1887
Volume 37, Issue 5
  • E-ISSN: 1365-2117

Abstract

[

PSF‐based seismic modelling of a 2D geological section with variable intrusions and host lithologies. Higher dominant frequencies enhance certain seismic characteristics, occasionally producing false bedding‐like, sub‐horizontal features absent in outcrop data. Multiple densely spaced thin intrusions generate interference as a function of wavelength, producing complex seismic patterns driven by dense spacing and cross‐cutting geometries.

, ABSTRACT

Seismic modelling of outcrop data from a sand injection complex enables detection of subseismic sandstone intrusions, but the geometry and orientation of individual intrusions remain unresolved. Sand injection complexes are increasingly recognised as a common shallow‐crustal process, comprising millimetre‐ to decametre‐scale, close to bedding‐concordant sills and strongly bedding‐discordant dykes, as well as intrusions with less regular geometry. These features can act as basin‐scale fluid migration conduits, hydrocarbon reservoirs and possible sites for CO sequestration. This paper presents 2D point‐spread function (PSF) seismic modelling of a digital outcrop model containing a wide range of intrusion geometries, including thin, complex and interconnected features. The results provide insights into the seismic response of subseismic (unresolved) geological features and enable evaluation of the effects of illumination, lateral resolution, dominant frequency and noise on seismic imaging. Multiple densely spaced thin intrusions generate interference as a function of wavelength, producing complex seismic patterns caused by the dense spacing and cross‐cutting geometry of intrusions. The seismic patterns show little resemblance to the geometry of the intrusions. Increases in dominant frequency improve the resolution and interpretation of large intrusions from seismic data and preferentially intensify some seismic characteristics, sometimes creating bedding‐like, sub‐horizontal features that do not exist in the outcrop data. This ambiguity caused by enhancement of sub‐horizontal intrusions relative to sub‐vertical intrusions can lead to misinterpretation of sandstone presence and distribution. Individual intrusions with a thickness of 1 m may be detected under favourable conditions but are not directly resolvable in seismic data and increased dominant frequency does not necessarily result in improved geological interpretation. High‐angle dykes (> 45o) display linear zones with amplitude dimming, which are attributed to their cross‐cutting character, thus facilitating their interpretation. Seismic amplitudes from host strata interact with those of intrusions, diminishing the clarity of the seismic response of intrusions. Limited illumination reduces the accuracy of interpretation. The addition of noise increases the complexity of intrusion‐related seismic responses, both enhancing and reducing amplitudes associated with intrusions, specifically in intervals with complex intrusion networks.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70062
2025-09-25
2025-11-09
Loading full text...

Full text loading...

/deliver/fulltext/bre/37/5/bre70062.html?itemId=/content/journals/10.1111/bre.70062&mimeType=html&fmt=ahah

References

  1. Amundsen, L., and M.Landrø. 2013. “Broadband Seismic Technology and Beyond: Part V: PGS's GeoStreamer—A Double Win.” Geo Expro10, no. 2: 78–82.
    [Google Scholar]
  2. Bons, P. D., D.Cao, T.De Riese, et al. 2022. “A Review of Natural Hydrofractures in Rocks.” Geological Magazine159, no. 11–12: 1952–1977. https://doi.org/10.1017/S0016756822001042.
    [Google Scholar]
  3. Botter, C., N.Cardozo, S.Hardy, I.Lecomte, and A.Escalona. 2014. “From Mechanical Modeling to Seismic Imaging of Faults: A Synthetic Workflow to Study the Impact of Faults on Seismic.” Marine and Petroleum Geology57: 187–207. https://doi.org/10.1016/j.marpetgeo.2014.05.013.
    [Google Scholar]
  4. Botter, C., N.Cardozo, D.Qu, J.Tveranger, and D.Kolyukhin. 2017. “Seismic Characterization of Fault Facies Models.” Interpretation5, no. 4: 9–26. https://doi.org/10.1190/INT‐2016‐0226.1.
    [Google Scholar]
  5. Bradaric, A. D., T.Andersen, I.Lecomte, H.Løseth, and C. H.Eide. 2022. “Recognition and Characterization of Small‐Scale Sand Injectites in Seismic Data: Implications for Reservoir Development.” Journal of the Geological Society179, no. 2: 1–20. https://doi.org/10.1144/jgs2021‐041.
