1887
Volume 37, Issue 5
  • E-ISSN: 1365-2117

Abstract

[ABSTRACT

Understanding the pathways and timing of multiphase oil migration is critical for accurate hydrocarbon exploration, particularly in tectonically complex and deeply buried sedimentary basins. In superimposed basins, traditional molecular geochemical indicators often struggle to resolve multiphase hydrocarbon charge histories due to the oil mixing, limiting their effectiveness. This study integrates carbazole‐based geochemical indicators and thermal maturity modelling of source rocks with in situ U–Pb dating of calcite cements that contain primary oil inclusions, to reconstruct the secondary migration history of crude oil in the Ordovician carbonate reservoirs of the Akeyasu area, Tarim Basin, NW China. This integrated approach constrains the timing, direction, and mechanism of oil migration within a chronological framework. Three distinct oil charge episodes include Middle Caledonian (~458–448 Ma), Hercynian (332–252 Ma), and Himalayan (< 20 Ma) are identified, all originating from the same source rocks. The first episode involved long‐distance lateral migration along an unconformity surface, whereas the subsequent two were dominated by vertical migration along reactivated fault systems. This work resolves long‐standing uncertainties regarding multiphase oil mixing and migration in superimposed basins and establishes a transferable workflow for dating and decoding complex petroleum system evolutions globally. The findings not only clarify the spatial and temporal evolution of petroleum accumulation in the Tarim Basin but also offer a methodological blueprint for unravelling complex migration histories in other ancient and structurally complex sedimentary basins worldwide.

,

Integrated geochemistry, oil inclusion, U–Pb dating and maturity modelling constrain multiphase secondary oil migration in the Akeyasu area, Tarim Basin, NW China.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70064
2025-09-19
2025-11-09
Loading full text...

Full text loading...

References

  1. Baqués, V., E.Ukar, S. E.Laubach, S. R.Forstner, and A.Fall. 2020. “Fracture, Dissolution, and Cementation Events in Ordovician Carbonate Reservoirs, Tarim Basin, NW China.” Geofluids9: 429. https://doi.org/10.1155/2020/9037429.
    [Google Scholar]
  2. Cao, Z., A.Ma, Q.Xu, et al. 2024. “Geochemical Characteristics and Exploration Significance of Ultra‐Deep Sinian Oil and Gas From Well Tashen 5, Tarim Basin, NW China.” Energy Geoscience5: 100217. https://doi.org/10.1016/j.engeos.2023.100217.
    [Google Scholar]
  3. Chen, C., R.Deng, H.Zhang, and Y.Wang. 2023. “Quantitative Simulation of Phase Evolution for Ultra‐Deep Oil and Gas From Lower Cambrian Strata of Well Luntan‐1 in the Tarim Basin.” Natural Gas Geoscience34, no. 1: 96–110. https://doi.org/10.11764/j.issn.1672‐1926.2022.09.008.
    [Google Scholar]
  4. Chen, J., K.Ma, X.Pang, and H.Yang. 2020. “Secondary Migration of Hydrocarbons in Ordovician Carbonate Reservoirs in the Lunnan Area, Tarim Basin.” Journal of Petroleum Science and Engineering188: 106962. https://doi.org/10.1016/j.petrol.2020.106962.
    [Google Scholar]
  5. Chew, D., K.Drost, J. H.Marsh, and J. A.Petrus. 2021. “LA‐ICP‐MS Imaging in the Geosciences and Its Applications to Geochronology.” Chemical Geology559: 119917. https://doi.org/10.1016/j.chemgeo.2020.119917.
    [Google Scholar]
  6. Clegg, H., H.Wilkes, and B.Horsfield. 1997. “Carbazole Distributions in Carbonate and Clastic Source Rocks.” Geochimica et Cosmochimica Acta61: 5335–5345. https://doi.org/10.1016/S0016‐7037(97)00304‐9.
    [Google Scholar]
  7. Cong, F., J.Tian, F.Hao, A. R. C.Kylander‐Clark, W.Pan, and B.Zhang. 2022. “Calcite U–Pb Ages Constrain Petroleum Migration Pathways in Tectonic Complex Basins.” Geology50: 644–649. https://doi.org/10.1130/G49750.1.
