text loading...

/deliver/fulltext/bre/37/5/bre70061.html?itemId=/content/journals/10.1111/bre.70061&mimeType=html&fmt=ahah

References

  1. Alhosani, A., A.Scanziani, Q.Lin, A. Q.Raeini, B.Bijeljic, and M. J.Blunt. 2020. “Pore‐Scale Mechanisms of CO2 Storage in Oilfields.” Scientific Reports10: 8534. https://doi.org/10.1038/s41598‐020‐65416‐z.
    [Google Scholar]
  2. André, L., M.Azaroual, and A.Menjoz. 2010. “Numerical Simulations of the Thermal Impact of Supercritical CO2 Injection on Chemical Reactivity in a Carbonate Saline Reservoir.” Transport in Porous Media82: 247–274. https://doi.org/10.1007/s11242‐009‐9474‐2.
    [Google Scholar]
  3. André, L., Y.Peysson, and M.Azaroual. 2014. “Well Injectivity During CO2 Storage Operations in Deep Saline Aquifers—Part 2: Numerical Simulations of Drying, Salt Deposit Mechanisms and Role of Capillary Forces.” International Journal of Greenhouse Gas Control22, no. 1: 301–312. https://doi.org/10.1016/j.ijggc.2013.10.030.
    [Google Scholar]
  4. Andresen, K. J., M.Huuse, and O. R.Clausen. 2008. “Morphology and Distribution of Oligocene and Miocene Pockmarks in the Danish North Sea—Implications for Bottom Current Activity and Fluid Migration.” Basin Research20, no. 3: 445–466. https://doi.org/10.1111/j.1365‐2117.2008.00362.x.
    [Google Scholar]
  5. Bakhshian, S., A. P.Bump, S.Pandey, H.Ni, and S. D.Hovorka. 2023. “Assessing the Potential of Composite Confining Systems for Secure and Long‐Term CO2 Retention in Geosequestration.” Scientific Reports13: 21022. https://doi.org/10.1038/s41598‐023‐47481‐2.
    [Google Scholar]
  6. Bhuiyan, M. H., N.Agofack, K. M.Gawel, and P. R.Cerasi. 2020. “Micro‐ and Macroscale Consequences of Interactions Between CO2 and Shale Rocks.” Energies13, no. 5: 1167. https://doi.org/10.3390/en13051167.
    [Google Scholar]
  7. Bøe, R., T.Bugge, L.Rise, G.Eidnes, A.Eide, and E.Mauring. 2004. “Erosional Channel Incision and the Origin of Large Sediment Waves in Trondheimsfjorden, Central Norway.” Geo‐Marine Letters24, no. 4: 225–240. https://doi.org/10.1007/s00367‐004‐0180‐3.
    [Google Scholar]
  8. Bøe, R., L.Rise, and D.Ottesen. 1998. “Elongate Depressions on the Southern Slope of the Norwegian Trench (Skagerrak): Morphology and Evolution.” Marine Geology146, no. 1–4: 191–203. https://doi.org/10.1016/S0025‐3227(97)00133‐3.
    [Google Scholar]
  9. Bonto, M., M.Welch, M.Lüthje, et al. 2021. “Challenges and Enablers for Large‐Scale CO2 Storage in Chalk Formations.” Earth‐Science Reviews222: 103826. https://doi.org/10.1016/j.earscirev.2021.103826.
    [Google Scholar]
  10. Bruin, G. d., J. t.Veen, M.Wilpshaar, et al. 2022. “Origin of Shallow Gas in the Dutch North Sea—Seismic Versus Geochemical Evidence.” Interpretation10, no. 1: SB63–SB76. https://doi.org/10.1190/INT‐2021‐0081.1.
    [Google Scholar]
  11. Busch, A., P.Bertier, Y.Gensterblum, et al. 2016. “On Sorption and Swelling of CO2 in Clays.” Geomechanics and Geophysics for Geo‐Energy and Geo‐Resources2: 111–130. https://doi.org/10.1007/s40948‐016‐0024‐4.
    [Google Scholar]
  12. Cameron, T., J.Bulat, and C.Mesdag. 1993. “High Resolution Seismic Profile Through a Late Cenozoic Delta Complex in the Southern North Sea.” Marine and Petroleum Geology10, no. 6: 593–599. https://doi.org/10.1016/0264‐8172(93)90061‐V.
    [Google Scholar]
  13. Catuneanu, O., W.Galloway, C.Kendall, et al. 2011. “Sequence Stratigraphy: Methodology and Nomenclature.” Newsletters on Stratigraphy44, no. 3: 173–245. https://doi.org/10.1127/0078‐0421/2011/0011.
    [Google Scholar]
  14. Chadwick, A., R.Arts, C.Bernstone, F.May, S.Thibeau, and P.Zweigel. 2008. “Best Practice for the Storage of CO2 in Saline Aquifers: Observations and Guidelines From the SACS and CO2STORE Projects.” In British Geological Survey, 14. British Geological Survey Occasional Publication.