    [Google Scholar]
  6. Briedis, N. A., D.Bergslien, A.Hjellbakk, R. E.Hill, and G. J.Moir. 2007. Recognition Criteria, Significance to Field Performance, and Reservoir Modeling of Sand Injections in the Balder Field, North Sea. Sand Injectites: Implications for Hydrocarbon Exploration and Production. https://doi.org/10.1306/1209853M873259.
    [Google Scholar]
  7. Cartwright, J., D.James, M.Huuse, W.Vetel, and A.Hurst. 2008. “The Geometry and Emplacement of Conical Sandstone Intrusions.” Journal of Structural Geology30, no. 7: 854–867. https://doi.org/10.1016/j.jsg.2008.03.012.
    [Google Scholar]
  8. De Boer, W., P.Rawlinson, and A.Hurst. 2007. “Successful Exploration of a Sand Injectite Complex: Hamsun Prospect, Norway Block 24/9.” In Sand Injectites: Implications for Hydrocarbon Exploration and Production, vol. 87, 65–69. AAPG Mem.
    [Google Scholar]
  9. Deng, X., D.Yang, J.Peng, X.Guan, and B.Yang. 2010. “Noise Reduction and Drift Removal Using Least‐Squares Support Vector Regression With the Implicit Bias Term.” Geophysics75, no. 6: 119–127. https://doi.org/10.1190/1.3506602.
    [Google Scholar]
  10. Department of Conservation . n.d. “API: 01924225; Well Number: 1; Lease Name: Blue Agave).” Accessed February 2025. https://maps.conservation.ca.gov/doggr/.
  11. Dimmen, V., A.Rotevatn, and I.Lecomte. 2023. “Imaging of Small‐Scale Faults in Seismic Reflection Data: Insights From Seismic Modelling of Faults in Outcrop.” Marine and Petroleum Geology147: 105980. https://doi.org/10.1016/j.marpetgeo.2022.105980.
    [Google Scholar]
  12. Dimmen, V., A.Rotevatn, M.Prestegård, I.Lecomte, and I. G.Andersen. 2024. “Imaging Along‐Strike Variability in Fault Structure; Insights From Seismic Modelling of the Maghlaq Fault, Malta.” Marine and Petroleum Geology165: 106891. https://doi.org/10.1016/j.marpetgeo.2024.106891.
    [Google Scholar]
  13. Eide, C. H., N.Schofield, D. A.Jerram, and J. A.Howell. 2017. “Basin‐Scale Architecture of Deeply Emplaced Sill Complexes: Jameson Land, East Greenland.” Journal of the Geological Society174, no. 1: 23–40. https://doi.org/10.1144/jgs2016‐018.
    [Google Scholar]
  14. Eide, C. H., N.Schofield, I.Lecomte, S. J.Buckley, and J. A.Howell. 2018. “Seismic Interpretation of Sill Complexes in Sedimentary Basins: Implications for the Sub‐Sill Imaging Problem.” Journal of the Geological Society175, no. 2: 193–209. https://doi.org/10.1144/jgs2017‐096.
    [Google Scholar]
  15. Faleide, T. S., A.Braathen, I.Lecomte, et al. 2021. “Impacts of Seismic Resolution on Fault Interpretation: Insights From Seismic Modelling.” Tectonophysics816: 229008. https://doi.org/10.1016/j.tecto.2021.229008.
    [Google Scholar]
  16. Faleide, T. S., A.Braathen, I.Lecomte, and I.Anell. 2022. “Exploring Seismic Detection and Resolution Thresholds of Fault Zones and Gas Seeps in the Shallow Subsurface Using Seismic Modelling.” Marine and Petroleum Geology143: 105776. https://doi.org/10.1016/j.marpetgeo.2022.105776.
    [Google Scholar]
  17. Greenberg, M. L., and J. P.Castagna. 1992. “Shear‐Wave Velocity Estimation in Porous Rocks: Theoretical Formulation, Preliminary Verification and Applications.” Geophysical Prospecting40, no. 2: 195–209. https://doi.org/10.1111/j.1365‐2478.1992.tb00371.x.