    [Google Scholar]
  8. Coogan, L. A., R. R.Parrish, and N. M. W.Roberts. 2016. “Early Hydrothermal Carbon Uptake by the Upper Oceanic Crust: Insight From In Situ U–Pb Dating.” Geology44: 147–150. https://doi.org/10.1130/G37212.1.
    [Google Scholar]
  9. Cruset, D., J.Vergés, N.Rodrigues, et al. 2021. “U–pb Dating of Carbonate Veins Constraining Timing of Beef Growth and Oil Generation Within Vaca Muerta Formation and Compression History in the Neuquén Basin Along the Andean Fold and Thrust Belt.” Marine and Petroleum Geology132: 105204. https://doi.org/10.1016/j.marpetgeo.2021.105204.
    [Google Scholar]
  10. Dembicki, H., Jr., and M. J.Anderson. 1989. “Secondary Migration of Oil: Experiments Supporting Efficient Movement of Separate, Buoyant Oil Phase Along Limited Conduits1: GEOLOGIC NOTE.” AAPG Bulletin73: 1018–1021. https://doi.org/10.1306/44B4A2DA‐170A‐11D7‐8645000102C1865D.
    [Google Scholar]
  11. Deng, S., H.Li, Z.Zhang, J.Zhang, and X.Yang. 2019. “Structural Characterization of Intracratonic Strike‐Slip Faults in the Central Tarim Basin.” AAPG Bulletin103: 109–137. https://doi.org/10.1306/06071817354.
    [Google Scholar]
  12. Deng, S., R.Zhao, Q.Kong, Y.Li, and B.Li. 2022. “Two Distinct Strike‐Slip Fault Networks in the Shunbei Area and Its Surroundings, Tarim Basin: Hydrocarbon Accumulation, Distribution, and Controlling Factors.” AAPG Bulletin106: 77–102. https://doi.org/10.1306/07202119113.
    [Google Scholar]
  13. Drost, K., D.Chew, J. A.Petrus, et al. 2018. “An Image Mapping Approach to U–pb LA‐ICP‐MS Carbonate Dating and Applications to Direct Dating of Carbonate Sedimentation.” Geochemistry, Geophysics, Geosystems19: 4631–4648. https://doi.org/10.1029/2018GC007850.
    [Google Scholar]
  14. England, W. A.1994. “Secondary Migration and Accumulation of Hydrocarbons.” In The Petroleum System—From Source to Trap, edited by L. B.Magoon and W. G.Dow. American Association of Petroleum Geologists. https://doi.org/10.1306/M60585C12.
    [Google Scholar]
  15. Fall, A., P.Eichhubl, S. P.Cumella, R. J.Bodnar, S. E.Laubach, and S. P.Becker. 2012. “Testing the Basin‐Centered Gas Accumulation Model Using Fluid Inclusion Observations: Southern Piceance Basin, Colorado.” AAPG Bulletin96: 2297–2318. https://doi.org/10.1306/05171211149.
    [Google Scholar]
  16. Fang, R., T.‐G.Wang, M.Li, et al. 2016. “Dibenzothiophenes and Benzo[b]Naphthothiophenes: Molecular Markers for Tracing Oil Filling Pathways in the Carbonate Reservoir of the Tarim Basin, NW China.” Organic Geochemistry91: 68–80. https://doi.org/10.1016/j.orggeochem.2015.11.004.
    [Google Scholar]
  17. Gardiner, D., N.Schofield, A.Finlay, et al. 2019. “Modeling Petroleum Expulsion in Sedimentary Basins: The Importance of Igneous Intrusion Timing and Basement Composition.” Geology47: 904–908. https://doi.org/10.1130/G46578.1.
    [Google Scholar]
  18. Ge, X., C.Shen, D.Selby, M.Feely, and G.Zhu. 2020. “Petroleum Evolution Within the Tarim Basin, Northwestern China: Insights From Organic Geochemistry, Fluid Inclusions, and Rhenium–Osmium Geochronology of the Halahatang Oil Field.” AAPG Bulletin104: 329–355. https://doi.org/10.1306/05091917253.
    [Google Scholar]
  19. Goldstein, R. H., and T. J.Reynolds. 1994. Systematics of Fluid Inclusions in Diagenetic Minerals. Vol. 31, 199. SEPM (Society for Sedimentary Geology). https://doi.org/10.2110/scn.94.31.