    [Google Scholar]
  15. Chiquet, P., D.Broseta, and S.Thibeau. 2007. “Wettability Alteration of Caprock Minerals by Carbon Dioxide.” Geofluids7, no. 2: 112–122. https://doi.org/10.1111/j.1468‐8123.2007.00168.x.
    [Google Scholar]
  16. Chiquet, P., J.‐L.Daridon, D.Broseta, and S.Thibeau. 2007. “CO2/Water Interfacial Tensions Under Pressure and Temperature Conditions of CO2 Geological Storage.” Energy Conversion and Management48: 736–744. https://doi.org/10.1016/j.enconman.2006.09.011.
    [Google Scholar]
  17. Choi, C.‐S., J.Kim, and J.‐J.Song. 2021. “Analysis of Shale Property Changes After Geochemical Interaction Under CO2 Sequestration Conditions.” Energy214: 118933. https://doi.org/10.1016/j.energy.2020.118933.
    [Google Scholar]
  18. Clausen, O., U.Gregersen, O.Michelsen, and J.Sørensen. 1999. “Factors Controlling the Cenozoic Sequence Development in the Eastern Parts of the North Sea.” Journal of the Geological Society156: 809–816. https://doi.org/10.1144/gsjgs.156.4.080.
    [Google Scholar]
  19. Cohen, L.1995. Time‐Frequency Analysis. Prentice Hall PTR.
    [Google Scholar]
  20. Cubizolle, F., B.Durot, and L.Evano. 2022. “Enhancing Geological Features Delineation by Combining a Relative Geological Time Model With the Matching Pursuit Spectral Decomposition.” Second International Meeting for Applied Geoscience and Energy. https://doi.org/10.1190/image2022‐3749793.1.
  21. Deckers, J., and S.Louwye. 2020. “Late Miocene Increase in Sediment Accommodation Rates in the Southern North Sea Basin.” Geological Journal55, no. 1: 728–736. https://doi.org/10.1002/gj.3438.
    [Google Scholar]
  22. Donders, T., J.Weijers, D.Munsterman, et al. 2009. “Strong Climate Coupling of Terrestrial and Marine Environments in the Miocene of Northwest Europe.” Earth and Planetary Science Letters281, no. 3‐4: 215–225. https://doi.org/10.1016/j.epsl.2009.02.034.
    [Google Scholar]
  23. Dybkjær, K., and S.Piasecki. 2010. “Neogene Dinocyst Zonation for the Eastern North Sea Basin, Denmark.” Review of Palaeobotany and Palynology161, no. 1–2: 1–29. https://doi.org/10.1016/j.revpalbo.2010.02.005.
    [Google Scholar]
  24. Dybkjær, K., E. S.Rasmussen, T.Eidvin, et al. 2020. “A New Stratigraphic Framework for the Miocene—Lower Pliocene Deposits Offshore Scandinavia: A Multiscale Approach.” Geological Journal56, no. 3: 1699–1725. https://doi.org/10.1002/gj.3982.
    [Google Scholar]
  25. Eidvin, T., F.Riis, and E. S.Rasmussen. 2014. “Oligocene to Lower Pliocene Deposits of the Norwegian Continental Shelf, Norwegian Sea, Svalbard, Denmark and Their Relation to Theuplift of Fennoscandia: A Synthesis.” Marine and Petroleum Geology56: 184–221. https://doi.org/10.1016/j.marpetgeo.2014.04.006.
    [Google Scholar]
  26. Eidvin, T., C. V.Ullmann, K.Dybkjær, E. S.Rasmussen, and S.Piasecki. 2014. “Discrepancy Between Sr Isotope and Biostratigraphic Datings of the Upper Middle and Upper Miocene Successions (Eastern North Sea Basin, Denmark).” Palaeogeography, Palaeoclimatology, Palaeoecology411: 267–280. https://doi.org/10.1016/j.palaeo.2014.07.005.
    [Google Scholar]
  27. European Commission . 2024. Home: Strategy and Policy: Priorities: The European Green Deal. European Commission. https://commission.europa.eu/strategy‐and‐policy/priorities‐2019‐2024/european‐green‐deal_en.
    [Google Scholar]
  28. Evano, L., F.Cubizolle, and Eliis . 2022. Maximising the Potential of Seismic Expressions by Surgical Geological Modelling and Spectral Decomposition. GEOExPro. https://geoexpro.com/maximising‐the‐potential‐of‐seismic‐expressions‐by‐surgical‐geological‐modelling‐and‐spectral‐decomposition/.
    [Google Scholar]
  29. Flett, M., R.Gurton, and G.Weir. 2007. “Heterogeneous Saline Formations for Carbon Dioxide Disposal: Impact of Varying Heterogeneity on Containment and Trapping.” Journal of Petroleum Science and Engineering57: 106–118. https://doi.org/10.1016/j.petrol.2006.08.016.