    [Google Scholar]
  18. Grippa, A., A.Hurst, G.Palladino, D.Iacopini, I.Lecomte, and M.Huuse. 2019. “Seismic Imaging of Complex Geometry: Forward Modeling of Sandstone Intrusions.” Earth and Planetary Science Letters513: 51–63. https://doi.org/10.1016/j.epsl.2019.02.011.
    [Google Scholar]
  19. Holden, D., A.Bertrand, I.Lecomte, V.Patacz, and A.Hurst. 2024. “Assisting 3D/4D Seismic Interpretation in Remobilised Sands in the Balder Area Using 3D PSF Seismic Modelling.” In 85th EAGE Annual Conference & Exhibition, 1–5. European Association of Geoscientists & Engineers.
    [Google Scholar]
  20. Hurst, A., and J.Cartwright. 2007. “Relevance of Sand Injectites to Hydrocarbon Exploration and Production.” AAPG Memoir87: 1–19.
    [Google Scholar]
  21. Hurst, A., A.Grippa, S. Y.Silcock, M.Huuse, M.Bowman, and S. L.Cobain. 2021. “Introduction: Subsurface Sand Remobilization and Injection.” In Subsurface Sand Remobilization and Injection, vol. 493, 1–10. Geological Society. https://doi.org/10.1144/SP493‐2020‐268.
    [Google Scholar]
  22. Hurst, A., A.Scott, and M.Vigorito. 2011. “Physical Characteristics of Sand Injectites.” Earth‐Science Reviews106, no. 3–4: 215–246. https://doi.org/10.1016/j.earscirev.2011.02.004.
    [Google Scholar]
  23. Hurst, A., and M.Vigorito. 2017. “Saucer‐Shaped Sandstone Intrusions: An Underplayed Reservoir Target.” AAPG Bulletin101, no. 4: 625–633. https://doi.org/10.1306/011817DIG17070.
    [Google Scholar]
  24. Huuse, M., J.Cartwright, A.Hurst, and N.Steinsland. 2007. Seismic Characterization of Large‐Scale Sandstone Intrusions. Vol. 87, 21–35. Sand Injectites: Implications for Hydrocarbon Exploration and Production: AAPG Memoir. https://doi.org/10.1306/1209847M873253.
    [Google Scholar]
  25. Huuse, M., J. A.Cartwright, R.Gras, and A.Hurst. 2005. “Kilometre‐Scale Sandstone Intrusions in the Eocene of the Outer Moray Firth (UK North Sea): Migration Paths, Reservoirs and Potential Drilling Hazards.” Geological Society, London, Petroleum Geology Conference Series6: 1577–1594. https://doi.org/10.1144/0061577.
    [Google Scholar]
  26. Ingersoll, R. V.1979. “Evolution of the Late Cretaceous Forearc Basin, Northern and Central California.” Geological Society of America Bulletin90, no. 9: 813–826.
    [Google Scholar]
  27. Jafarian, E., K.de Jong, L. M.Kleipool, C.Scheibner, D. P.Blomeier, and J. J.Reijmer. 2018. “Synthetic Seismic Model of a Permian Biosiliceous Carbonate–Carbonate Depositional System (Spitsbergen, Svalbard Archipelago).” Marine and Petroleum Geology92: 78–93. https://doi.org/10.1016/j.marpetgeo.2018.01.034.
    [Google Scholar]
  28. Jensen, K., I.Lecomte, and T.Kaschwich. 2018. Analyzing PSDM Images in Complex Geology via Ray‐Based PSF‐Convolution Modeling. SEG International Exposition and Annual Meeting. https://doi.org/10.1190/segam2018‐2995975.1.
    [Google Scholar]
  29. Kallweit, R. S., and L. C.Wood. 1982. “The Limits of Resolution of Zero‐Phase Wavelets.” Geophysics47, no. 7: 1035–1046.
    [Google Scholar]
  30. Lacoss, R. T., E. J.Kelly, and M. N.Toksöz. 1969. “Estimation of Seismic Noise Structure Using Arrays.” Geophysics34, no. 1: 21–38.
    [Google Scholar]
  31. Lecomte, I.2008. “Resolution and Illumination Analyses in PSDM: A Ray‐Based Approach.” Leading Edge27: 650–663. https://doi.org/10.1190/1.2919584.