    [Google Scholar]
  20. Gomes, C. P., Jr., R. V.Santos, L. C.Vieira, et al. 2022. “Fault Zone Fluid Pathways in the Carbonate Irecê Basin, NE Brazil.” Basin Research34: 2189–2208. https://doi.org/10.1111/bre.12701.
    [Google Scholar]
  21. Guilhaumou, N., N.Szydlowskii, and B.Pradier. 1990. “Characterization of Hydrocarbon Fluid Inclusions by Infra‐Red and Fluorescence Microspectrometry.” Mineralogical Magazine54: 311–324. https://doi.org/10.1180/minmag.1990.054.375.17.
    [Google Scholar]
  22. Guo, X., S.He, K.Liu, Z.Shi, and S.Bachir. 2011. “Modelling the Petroleum Generation and Migration of the Third Member of the Shahejie Formation (Es3) in the Banqiao Depression of Bohai Bay Basin, Eastern China.” Journal of Asian Earth Sciences40: 287–302. https://doi.org/10.1016/j.jseaes.2010.07.002.
    [Google Scholar]
  23. Guo, X., K.Liu, S.He, et al. 2012. “Petroleum Generation and Charge History of the Northern Dongying Depression, Bohai Bay Basin, China: Insight From Integrated Fluid Inclusion Analysis and Basin Modelling.” Marine and Petroleum Geology32: 21–35. https://doi.org/10.1016/j.marpetgeo.2011.12.007.
    [Google Scholar]
  24. Hagemann, H. W., and A.Hollerbach. 1986. “The Fluorescence Behaviour of Crude Oils With Respect to Their Thermal Maturation and Degradation.” Organic Geochemistry10: 473–480.
    [Google Scholar]
  25. Hakimi, M. H., W. H.Abdullah, M.Alqudah, Y. M.Makeen, and K. A.Mustapha. 2016. “Organic Geochemical and Petrographic Characteristics of the Oil Shales in the Lajjun Area, Central Jordan: Origin of Organic Matter Input and Preservation Conditions.” Fuel181: 34–45. https://doi.org/10.1016/j.fuel.2016.04.070.
    [Google Scholar]
  26. Han, C., C.Lin, X.Lu, J.Tian, L.Ren, and C.Ma. 2019. “Petrological and Geochemical Constraints on Fluid Types and Formation Mechanisms of the Ordovician Carbonate Reservoirs in Tahe Oilfield, Tarim Basin, NW China.” Journal of Petroleum Science and Engineering178: 106–120. https://doi.org/10.1016/j.petrol.2019.03.010.
    [Google Scholar]
  27. Han, J., X.Guo, T.Dong, et al. 2020. “Oil Origin and Secondary Migration Pathway in the Bonan Sag, Bohai Bay Basin, China.” Marine and Petroleum Geology122: 104702. https://doi.org/10.1016/j.marpetgeo.2020.104702.
    [Google Scholar]
  28. Hao, F., H.Zou, Z.Gong, and Y.Deng. 2007. “Petroleum Migration and Accumulation in the Bozhong Sub‐Basin, Bohai Bay Basin, China: Significance of Preferential Petroleum Migration Pathways (PPMP) for the Formation of Large Oilfields in Lacustrine Fault Basins.” Marine and Petroleum Geology24: 1–13. https://doi.org/10.1016/j.marpetgeo.2006.10.007.
    [Google Scholar]
  29. Hindle, A. D.1997. “Petroleum Migration Pathways and Charge Concentration: A Three‐Dimensional Model1.” AAPG Bulletin81: 1451–1481. https://doi.org/10.1306/3B05BB1E‐172A‐11D7‐8645000102C1865D.
    [Google Scholar]
  30. Horsfield, B., H.Clegg, H.Wilkes, and D.Santamaría‐Orozco. 1998. “Effect of Maturity on Carbazole Distributions in Petroleum Systems: New Insights From the Sonda de Campeche, Mexico, and Hils Syncline, Germany.” Naturwissenschaften85: 233–237. https://doi.org/10.1007/s001140050489.
    [Google Scholar]
  31. Hwang, R. J., T.Heidrick, B.Mertani, L.Qivayanti, and M.Li. 2002. “Correlation and Migration Studies of North Central Sumatra Oils.” Organic Geochemistry33: 1361–1379. https://doi.org/10.1016/S0146‐6380(02)00104‐3.