    [Google Scholar]
  30. Flood, R., and J. E.Damuth. 1987. “Quantitative Characteristics of Sinuous Distributary Channels on the Amazon Deep‐Sea Fan.” Geological Society of America Bulletin98, no. 6: 728–738.
    [Google Scholar]
  31. Fuhrmann, A., I. A.Kane, E.Schomacker, M. A.Clare, and A.Pontén. 2022. “Bottom Current Modification of Turbidite Lobe Complexes.” Frontiers in Earth Science9. https://doi.org/10.3389/feart.2021.752066.
    [Google Scholar]
  32. Gaus, I.2010. “Role and Impact of CO2–Rock Interactions During CO2 Storage in Sedimentary Rocks.” International Journal of Greenhouse Gas Control4, no. 1: 73–89. https://doi.org/10.1016/j.ijggc.2009.09.015.
    [Google Scholar]
  33. Gibson‐Poole, C. M., L.Svendsen, J.Ennis‐King, M. N.Watson, R. F.Daniel, and A. J.Rigg. 2009. “Understanding Stratigraphic Heterogeneity: A Methodology to Maximize the Efficiency of the Geological Storage of CO2.” In Carbon Dioxide Sequestration in Geological Media—State of the Science: AAPG Studies in Geology, edited by M.Grobe, J. C.Pashin, and R. L.Dodge, vol. 59, 347–364. AAPG. https://doi.org/10.1306/13171248St593385.
    [Google Scholar]
  34. Gingras, M. K., J. A.MacEachern, and S. E.Dashtgard. 2011. “Process Ichnology and the Elucidation of Physico‐Chemical Stress.” Sedimentary Geology237, no. 3–4: 115–134. https://doi.org/10.1016/j.sedgeo.2011.02.006.
    [Google Scholar]
  35. Global CCS Institute . 2022. Global Status of CCS 2022. Global CCS Institute. https://www.globalccsinstitute.com/resources/global‐status‐of‐ccs‐2022/.
    [Google Scholar]
  36. Goffey, G., M.Attree, P.Curtis, et al. 2016. “New Exploration Discoveries in a Mature Basin: Offshore Denmark.” Geological Society, London, Petroleum Geology Conference Series8: 287–306. https://doi.org/10.1144/PGC8.1.
    [Google Scholar]
  37. Gołedowski, B., S. B.Nielsen, and O. R.Clausen. 2011. “Patterns of Cenozoic Sediment Flux From Western Scandinavia.” Basin Research24, no. 4: 377–400. https://doi.org/10.1111/j.1365‐2117.2011.00530.x.
    [Google Scholar]
  38. Gorecki, C. D., Y. I.Holubnyak, S. C.Ayash, et al. 2009. “A New Classification System for Evaluating CO2 Storage Resource/Capacity Estimates.” paper presented at the SPE International Conference on CO2 Capture, Storage, and Utilization, San Diego, California, USA, November, 2009. https://doi.org/10.2118/126421‐MS.
    [Google Scholar]
  39. Green, P. F., I. R.Duddy, and P.Japsen. 2017. “Multiple Episodes of Regional Exhumation and Inversion Identified in the UK Southern North Sea Based on Integration of Palaeothermal and Palaeoburial Indicators.” Geological Society, London, Petroleum Geology Conference Series8: 47–65. https://doi.org/10.1144/PGC8.21.
    [Google Scholar]
  40. Halland, E. K., V.Pham, F.Riis, and A.‐H.Hansen. 2018. “CO2 for EOR Combined With Storage in the Norwegian North Sea.” In 14th Greenhouse Gas Control Technologies Conference Melbourne 21‐26. SSRN. https://doi.org/10.2139/ssrn.3365602.
    [Google Scholar]
  41. Haq, B. U.1993. “Deep‐Sea Response to Eustatic Change and Significance of Gas Hydrates for Continental Margin Stratigraphy.” In Sequence Stratigraphy and Facies Associations, edited by H.Posamentier, C.Summerhayes, B.Haq, and G.Allen. Wiley. https://doi.org/10.1002/9781444304015.ch6.
    [Google Scholar]
  42. Harding, R., and M.Huuse. 2015. “Salt on the Move: Multi Stage Evolution of Salt Diapirs in The Netherlands North Sea.” Marine and Petroleum Geology61: 39–55. https://doi.org/10.1016/j.marpetgeo.2014.12.003.
    [Google Scholar]
  43. Hjelm, L., K. L.Anthonsen, K.Dideriksen, C. M.Nielsen, L. H.Nielsen, and A.Mathiesen. 2020. Capture, Storage and Use of CO2 (CCUS): Evaluation of the CO2 Storage Potential in Denmark. Vol. 1. Geological Survey of Denmark and Greenland.
    [Google Scholar]
  44. Hovland, M., J. V.Gardner, and A. G.Judd. 2002. “The Significance of Pockmarks to Understanding Fluid Flow Processes and Geohazards.” Geofluids2, no. 2: 127–136. https://doi.org/10.1046/j.1468‐8123.2002.00028.x.