    [Google Scholar]
  32. Lecomte, I., H.Gjøystdal, and Å.Drottning. 2003. Simulated Prestack Local Imaging: A Robust and Efficient Interpretation Tool to Control Illumination, Resolution, and Time‐Lapse Properties of Reservoirs, 1525–1528. SEG Technical Program Expanded Abstracts.
    [Google Scholar]
  33. Lecomte, I., P. L.Lavadera, I.Anell, S. J.Buckley, D. W.Schmid, and M.Heeremans. 2015. “Ray‐Based Seismic Modeling of Geologic Models: Understanding and Analyzing Seismic Images Efficiently.” Interpretation3, no. 4: SAC71–SAC89. https://doi.org/10.1190/INT‐2015‐0061.1.
    [Google Scholar]
  34. Lecomte, I., P. L.Lavadera, C.Botter, et al. 2016. “2(3)D Convolution Modelling of Complex Geological Targets Beyond–1D Convolution.” First Break34, no. 5: 99–107. https://doi.org/10.3997/1365‐2397.34.5.84451.
    [Google Scholar]
  35. Li, G., Y.Li, and B.Yang. 2017. “Seismic Exploration Random Noise on Land: Modeling and Application to Noise Suppression.” IEEE Transactions on Geoscience and Remote Sensing55, no. 8: 4668–4681. https://doi.org/10.1109/TGRS.2017.2697444.
    [Google Scholar]
  36. Liu, Y.2013. “Noise Reduction by Vector Median Filtering.” Geophysics78, no. 3: 79–87. https://doi.org/10.1190/geo2012‐0232.1.
    [Google Scholar]
  37. Long, A.2006. “How Multi‐Azimuth and Wide‐Azimuth Seismic Compare.” First Break24, no. 12: 55–61. https://doi.org/10.3997/1365‐2397.24.12.27232.
    [Google Scholar]
  38. Lubrano‐Lavadera, P., K.Senger, I.Lecomte, M. J.Mulrooney, and D.Kühn. 2019. “Seismic Modelling of Metre‐Scale Normal Faults at a Reservoir‐Cap Rock Interface in Central Spitsbergen, Svalbard: Implications for CO2 Storage.” Norwegian Journal of Geology99, no. 2: 329–347. https://doi.org/10.17850/njg003.
    [Google Scholar]
  39. Magee, C., S. M.Maharaj, T.Wrona, and C. A. L.Jackson. 2015. “Controls on the Expression of Igneous Intrusions in Seismic Reflection Data.” Geosphere11, no. 4: 1024–1041. https://doi.org/10.1130/GES01150.1.
    [Google Scholar]
  40. McArdle, N. J., and M. A.Ackers. 2012. “Understanding Seismic Thin‐Bed Responses Using Frequency Decomposition and RGB Blending.” First Break30, no. 12: 57–65. https://doi.org/10.3997/1365‐2397.2012022.
    [Google Scholar]
  41. McGuire, D. J.1988. Stratigraphy, Depositional History, and Hydrocarbon Source‐Rock Potential of the Upper Cretaceous‐Lower Tertiary Moreno Formation, Central San Joaquin Basin, California. PhD Thesis, 231. Stanford University.
    [Google Scholar]
  42. Mitchum, R., P.Vail, and J.Sangree. 2002. “Sequence Stratigraphic Models for Exploration and Production: Evolving Methodology, Emerging Models, and Application Histories.” In Sequence Stratigraphy: Evolution and Effects. https://doi.org/10.5724/gcs.02.22. Gulf Coast Section SEPM Foundation.
    [Google Scholar]
  43. Norwegian Offshore Directorate . n.d. “Factpages,” Accessed February 2025. https://factpages.sodir.no/en/wellbore.
  44. Pedersen, Ø., and F.Marcy. 2022. “Diffraction Imaging: A Valuable Complement to Reflection Imaging for Sand Injectite Interpretation in the Norwegian North Sea.” Leading Edge41, no. 4: 247–252.