    [Google Scholar]
  32. Jia, C., and G.Wei. 2002. “Structural Characteristics and Petroliferous Features of Tarim Basin.” Chinese Science Bulletin47: 1–11. https://doi.org/10.1007/BF02902812.
    [Google Scholar]
  33. Jiang, F., X.Chen, P.Wang, X.Shao, and H.Yang. 2024. “Genesis and Accumulation of Paleo‐Oil Reservoir in Dabei Area, Kuqa Depression, Northwest China: Implications for Tight‐Gas Accumulation.” Journal of Earth Science35: 655–665. https://doi.org/10.1007/s12583‐021‐1562‐4.
    [Google Scholar]
  34. Jin, Q., X.Kang, and F.Tian. 2015. “Genesis of Chemical Fillings in Fracture‐Caves in Paleo‐Karst Runoff Zone in Ordovician and Their Distributions in Tahe Oilfield, Tarim Basin (In Chinese).” Acta Petrolei Sinica36, no. 7: 791–798. https://doi.org/10.7623/syxb201507003.
    [Google Scholar]
  35. Jin, Z., Q.Liu, J.Yun, and Tenger. 2017. “Potential Petroleum Sources and Exploration Directions Around the Manjar Sag in the Tarim Basin.” Science China Earth Sciences60: 235–245. https://doi.org/10.1007/s11430‐015‐5573‐7.
    [Google Scholar]
  36. Larter, S. R., B. F. J.Bowler, M.Li, et al. 1996. “Molecular Indicators of Secondary Oil Migration Distances.” Nature383: 593–597. https://doi.org/10.1038/383593a0.
    [Google Scholar]
  37. Lei, C., S.Yin, J.Ye, J.Wu, Z.Wang, and B.Gao. 2024. “Geochemical Characteristics and Hydrocarbon Generation Modeling of the Paleocene Source Rocks in the Jiaojiang Sag, East China Sea Basin.” Journal of Earth Science35: 642–654. https://doi.org/10.1007/s12583‐021‐1528‐6.
    [Google Scholar]
  38. Li, B., L.Zhong, H.Lyu, et al. 2024. “Dynamic Simulation of Differential Accumulation History of Deep Marine Oil and Gas in Superimposed Basin: A Case Study of Lower Paleozoic Petroleum System of Tahe Oilfield, Tarim Basin, NW China.” Petroleum Exploration and Development51: 1217–1231.
    [Google Scholar]
  39. Li, C. Q., and H. H.Chen. 2015. “Hydrocarbon Inclusion Characteristics in the Cambrian‐Ordovician Carbonates of the TS2 Well: Implication for Deep Hydrocarbon Explora Tion in the Tahe Oilfield, Tarim Basin, Northwest China.” Acta Geologica Sinica89: 852–860. https://doi.org/10.1111/1755‐6724.12483.
    [Google Scholar]
  40. Li, M., T.Wang, J.Chen, et al. 2010. “Paleo‐Heat Flow Evolution of the Tabei Uplift in Tarim Basin, Northwest China.” Journal of Asian Earth Sciences37: 52–66. https://doi.org/10.1016/j.jseaes.2009.07.007.
    [Google Scholar]
  41. Li, M., T.‐G.Wang, S.Shi, K.Liu, and G. S.Ellis. 2014. “Benzo[b]Naphthothiophenes and Alkyl Dibenzothiophenes: Molecular Tracers for Oil Migration Distances.” Marine and Petroleum Geology57: 403–417. https://doi.org/10.1016/j.marpetgeo.2014.06.012.
    [Google Scholar]
  42. Li, M., H.Yao, M. G.Fowler, and L. D.Stasiuk. 1998. “Geochemical Constraints on Models for Secondary Petroleum Migration Along the Upper Devonian Rimbey‐Meadowbrook Reef Trend in Central Alberta, Canada.” Organic Geochemistry29: 163–182. https://doi.org/10.1016/S0146‐6380(98)00094‐1.
    [Google Scholar]
  43. Li, M., S. R.Larter, D.Stoddart, and M.Bjoroey. 1992. “Liquid Chromatographic Separation Schemes for Pyrrole and Pyridine Nitrogen Aromatic Heterocycle Fractions From Crude Oils Suitable for Rapid Characterization of Geochemical Samples.” Analytical Chemistry64: 1337–1344. https://doi.org/10.1021/ac00037a007.