    [Google Scholar]
  45. Huuse, M., and O. R.Clausen. 2001. “Morphology and Origin of Major Cenozoic Sequence Boundaries in the Eastern North Sea Basin: Top Eocene, Near‐Top Oligocene and the Mid‐Miocene Unconformity.” Basin Research13, no. 1: 17–41. https://doi.org/10.1046/j.1365‐2117.2001.00123.x.
    [Google Scholar]
  46. IEAGHG . 2011. Caprock Systems for Geological Storage of CO2. CO2CRC Report: RPT 10–2774. IEAGHG.
    [Google Scholar]
  47. Imran, J., G.Parker, and C.Pirmez. 1999. “A Nonlinear Model of Flow in Meandering Submarine and Subaerial Channels.” Journal of Fluid Mechanics400, no. 1: 295–331. https://doi.org/10.1017/S0022112099006515.
    [Google Scholar]
  48. IPCC . 2005. “Chapter 5: Underground Geological Storage.” In IPCC Special Report on Carbon dioxide Capture and Storage. Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/03/srccs_chapter5‐1.pdf.
    [Google Scholar]
  49. IPCC . 2023. “Summary for Policymakers.” In Climate Change 2023: Synthesis Report, edited by I. a. Contribution of Working Groups I , H.Lee, and J.Romero, 1–34. IPCC. https://doi.org/10.59327/IPCC/AR6‐9789291691647.001.
    [Google Scholar]
  50. Jackson, W. A., G. J.Hampson, C.Jacquemyn, et al. 2022. “A Screening Assessment of the Impact of Sedimentological Heterogeneity on CO2 Migration and Stratigraphic‐Baffling Potential: Johansen and Cook Formations, Northern Lights Project, Offshore Norway.” International Journal of Greenhouse Gas Control120: 103762. https://doi.org/10.1016/j.ijggc.2022.103762.
    [Google Scholar]
  51. Japsen, P., P.Britze, and C.Andersen. 2003. “Upper Jurassic–Lower Cretaceous of the Danish Central Graben: Structural Framework and Nomenclature.” GEUS Bulletin1: 231–246. https://doi.org/10.34194/geusb.v1.4653.
    [Google Scholar]
  52. Japsen, P., P.Green, L.Nielsen, E.Rasmussen, and T.Bidstrup. 2007. “Mesozoic–Cenozoic Exhumation Events in the Eastern North Sea Basin: A Multi‐Disciplinary Study Based on Palaeothermal, Palaeoburial, Stratigraphic and Seismic Data.” Basin Research19, no. 4: 451–490. https://doi.org/10.1111/j.1365‐2117.2007.00329.x.
    [Google Scholar]
  53. Johannessen, E. P., and R. J.Steel. 2005. “Shelf‐Margin Clinoforms and Prediction of Deepwater Sands.” Basin Research17: 521–550. https://doi.org/10.1111/j.1365‐2117.2005.00278.x.
    [Google Scholar]
  54. Kallweit, R. S., and L. C.Wood. 1982. “The Limits of Resolution of Zero‐Phase Wavelets.” Geophysics47, no. 7: 1035–1046. https://doi.org/10.1190/1.1441367.
    [Google Scholar]
  55. Knox, R., A.Bosch, E. S.Rasmussen, et al. 2010. Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications B.V.
    [Google Scholar]
  56. Knutz, P. C.2010. “Channel Structures Formed by Contour Currents and Fluid Expulsion: Significance for Late Neogene Development of the Central North Sea Basin.” Geological Society, London, Petroleum Geology Conference Series7: 77–94. https://doi.org/10.1144/0070077.
    [Google Scholar]
  57. Knutz, P. C., E. S.Rasmussen, K.Dybkjær, S.Laghari, and L. T.Prins. 2022. A Desk Study of the Geological Succession Below a Proposed Energy Island, Danish North Sea. Geological Survey of Denmark and Greenland. https://doi.org/10.22008/gpub/34655.
    [Google Scholar]
  58. Koch, E., E. F.Christensen, and E.Thomsen. 1989. Geology of the Søby‐Fasterholt Area. Atlas. Vol. 22. Geological Survey of Denmark and Greenland. https://doi.org/10.34194/seriea.v22.7041.
    [Google Scholar]
  59. Kolla, V., P.Bourges, J.‐M.Urruty, and P.Safa. 2001. “Evolution of Deep‐Water Tertiary Sinuous Channels Offshore Angola (West Africa) and Implications for Reservoir Architecture.” AAPG Bulletin85, no. 8: 1373–1405. https://doi.org/10.1306/8626CAC3‐173B‐11D7‐8645000102C1865D.
    [Google Scholar]
  60. Kuhlmann, G.2004. High Resolution Stratigraphy and Paleoenvironmental Changes in the Southern North Sea During the Neogene. An Integrated Study of Late Cenozoic Marine Deposits From the Northern Part of the Dutch Offshore Area. Mededelingen van de Faculteit Geowetenschappen Universiteit Utrecht.