    [Google Scholar]
  45. Peng, J., Y.Li, Y.Liu, M.Wang, Z.Liao, and X.Wang. 2025. “Fast Diffusion Model for Seismic Data Noise Attenuation.” Geophysics90, no. 4: 1–55. https://doi.org/10.1190/geo2024‐0187.1.
    [Google Scholar]
  46. Pernin, N., L.Feuilleaubois, T.Bird, and C.Reiser. 2022. “Identifying and De‐Risking Near‐Field Opportunities Through Reliable Pre‐Stack Broadband Attributes: Examples From the Paleocene North Sea (UK–Norway) Injectites Play.” Geological Society, London, Special Publications494, no. 1: 445–459. https://doi.org/10.1144/SP494‐2019‐11.
    [Google Scholar]
  47. Rabbel, O., O.Galland, K.Mair, et al. 2018. “From Field Analogues to Realistic Seismic Modelling: A Case Study of an Oil‐Producing Andesitic Sill Complex in the Neuquén Basin, Argentina.” Journal of the Geological Society175, no. 4: 580–593. https://doi.org/10.1144/jgs2017‐116.
    [Google Scholar]
  48. Robinson, E. A., and S.Treitel. 1978. “The Fine Structure of the Normal Incidence Synthetic Seismogram.” Geophysical Journal International53, no. 2: 289–309.
    [Google Scholar]
  49. Robinson, E. A., and S.Treitel. 2008. Digital Imaging and Deconvolution: The ABCs of Seismic Exploration and Processing. Society of Exploration Geophysicists.
    [Google Scholar]
  50. Ryan, H.1994. “Ricker, Ormsby; Klander, Butterworth—Choice of Wavelets.” CSEG Recorder19, no. 7: 8–9.
    [Google Scholar]
  51. Satur, N., and A.Hurst. 2025. “The Value of Outcrops in Understanding the Complexities of Sand Intrusion Reservoirs: Learnings From the Volund Field.” Basin Research37, no. 2: 1–14. https://doi.org/10.1111/bre.70025.
    [Google Scholar]
  52. Satur, N., A.Hurst, A.Bang, I.Skjærpe, and S. A.Muehlboeck. 2021. “Characteristics of a Wing‐Like Sandstone Intrusion, Volund Field.” Geological Society, London, Special Publications492: 151–166. https://doi.org/10.1144/SP493‐2017‐309.
    [Google Scholar]
  53. Scales, J. A., and R.Snieder. 1998. “What Is Noise?” Geophysics63, no. 4: 1122–1124. https://doi.org/10.1190/1.1444411.
    [Google Scholar]
  54. Schofield, N., S.Holford, J.Millett, et al. 2017. “Regional Magma Plumbing and Emplacement Mechanisms of the Faroe‐Shetland Sill Complex: Implications for Magma Transport and Petroleum Systems Within Sedimentary Basins.” Basin Research29, no. 1: 41–63. https://doi.org/10.1111/bre.12164.
    [Google Scholar]
  55. Schwab, A. M., E. W.Jameson, and A.Townsley. 2015. “Volund Field: Development of an Eocene Sandstone Injection Complex, Offshore Norway.” Geological Society, London, Special Publications403, no. 1: 247–260. https://doi.org/10.1144/SP403.4.
    [Google Scholar]
  56. Serié, C., and E.Pemberton. 2021. “A New Hydrocarbon Exploration Play: Upper Cretaceous–Paleocene Sand Injection Complexes in the Austral‐Magallanes Basin.” Geological Society, London, Special Publications493: 29–45.
    [Google Scholar]
  57. Sheriff, R. E., and L. P.Geldart. 1995. Exploration Seismology. Cambridge university press.
    [Google Scholar]
  58. Simm, R., and M.Bacon. 2014. Seismic Amplitude: An Interpreter's Handbook. Cambridge university press.
    [Google Scholar]
  59. Smyers, N. B., and G. L.Peterson. 1971. “Sandstone Dikes and Sills in the Moreno Shale, Panoche Hills, California.” Geological Society of America Bulletin82, no. 11: 3201–3208.
    [Google Scholar]
  60. Szarawarska, E., M.Huuse, A.Hurst, et al. 2010. “Three‐Dimensional Seismic Characterisation of Large‐Scale Sandstone Intrusions in the Lower Palaeogene of the North Sea: Completely Injected vs. In Situ Remobilised Sandbodies.” Basin Research22, no. 4: 517–532. https://doi.org/10.1111/j.1365‐2117.2010.00469.x.