    [Google Scholar]
  44. Li, Q., R. R.Parrish, M. S. A.Horstwood, and J. M.McArthur. 2014. “U–pb Dating of Cements in Mesozoic Ammonites.” Chemical Geology376: 76–83. https://doi.org/10.1016/j.chemgeo.2014.03.020.
    [Google Scholar]
  45. Li, X., S.Liu, and C.Feng. 2019. “Thermal Properties of Sedimentary Rocks in the Tarim Basin, Northwestern China.” AAPG Bulletin103: 1605–1624. https://doi.org/10.1306/11211817179.
    [Google Scholar]
  46. Liu, E., J.‐X.Zhao, S.Pan, D.Yan, and H.Wang. 2024. “In Situ U–pb Dating of Quartz: A Preliminary Study.” Journal of Earth Science35: 726–728. https://doi.org/10.1007/s12583‐024‐1980‐1.
    [Google Scholar]
  47. Liu, H., N.Fang, and J.Meng. 2015. “Study on Calibration Methods of Erosion Thickness and Paleotectonic Reconstruction of Tarim Basin. Internal Report of SINOPEC Research Company.”
  48. Liu, J., K.Liu, and X.Huang. 2016. “Effect of Sedimentary Heterogeneities on Hydrocarbon Accumulations in the Permian Shanxi Formation, Ordos Basin, China: Insight From an Integrated Stratigraphic Forward and Petroleum System Modelling.” Marine and Petroleum Geology76: 412–431. https://doi.org/10.1016/j.marpetgeo.2016.05.028.
    [Google Scholar]
  49. Liu, Y., J.Suppe, Y.Cao, et al. 2024. “Strike‐Slip Fault Zone Architecture and Its Effect on Fluid Migration in Deep‐Seated Strata: Insights From the Central Tarim Basin.” Basin Research36: e12868. https://doi.org/10.1111/bre.12868.
    [Google Scholar]
  50. Lu, X., L.Gui, W.Chen, et al. 2023. “Improvement of In Situ LA‐ICP‐MS U–pb Dating Method for Carbonate Minerals and Its Application in Petroleum Geology.” Science China Earth Sciences66: 2914–2929. https://doi.org/10.1007/s11430‐022‐1072‐2.
    [Google Scholar]
  51. Miao, Q., C.Xu, F.Hao, et al. 2024. “Hydrocarbon Charging and Accumulation Process of the Large Bozhong19‐6 Condensate Gas Reservoirs in the Southwestern Bozhong Sub‐Basin, Bohai Bay Basin, China.” Journal of Earth Science35: 613–630. https://doi.org/10.1007/s12583‐021‐1457‐4.
    [Google Scholar]
  52. Nuriel, P., R.Weinberger, A. R. C.Kylander‐Clark, B. R.Hacker, and J. P.Craddock. 2017. “The Onset of the Dead Sea Transform Based on Calcite Age‐Strain Analyses.” Geology45: 587–590. https://doi.org/10.1130/G38903.1.
    [Google Scholar]
  53. Peters, K. E., T. H.Fraser, W.Amris, B.Rustanto, and E.Hermanto. 1999. “Geochemistry of Crude Oils From Eastern Indonesia1.” AAPG Bulletin83: 1927–1942. https://doi.org/10.1306/E4FD4643‐1732‐11D7‐8645000102C1865D.
    [Google Scholar]
  54. Ping, H., H.Chen, and S. C.George. 2020. “Quantitatively Predicting the Thermal Maturity of Oil Trapped in Fluid Inclusions Based on Fluorescence and Molecular Geochemical Data of Oil Inclusions in the Dongying Depression, Bohai Bay Basin, China.” AAPG Bulletin104: 1751–1791. https://doi.org/10.1306/09271919096.
    [Google Scholar]
  55. Ping, H., H.Chen, S. C.George, C.Li, and S.Hu. 2019. “Relationship Between the Fluorescence Color of Oil Inclusions and Thermal Maturity in the Dongying Depression, Bohai Bay Basin, China: Part 1. Fluorescence Evolution of Oil in the Context of Hydrous Pyrolysis Experiments With Increasing Maturity.” Marine and Petroleum Geology100: 1–19. https://doi.org/10.1016/j.marpetgeo.2018.10.053.