    [Google Scholar]
  61. Kuhlmann, J.2007. “Paleogeographic and Paleotopographic Evolution of the Swiss and Eastern Alps Since the Oligocene.” Global and Planetary Change58, no. 1–4: 224–236. https://doi.org/10.1016/j.gloplacha.2007.03.007.
    [Google Scholar]
  62. Li, Z., M.Dong, S.Li, and S.Huang. 2006. “CO2 Sequestration in Depleted Oil and Gas Reservoirs—Caprock Characterization and Storage Capacity.” Energy Conversion and Management47: 1372–1382. https://doi.org/10.1016/j.enconman.2005.08.023.
    [Google Scholar]
  63. Marin, D., A.Escalona, K. K.Śliwińska, H.Nøhr‐Hansen, and A.Mordasova. 2017. “Sequence Stratigraphy Andlateral Variability of Lower Cretaceous Clinoforms in the Southwestern Barents Sea.” AAPG Bulletin101, no. 9: 1487–1517. https://doi.org/10.1306/10241616010.
    [Google Scholar]
  64. McKinsey & Company . 2022. Scaling the CCUS Industry to Achieve Net‐Zero Emissions. McKinsey. https://www.mckinsey.com/industries/oil‐and‐gas/our‐insights/scaling‐the‐ccus‐industry‐to‐achieve‐net‐zero‐emissions.
    [Google Scholar]
  65. Michelsen, O., L. H.Nielsen, P. N.Johannessen, J.Andsbjerg, and F.Surlyk. 2003. “Jurassic Lithostratigraphy and Stratigraphic Development Onshore and Offshore Denmark.” GEUS Bulletin1: 145–216. https://doi.org/10.34194/geusb.v1.4651.
    [Google Scholar]
  66. Michelsen, O., E.Thomsen, M.Danielsen, C.Heilmann‐Clausen, H.Jordt, and G. V.Laursen. 1999. “Cenozoic Sequence Stratigraphy in the Eastern North Sea.” In Mesozoic and Cenozoic Sequence Stratigraphy of European Basins, edited by P.‐C. D.Graciansky, J.Hardenbol, T.Jacquin, and P. R.Vail. SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.98.02.0091.
    [Google Scholar]
  67. Migeon, S., B.Savoye, and J.‐C.Faugeres. 2000. “Quaternary Development of Migrating Sediment Waves in the Var Deep‐Sea Fan: Distribution, Growth Pattern, and Implication for Levee Evolution.” Sedimentary Geology133, no. 3–4: 265–293. https://doi.org/10.1016/S0037‐0738(00)00043‐9.
    [Google Scholar]
  68. Miller, K. G., M. A.Kominz, J. V.Browning, et al. 2005. “The Phanerozoic Record of Global Sea‐Level Change.” Science310: 1293. https://doi.org/10.1126/science.1116412.
    [Google Scholar]
  69. Mohammadkhani, S., D.Olsen, H. D.Holmslykke, et al. 2021. “Testing CO2 Compatibility of a Glauconitic Reservoir: Case Study From Depleted Nini Field, Danish North Sea.” In 82nd EAGE Annual Conference & Exhibition, vol. 2021, 1–5. European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214‐4609.202112758.
    [Google Scholar]
  70. Mohammed, H. S., S. N.Jamaludin, J. O.Olutoki, A.Bello, A. D.Isa, and H. M.Gajibo. 2025. “Advances in Joule‐Thomson Cooling Effects in CO2 Storage: A Systematic Review of Modeling Techniques and Implications for Reservoir Stability.” Energy Reports13: 3246–3264. https://doi.org/10.1016/j.egyr.2025.02.056.
    [Google Scholar]
  71. Møller, J., and E.Rasmussen. 2003. “Middle Jurassic–Early Cretaceous Rifting of the Danish Central Graben.” Geological Survey of Denmark and Greenland Bulletin1: 247–264. https://doi.org/10.34194/geusb.v1.4654.
    [Google Scholar]
  72. Møller, L. K., E. S.Rasmussen, and O. R.Clausen. 2009. “Clinoform Migration Patterns of a Late Miocene Delta Complex in the Danish Central Graben; Implications for Relative Sea‐Level Changes.” Basin Research21, no. 5: 704–720. https://doi.org/10.1111/j.1365‐2117.2009.00413.x.
    [Google Scholar]
  73. Munsterman, D. K., J. H.ten Veen, A.Menkovic, et al. 2019. “An Updated and Revised Stratigraphic Framework for the Miocene and Earliest Pliocene Strata of the Roer Valley Graben and Adjacent Blocks.” Netherlands Journal of Geosciences98: e8. https://doi.org/10.1017/njg.2019.10.
    [Google Scholar]
  74. Nakajima, T., M.Satoh, and Y.Okamura. 1998. “Channel‐Levee Complexes, Terminal Deep‐Sea Fan and Sediment Wave Fields Associated With the Toyama Deep‐Sea Channel System in the Japan Sea.” Marine Geology147: 25–41. https://doi.org/10.1016/S0025‐3227(97)00137‐0.
