1887
Volume 37, Issue 5
  • E-ISSN: 1365-2117

Abstract

[

An original 3D structural model of the folded Senonian karst aquifer of the Dévoluy Massif (southwestern Subalpine Chains) is performed to decipher its internal architecture and identify hydrogeological boundaries and dominant groundwater flows directions at the massif scale.

, ABSTRACT

In foreland fold‐thrust belts, tectonically deformed aquifers remain underexplored, largely due to the complex architecture of their hydrogeological reservoirs. This limited understanding prevents the development of sustainable management policies to face the current decline in groundwater availability. In the southwestern Subalpine Chains, we characterised the structure of the folded Senonian karst aquifer of the Dévoluy Massif, which is transected by the Median Dévoluy Thrust. Using surface structural data, we performed an original 3D structural model of the massif. Quantitative analyses of this model indicate a total Senonian package volume of 114 km3, of which 25 km3 lie below the elevation of Gillardes Spring, the main karst discharge. A structural restoration of the base of the Senonian indicates Alpine shortening of ~4.4 km in the southern part of the massif and ~1.2 km in the northern part. The deformation of the karst reservoir into two N‐trending synclines, separated by the Median Dévoluy Thrust, is identified as a key control on the northward groundwater drainage pattern, culminating at Gillardes Spring. This 3D structural modelling approach also allowed for identification of suitable areas for the exploration of new deeper resources. Finally, this study highlights the potential of a hydrostructural approach and 3D structural modelling for assessing the hydrogeology in tectonically deformed karst reservoirs.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.70065
2025-10-13
2025-11-09
Loading full text...

Full text loading...

/deliver/fulltext/bre/37/5/bre70065.html?itemId=/content/journals/10.1111/bre.70065&mimeType=html&fmt=ahah