    [Google Scholar]
  56. Qiao, Z., A.Shen, S.Zhang, et al. 2023. “Origin of Giant Ordovician Cavern Reservoirs in the Halahatang Oil Field in the Tarim Basin, Northwestern China.” AAPG Bulletin107: 1105–1135. https://doi.org/10.1306/11152219193.
    [Google Scholar]
  57. Roberts, N. M. W., K.Drost, M. S. A.Horstwood, et al. 2020. “Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA‐ICP‐MS) U–pb Carbonate Geochronology: Strategies, Progress, and Limitations.” Geochronology2: 33–61. https://doi.org/10.5194/gchron‐2‐33‐2020.
    [Google Scholar]
  58. Roberts, N. M. W., E. T.Rasbury, R. R.Parrish, C. J.Smith, M. S. A.Horstwood, and D. J.Condon. 2017. “A Calcite Reference Material for LA‐ICP‐MS U–pb Geochronology.” Geochemistry, Geophysics, Geosystems18: 2807–2814. https://doi.org/10.1002/2016GC006784.
    [Google Scholar]
  59. Roberts, N. M. W., and R. J.Walker. 2016. “U–pb Geochronology of Calcite‐Mineralized Faults: Absolute Timing of Rift‐Related Fault Events on the Northeast Atlantic Margin.” Geology44: 531–534. https://doi.org/10.1130/G37868.1.
    [Google Scholar]
  60. Roedder, E.1984. Fluid Inclusions. Vol. 12, 644. Mineralogical Society of America Reviews in Mineralogy.
    [Google Scholar]
  61. Schwark, L., and P.Empt. 2006. “Sterane Biomarkers as Indicators of Palaeozoic Algal Evolution and Extinction Events.” Palaeogeography, Palaeoclimatology, Palaeoecology240: 225–236. https://doi.org/10.1016/j.palaeo.2006.03.050.
    [Google Scholar]
  62. Siljeström, S., H.Volk, and S. C.George. 2022. “Using ToF‐SIMS Analyses for Analysing Individual Oil Inclusions of Different Fluorescence Colours in a Single Quartz Crystal From the Barrandian (Czech Republic).” Organic Geochemistry164: 104354. https://doi.org/10.1016/j.orggeochem.2021.104354.
    [Google Scholar]
  63. Stoddart, D. P., P. B.Hall, S. R.Larter, J.Brasher, M.Li, and M.Bjorøy. 1995. “The Reservoir Geochemistry of the Eldfisk Field, Norwegian North Sea.” Geological Society, London, Special Publications86: 257–279. https://doi.org/10.1144/GSL.SP.1995.086.01.15.
    [Google Scholar]
  64. Sun, P., C.Cai, D.Wang, Y.Qi, C.Xu, and P. F.Greenwood. 2025. “Unraveling the Origin and Charge of Halahatang Oils, Tarim Basin.” Organic Geochemistry204: 104962. https://doi.org/10.1016/j.orggeochem.2025.104962.
    [Google Scholar]
  65. Thomas, M. M., and J. A.Clouse. 1995. “Scaled Physical Model of Secondary Oil Migration1.” AAPG Bulletin79: 19–28. https://doi.org/10.1306/8D2B149E‐171E‐11D7‐8645000102C1865D.
    [Google Scholar]
  66. Tian, F., Q.Jin, X.Lu, et al. 2016. “Multi‐Layered Ordovician Paleokarst Reservoir Detection and Spatial Delineation: A Case Study in the Tahe Oilfield, Tarim Basin, Western China.” Marine and Petroleum Geology69: 53–73. https://doi.org/10.1016/j.marpetgeo.2015.10.015.
    [Google Scholar]
  67. Volk, H., and S. C.George. 2019. “Using Petroleum Inclusions to Trace Petroleum Systems—A Review.” Organic Geochemistry129: 99–123. https://doi.org/10.1016/j.orggeochem.2019.01.012.
    [Google Scholar]
  68. Volkman, J. K.1986. “A Review of Sterol Markers for Marine and Terrigenous Organic Matter.” Organic Geochemistry9: 83–99.