    [Google Scholar]
  75. Naylor, M., M.Wilkinson, and R.Haszeldine. 2011. “Calculation of CO2 Column Heights in Depleted Gas Fields From Known Pre‐Production Gas Column Heights.” Marine and Petroleum Geology28, no. 5: 1083–1093. https://doi.org/10.1016/j.marpetgeo.2010.10.005.
    [Google Scholar]
  76. NIST . 2023. Thermophysical Properties of Fluid Systems. U.S. Secretary of Commerce. https://webbook.nist.gov/chemistry/fluid/.
    [Google Scholar]
  77. Normark, W. R., D. J.Piper, H.Posamentier, C.Pirmez, and S.Migeon. 2002. “Variability in Form and Growth of Sediment Waves on Turbidite Channel Levees.” Marine Geology192, no. 1–3: 23–58. https://doi.org/10.1016/S0025‐3227(02)00548‐0.
    [Google Scholar]
  78. Ohneiser, C., F.Florindo, P.Stocchi, A. P.Roberts, R. M.DeConto, and D.Pollard. 2015. “Antarctic Glacio‐Eustatic Contributions to Late Miocene Mediterranean Desiccation and Reflooding.” Nature Communications6: 8765. https://doi.org/10.1038/ncomms9765.
    [Google Scholar]
  79. Ott, H., K. d.Kloe, F.Marcelis, and A.Makurat. 2011. “Injection of Supercritical CO2 in Brine Saturated Sandstone.” Energy Procedia4: 4425–44432. https://doi.org/10.1016/j.egypro.2011.02.396.
    [Google Scholar]
  80. Ottesen, D., C.Batchelor, J.Dowdeswell, and H.Løseth. 2018. “Morphology and Pattern of Quaternary Sedimentation in the North Sea Basin (52–62° N).” Marine and Petroleum Geology98: 836–859. https://doi.org/10.1016/j.marpetgeo.2018.08.022.
    [Google Scholar]
  81. Overeem, I., G. J.Weltje, C.Bishop‐Kay, and S. B.Kroonenberg. 2002. “The Late Cenozoic Eridanos Delta System in the Southern North Sea Basin: A Climate Signal in Sediment Supply?” Basin Research13, no. 3: 293–312. https://doi.org/10.1046/j.1365‐2117.2001.00151.x.
    [Google Scholar]
  82. Pauget, F., S.Lacaze, and T.Valding. 2009. “A Global Approach in Seismic Interpretation Based on Cost Function.” In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists, 2592–2596. Society of Exploration Geophysicists. https://doi.org/10.1190/1.3255384.
    [Google Scholar]
  83. Petersen, H., and F.Smit. 2023. “Application of Mud Gas Data and Leakage Phenomena to Evaluate Seal Integrity of Potential CO2 Storage Sites: A Study of Chalk Structures in the Danish Central Graben, North Sea.” Journal of Petroleum Geology46, no. 1: 47–76. https://doi.org/10.1111/jpg.12830.
    [Google Scholar]
  84. Ponce, J. J., and N.Carmona. 2011. “Coarse‐Grained Sediment Waves in Hyperpycnal Clinoform Systems, Miocene of the Austral Foreland Basin, Argentina.” Geology39, no. 8: 763–766. https://doi.org/10.1130/G31939.1.
    [Google Scholar]
  85. Porębski, S. J., and R. J.Steel. 2003. “Shelf‐Margin Deltas: Their Stratigraphic Significance and Relation to Deepwater Sands.” Earth‐Science Reviews62, no. 3–4: 283–326. https://doi.org/10.1016/S0012‐8252(02)00161‐7.
    [Google Scholar]
  86. Posamentier, H. W., and V.Kolla. 2003. “Seismic Geomorphology and Stratigraphy of Depositional Elements in Deep‐Water Settings.” Journal of Sedimentary Research73, no. 3: 367–388. https://doi.org/10.1306/111302730367.
    [Google Scholar]
  87. Prélat, A., J.Covault, D.Hodgson, A.Fildani, and S.Flint. 2010. “Intrinsic Controls on the Range of Volumes, Morphologies, and Dimensions of Submarine Lobes.” Sedimentary Geology232: 66–76. https://doi.org/10.1016/j.sedgeo.2010.09.010.
    [Google Scholar]
  88. Pruess, K.2011. “Integrated Modeling of CO2 Storage and Leakage Scenarios Including Transitions Between Super‐ and Subcritical Conditions, and Phase Change Between Liquid and Gaseous CO2.” Greenhouse Gases: Science and Technology1, no. 3: 237–247. https://doi.org/10.1002/ghg.24.
    [Google Scholar]
  89. Rasmussen, E., K.Dybkjær, J.Hovikoski, et al. 2015. The Cenozoic Petroleum Potential in the Danish North Sea (CENSYS). GEUS.