    [Google Scholar]
  61. Ten Kroode, F., S.Bergler, C.Corsten, J. W.de Maag, F.Strijbos, and H.Tijhof. 2013. “Broadband Seismic Data—The Importance of Low Frequencies.” Geophysics78, no. 2: WA3–WA14. https://doi.org/10.1190/geo2012‐0294.1.
    [Google Scholar]
  62. Van Oorschot, R., A.Fletcher, H.Basford, and A.Stuart. 2020. “The Chestnut Field, Block 22/2a, UK North Sea.” Geological Society, London, Memoirs52, no. 1: 413–423. https://doi.org/10.1144/M52‐2018‐81.
    [Google Scholar]
  63. Van Vleck Anderson, R., and R. W.Pack. 1915. Geology and Oil Resources of the West Border of the San Joaquin Valley North of Coalinga, California, 603. US Government Printing Office.
    [Google Scholar]
  64. Vigorito, M., and A.Hurst. 2010. “Regional Sand Injectite Architecture as a Record of Pore‐Pressure Evolution and Sand Redistribution in the Shallow Crust: Insights From the Panoche Giant Injection Complex, California.” Journal of the Geological Society167, no. 5: 889–904. https://doi.org/10.1144/0016‐76492010‐004.
    [Google Scholar]
  65. Vigorito, M., A.Hurst, J.Cartwright, and A.Scott. 2008. “Regional‐Scale Subsurface Sand Remobilization: Geometry and Architecture.” Journal of the Geological Society165, no. 3: 609–612. https://doi.org/10.1144/0016‐76492007‐096.
    [Google Scholar]
  66. Vigorito, M., A.Hurst, A. J.Scott, O.Stanzione, and A.Grippa. 2022. “A Giant Sand Injection Complex: Processes and Implications for Basin Evolution and Subsurface Fluid Flow.” American Journal of Science322, no. 6: 729–794. https://doi.org/10.2475/06.2022.01.
    [Google Scholar]
  67. Vinje, V., E.Iversen, and H.Gjøystdal. 1993. “Traveltime and Amplitude Estimation Using Wavefront Construction.” Geophysics58: 1157–1166. https://doi.org/10.1190/1.1443499.
    [Google Scholar]
  68. Widess, M. B.1973. “How Thin Is a Thin Bed?” Geophysics38, no. 6: 1176–1180. https://doi.org/10.1190/1.1440403.
    [Google Scholar]
  69. Wrona, T., H.Fossen, I.Lecomte, C. H.Eide, and R. L.Gawthorpe. 2020. “Seismic Expression of Shear Zones: Insights From 2‐D Point‐Spread‐Function Based Convolution Modelling.” Journal of Structural Geology140: 104121. https://doi.org/10.1016/j.jsg.2020.104121.
    [Google Scholar]
  70. Zhang, D., C.Tsingas, A. A.Ghamdi, et al. 2021. “A Review of OBN Processing: Challenges and Solutions.” Journal of Geophysics and Engineering18, no. 4: 492–502. https://doi.org/10.1093/jge/gxab024.
    [Google Scholar]
  71. Zhang, M., Y.Liu, and Y.Chen. 2019. “Unsupervised Seismic Random Noise Attenuation Based on Deep Convolutional Neural Network.” IEEE Access7: 179810–179822. https://doi.org/10.1109/ACCESS.2019.2959238.
    [Google Scholar]
  72. Zvirtes, G., A.Hurst, M.Brettle, et al. 2023. “Outcrop Characterization and Modelling of Sand Injection Complexes.” In In 84th EAGE Annual Conference & Exhibition, 1–5. European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214‐4609.2023101172.
    [Google Scholar]
  73. Zvirtes, G., A.Hurst, R. P.Philipp, G.Palladino, and A.Grippa. 2021. The Tumey Giant Injection Complex. Subsurface Sand Remobilization and Injection. https://doi.org/10.1144/SP493‐2019‐3.
    [Google Scholar]
/content/journals/10.1111/bre.70062
Loading
/content/journals/10.1111/bre.70062
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error