    [Google Scholar]
  69. Volkman, J. K., R.Alexander, R. I.Kagi, and G. W.Woodhouse. 1983. “Demethylated Hopanes in Crude Oils and Their Applications in Petroleum Geochemistry.” Geochimica et Cosmochimica Acta47: 785–794.
    [Google Scholar]
  70. Wang, T., F.He, M.Li, Y.Hou, and S.Guo. 2004. “Alkyldibenzothiophenes: Molecular Tracers for Filling Pathway in Oil Reservoirs.” Chinese Science Bulletin49: 2399–2404. https://doi.org/10.1007/BF03183429.
    [Google Scholar]
  71. Wang, T.‐G., F.He, C.Wang, W.Zhang, and J.Wang. 2008. “Oil Filling History of the Ordovician Oil Reservoir in the Major Part of the Tahe Oilfield, Tarim Basin, NW China.” Organic Geochemistry39: 1637–1646. https://doi.org/10.1016/j.orggeochem.2008.05.006.
    [Google Scholar]
  72. Washburn, A. M., P. J.Sylvester, and K. E.Snell. 2025. “Deep Basin Overpressure Resulting From Fluid Migration and Hydraulic Head in the Uinta Basin: Insights From Beef Calcite in the Green River Formation.” Basin Research37: e70052. https://doi.org/10.1111/bre.70052.
    [Google Scholar]
  73. Xu, H., Z.Cao, L.Gui, et al. 2024. “Petroleum Accumulations in the Tarim Basin During Various Tectonic Stages as Revealed by U–Pb Dating of Multi‐Phase Calcite Veins in Deeply Buried Carbonate Reservoirs.” Marine and Petroleum Geology164: 106790. https://doi.org/10.1016/j.marpetgeo.2024.106790.
    [Google Scholar]
  74. Xu, H., X.Guo, Z.Cao, et al. 2025. “Petroleum‐Charge History of Paleozoic Carbonates in the Tahe Oil Field, Tarim Basin, Northwestern China: Insights From Oil Geochemistry, Fluid Inclusion, and U–pb Dating.” AAPG Bulletin109: 57–84. https://doi.org/10.1306/10072422148.
    [Google Scholar]
  75. Yang, H., S.Yu, H.Zhang, et al. 2020. “Geochemical Characteristics of Lower Cambrian Sources Rocks From the Deepest Drilling of Well LT‐1 and Their Significance to Deep Oil Gas Exploration of the Lower Paleozoic System in the Tarim Basin (In Chinese).” Geochimica49, no. 6: 666–682. https://doi.org/10.19700/j.0379‐1726.2021.01.017.
    [Google Scholar]
  76. Yang, P., K.Liu, N. J.Evans, et al. 2024. “Petroleum Accumulation History of Deeply Buried Carbonate Reservoirs in the Northern Tarim Basin, Northwestern China.” AAPG Bulletin108: 1193–1229. https://doi.org/10.1306/06212321210.
    [Google Scholar]
  77. Yang, P., K.Liu, Z.Li, B. I. A.Mcinnes, and J.Liu. 2022. “Evolution of Ordovician YJ1X Ultra‐Deep Oil Reservoir in the Yuecan Oilfield, Tarim Basin, NW China.” Petroleum Exploration and Development49: 300–312.
    [Google Scholar]
  78. Zhang, S. C., A. D.Hanson, J. M.Moldowan, et al. 2000. “Paleozoic Oil–Source Rock Correlations in the Tarim Basin, NW China.” Organic Geochemistry31: 273–286.
    [Google Scholar]
  79. Zhao, J., and Q.Li. 2002. “Timing and History of Marine Hydrocarbon Accumulation in Tarim Craton.” Chinese Science Bulletin47: 120–127. https://doi.org/10.1007/BF02902828.
    [Google Scholar]
  80. Zhu, G., Z.Zhang, X.Zhou, T.Li, J.Han, and C.Sun. 2019. “The Complexity, Secondary Geochemical Process, Genetic Mechanism and Distribution Prediction of Deep Marine Oil and Gas in the Tarim Basin, China.” Earth‐Science Reviews198: 102930. https://doi.org/10.1016/j.earscirev.2019.102930.
    [Google Scholar]
/content/journals/10.1111/bre.70064
Loading
/content/journals/10.1111/bre.70064
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error