    [Google Scholar]
  90. Rasmussen, E. S.2004. “Stratigraphy and Depositional Evolution of the Uppermost Oligocene ‐ Miocene Succession in Western Denmark.” GEUS Bulletin51: 89–109. https://doi.org/10.37570/bgsd‐2004‐51‐07.
    [Google Scholar]
  91. Rasmussen, E. S.2009. “Neogene Inversion of the Central Graben and Ringkøbing‐Fyn High, Denmark.” Tectonophysics465, no. 1–4: 84–97. https://doi.org/10.1016/j.tecto.2008.10.025.
    [Google Scholar]
  92. Rasmussen, E. S.2017. “Sedimentology and Sequence Stratigraphy of the Uppermost Upper Oligocene—Miocene Fluvio‐Deltaic System in the Eastern North Sea Basin: The Influence of Tectonism, Eustacy and Climate.” Unpublished doctoral thesis, University of Copenhagen. https://www.geus.dk/media/6729/nyhed_21‐03‐2017‐erik_skovbjerg_rasmussen‐doctoral_thesis_2017.pdf.
  93. Rasmussen, E. S., K.Dybkjær, and S.Piasecki. 2010. “Lithostratigraphy of the Upper Oligocene—Miocene Succession of Denmark.” GEUS Bulletin22: 1–92. https://doi.org/10.34194/geusb.v22.4733.
    [Google Scholar]
  94. Rasmussen, E. S., K.Dybkjær, J. C.Toft, O. B.Nielsen, E.Sheldon, and F.Mørk. Unpublished manuscript. “Lithostratigraphy of the Neogene Succession of the Danish North Sea.” Last modified August 31, 2025.
  95. Rasmussen, E. S., O. J.Vejbaek, T.Bidstrup, S. P.Dybkjaer, and K.Dybkjaer. 2005. “Late Cenozoic Depositional History of the Danish North Sea Basin: Implications for the Petroleum Systems in the Kraka, Halfdan, Siri and Nini Fields.” In Petroleum Geology Conference Series, 1347–1358. Geological Society. https://doi.org/10.1144/0061347.
    [Google Scholar]
  96. Ringrose, P.2020. How to Store CO2 Underground: Insights From Early‐Mover CCS Projects (Springer Briefs in Earth Sciences Ed.). Springer. https://doi.org/10.1007/978‐3‐030‐33113‐9.
    [Google Scholar]
  97. Rochelle, C., I.Czernichowski‐Lauriol, and A.Milodowski. 2004. “The Impact of Chemical Reactions on CO 2 Storage in Geological Formations: A Brief Review.” Geological Society, London, Special Publications233: 87–106. https://doi.org/10.1144/gsl.sp.2004.233.01.07.
    [Google Scholar]
  98. Rodrigues, S., F.Hernández‐Molina, M.Fonnesu, E.Miramontes, M.Rebesco, and D.Campbell. 2022. “A New Classification System for Mixed (Turbidite‐Contourite) Depositional Systems: Examples, Conceptual Models and Diagnostic Criteria for Modern and Ancient Records.” Earth‐Science Reviews230: 104030. https://doi.org/10.1016/j.earscirev.2022.104030.
    [Google Scholar]
  99. Salimzadeh, S., A.Paluszny, and R. W.Zimmerman. 2018. “Effect of Cold CO2 Injection on Fracture Apertures and Growth.” International Journal of Greenhouse Gas Control74: 130–141. https://doi.org/10.1016/j.ijggc.2018.04.013.
    [Google Scholar]
  100. Shanmugam, G.2013. “New Perspectives on Deep‐Water Sandstones: Implications.” Petroleum Exploration and Development40, no. 13: 316–324. https://doi.org/10.1016/S1876‐3804(13)60038‐5.
    [Google Scholar]
  101. Sheldon, E., and K.Dybkjær. 2015. Biostratigraphy & Palaeoecology of Selected Core Samples From the Miocene of the Lille John‐2 Well, Danish North Sea. GEUS.
    [Google Scholar]
  102. Sinha, S. K., P. S.Routh, P. D.Anno, and J. P.Castagna. 2003. “Time‐Frequency Attribute of Seismic Data Using Continuous Wavelet Transform.” In SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists. https://doi.org/10.1190/1.1817573.
    [Google Scholar]
  103. Smit, F. W., and L.Stemmerik. 2024. “Seismic Geomorphology of Submarine Landslides in the Chalk Group of the Danish Central Graben: Implications for Reservoir Potential.” Geological Society, London, Special Publications525, no. 1: 43–75. https://doi.org/10.1144/sp525‐2020‐244.
    [Google Scholar]
  104. Sørensen, J. C., U.Gregersen, M.Breiner, and O.Michelsen. 1997. “High‐Frequency Sequence Stratigraphy of Upper Cenozoic Deposits in the Central and Southeastern North Sea Areas.” Marine and Petroleum Geology14, no. 2: 99–123. https://doi.org/10.1016/S0264‐8172(96)00052‐9.
    [Google Scholar]
  105. Sørensen, J. C., and O.Michelsen. 1995. “Upper Cenozoic Sequences in the Southeastern North Sea Basin.” Bulletin of the Geological Society of Denmark42: 74–95. https://doi.org/10.37570/bgsd‐1995‐42‐08.
    [Google Scholar]
  106. Sundal, A., J. P.Nystuen, H.Dypvik, R.Miri, and P.Aagaard. 2013. “Effects of Geological Heterogeneity on CO2 Distribution and Migration—A Case Study From the Johansen Formation, Norway.” Energy Procedia37: 5046–5054. https://doi.org/10.1016/j.egypro.2013.06.418.
    [Google Scholar]
  107. Thöle, H., C.Gaedicke, G.Kuhlmann, and L.Reinhardt. 2014. “Late Cenozoic Sedimentary Evolution of the German North Sea—A Seismic Stratigraphic Approach.” Newsletters on Stratigraphy47, no. 3: 299–329. https://doi.org/10.1127/0078‐0421/2014/0049.
    [Google Scholar]
  108. Utescher, T., A. R.Ashraf, A.Dreist, et al. 2012. “Variability of the Neogene Continental Climates in Northwest Europe—A Detailed Study Based on Microfloras.” Turkish Journal of Earth Sciences21, no. 2: 289–314. https://doi.org/10.3906/yer‐1005‐3.
    [Google Scholar]
  109. van Duijn, C. J., J.Molenaar, and M. J.De Neef. 1995. “The Effect of Capillary Forces on Immiscible Two‐Phase Flow in Heterogeneous Porous Media.” Transport in Porous Media21: 71–93. https://doi.org/10.1007/BF01141993.
    [Google Scholar]
  110. Vejbæk, O. V.1992. Geodynamic Modelling of the Danish Central Trough. Vol. 1, 1–17. Norwegian Petroleum Society Special Publications. https://doi.org/10.1016/B978‐0‐444‐88607‐1.50006‐1.
    [Google Scholar]
  111. Vejbæk, O. V., and C.Andersen. 2002. “Post Mid‐Cretaceous Inversion Tectonics in the Danish Central Graben—Regionally Synchronous Tectonic Events?” GEUS Bulletin49, no. 2: 129–144. https://doi.org/10.37570/bgsd‐2003‐49‐11.
    [Google Scholar]
  112. Vilarrasa, V., and J.Rutqvist. 2017. “Thermal Effects on Geologic Carbon Storage.” Earth‐Science Reviews165: 245–256. https://doi.org/10.1016/j.earscirev.2016.12.011.
    [Google Scholar]
  113. Vilarrasaa, V., S.Olivella, J.Carrera, and J.Rutqvist. 2014. “Long Term Impacts of Cold CO2 Injection on the Caprock Integrity.” International Journal of Greenhouse Gas Control24: 1–13. https://doi.org/10.1016/j.ijggc.2014.02.016.
    [Google Scholar]
  114. Widera, M. Ć.2008. “Cenozoic Tectonic Evolution of the Poznań‐Oleśnica Fault Zone, Central‐Western Poland.” Acta Geologica Polonica58, no. 4: 455–471.
    [Google Scholar]
  115. Wynn, R. B., and D. A.Stow. 2002. “Classification and Characterisation of Deep‐Water Sediment Waves.” Marine Geology192: 7–22. https://doi.org/10.1016/S0025‐3227(02)00547‐9.
    [Google Scholar]
  116. Wynn, R. B., P. P.Weaver, G.Ercilla, D. A.Stow, and D. G.Masson. 2000. “Sedimentary Processes in the Selvage Sediment‐Wave Field, NE Atlantic: New Insights Into the Formation of Sediment Waves by Turbidity Currents.” Sedimentology47, no. 6: 1181–1197. https://doi.org/10.1046/j.1365‐3091.2000.00348.x.
    [Google Scholar]
  117. Yu, Z., K.Liu, L.Liu, S.Yang, and Y.Yang. 2017. “An Experimental Study of CO2‐Oil‐Brine‐Rock Interaction Under in Situ Reservoir Conditions.” Geochemistry, Geophysics, Geosystems18: 2526–2542. https://doi.org/10.1002/2017GC006858.
    [Google Scholar]
  118. Zachos, J., M.Pagani, L.Sloan, E.Thomas, and K.Billups. 2001. “Trends, Rhythms, and Aberrations in Global Climate 65ma to Present.” Science292, no. 5517: 686–693. https://doi.org/10.1126/science.1059412.
    [Google Scholar]
  119. Zavala, C.2020. “Hyperpycnal (Over Density) Flows and Deposits.” Journal of Palaeogeography9: 17. https://doi.org/10.1186/s42501‐020‐00065‐x.
    [Google Scholar]
  120. Ziegler, P. A.1990. Geological Atlas of Western and Central Europe. Shell Internationale Petroleum Maatschappij.
    [Google Scholar]
/content/journals/10.1111/bre.70061
Loading
/content/journals/10.1111/bre.70061
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): bottom currents; CO2 storage; gravity flows; sediment waves; spectral decomposition

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error