References

  1. Abirifard, M., S.Birk, E.Raeisi, and M.Sauter. 2022. “Dynamic Volume in Karst Aquifers: Parameters Affecting the Accuracy of Estimates From Recession Analysis.” Journal of Hydrology612: 128286. https://doi.org/10.1016/j.jhydrol.2022.128286.
    [Google Scholar]
  2. Arnaud, H.1981. “De la plate‐forme urgonienne au bassin vocontien: le Barrémo‐Bédoulien des Alpes occidentales entre Isère et Buëch (Vercors méridional, Diois oriental et Dévoluy).” Geologie Alpine, Grenoble, Mém. H.S.12: 804.
    [Google Scholar]
  3. Audra, P.1996. “L'apport de l'étude des remplissages à la compréhension de la karstogenèse: le cas du chourum du Goutourier (massif du Dévoluy, Hautes‐Alpes).” Revue D'analyse Spatiale Quantitative et Appliquée38,39: 109–120.
    [Google Scholar]
  4. Audra, P., L.Mocochain, and J.‐Y.Bigot. 2009. “Spéléogenèse per ascensum par remontée du niveau de base. Interprétation des réseaux ennoyés, dénoyés, des sources vauclusiennes et des puits‐cheminées.” Karstologia Mémoires17: 164–175.
    [Google Scholar]
  5. Ball, L. B., J. S.Caine, and S.Ge. 2014. “Controls on Groundwater Flow in a Semiarid Folded and Faulted Intermountain Basin.” Water Resources Research50: 6788–6809. https://doi.org/10.1002/2013WR014451.
    [Google Scholar]
  6. Baudrimont, A., and R.Dubois. 1977. “Un bassin mésogéen du domaine péri‐alpin: le Sud‐Est de la France.” Bulletin des Centres de Recherches Exploration‐Production Elf‐Aquitaine1: 261–308.
    [Google Scholar]
  7. Bense, V. F., T.Gleeson, S. E.Loveless, O.Bour, and J.Scibek. 2013. “Fault zone Hydrogeology.” Earth‐Science Reviews127: 171–192. https://doi.org/10.1016/j.earscirev.2013.09.008.
    [Google Scholar]
  8. Bonhomme, J. L.1972. Etude hydrogéologique et hydrodynamique du karst des calcaires sénoniens. Conservatoire national des arts et métiers.
    [Google Scholar]
  9. Boschetti, L., F.Mouthereau, S.Schwartz, et al. 2025. “Thermochronology of the Western Alps (Pelvoux Massif) Reveals the Longterm Multiphase Tectonic History of the European Paleomargin. Tectonics 44, e2024TC008498.”https://doi.org/10.1029/2024TC008498.
  10. Boura, A., Y.Cousquer, V.Clauzon, R.Valois, and V.Leonardi. 2024. “Improving Fault Zones Hydrodynamic Characterization and Simulation in Karstified Carbonate Environments With GLM and IES Invers Methods.” Journal of Hydrology645: 132010. https://doi.org/10.1016/j.jhydrol.2024.132010.
    [Google Scholar]
  11. Boyer, S. E., and D.Elliott. 1982. “Thrust systems.” Bulletin of the American Association of Petroleum Geologists66: 1182–1196.
    [Google Scholar]
  12. Bréhéret, J. G.1995. L'Aptien et l'Albien de la Fosse vocontienne (des bordures au bassin): évolution de la sédimentation et enseignements sur les événements anoxiques. Université François Rabelais.
    [Google Scholar]
  13. Dahlstrom, C. D. A.1969. “Balanced Cross Sections.” Canadian Journal of Earth Sciences6: 743–757.
    [Google Scholar]
  14. de Graciansky, P. C., and M.Lemoine. 1988. “Early Cretaceous Extensional Tectonics in the Southwestern French Alps: a Consequence of North‐Atlantic Rifting During Tethyan Spreading.” Bulletin de la Societe Geologique de France8: 733–737.
    [Google Scholar]
  15. De La Torre, B., M.Mudarra, and B.Andreo. 2020. “Investigating Karst Aquifers in Tectonically Complex Alpine Areas Coupling Geological and Hydrogeological Methods.” Journal of Hydrology X6: 100047. https://doi.org/10.1016/j.hydroa.2019.100047.
    [Google Scholar]
  16. Dubois, R.1962. “Le Nummulitique du Dévoluy (Hautes‐Alpes): Relations avec les régions voisines.” Bulletin De La Société Géologique De FranceS‐7‐IV, no. 4: 612–619.
    [Google Scholar]
  17. Dubois, R., and J.‐C.Fontes. 1962. “Sur le Crétacé supérieur du Dévoluy (Hautes‐Alpes) et ses relations avec les régions voisines.” Bulletin de la Societe Geologique de France7: 607–611.
    [Google Scholar]
  18. Faure, A., N.Loget, L.Jolivet, et al. 2024. “3D Geometrical Modelling of the Non‐Cylindrical Vélodrome Miocene Fold in the Southwestern Alps.” Tectonophysics879: 230296. https://doi.org/10.1016/j.tecto.2024.230296.
    [Google Scholar]
  19. Fernández, O., J. A.Muñoz, P.Arbués, O.Falivene, and M.Marzo. 2004. “Three‐Dimensional Reconstruction of Geological Surfaces: An Example of Growth Strata and Turbidite Systems From the Ainsa Basin (Pyrenees, Spain).” Bulletin88: 1049–1068. https://doi.org/10.1306/02260403062.
    [Google Scholar]
  20. Fernández‐Ibáñez, F., P. J.Moore, and G. D.Jones. 2019. “Quantitative Assessment of Karst Pore Volume in Carbonate Reservoirs.” Bulletin103: 1111–1131. https://doi.org/10.1306/10261818061.
    [Google Scholar]
  21. Figueroa, R., B.Viguier, M.Taucare, et al. 2021. “Deciphering Groundwater Flow‐Paths in Fault‐Controlled Semiarid Mountain Front Zones (Central Chile).” Science of the Total Environment771: 145456. https://doi.org/10.1016/j.scitotenv.2021.145456.
    [Google Scholar]
  22. Flandrin, J.1966. “Sur l'âge des principaux traits structuraux du Diois et des Baronnies.” Bulletin de la Societe Geologique de France7: 376–386.
    [Google Scholar]
  23. Gidon, M., J.Aprahamian, H.Arnaud, J.Pairis, A.Andre, and G.Grandjean. 1971. “Feuille Gap n°869 et Notice associée.”
  24. Gidon, M., H.Arnaud, J.Pairis, J.Aprahamian, and J. P.Uselle. 1970. “Les déformations tectoniques superposées du Dévoluy méridional (Hautes‐Alpes).” Géologie Alpinet.46: 87–110.
    [Google Scholar]
  25. Gidon, M., G.Buffet, J.Bonhomme, et al. 1980. “Feuille Saint‐Bonnet n°845 et Notice associée.”
  26. Gidon, M., and J.Pairis. 1976. “Le rôle des mouvements tectoniques éocènes dans la genèse des structures NE du Dévoluy et dans celle du chevauchement de Digne.” Géologie Alpine52: 73–83.
    [Google Scholar]
  27. Goldscheider, N.2005. “Fold Structure and Underground Drainage Pattern in the Alpine Karst System Hochifen‐Gottesacker.” Eclogae Geologicae Helvetiae98: 1–17. https://doi.org/10.1007/s00015‐005‐1143‐z.
    [Google Scholar]
  28. Goldscheider, N., and C.Neukum. 2010. “Fold and Fault Control on the Drainage Pattern of a Double‐Karst‐Aquifer System, Winterstaude.” Austrian Alps. AC39, no. 2: 173–186. https://doi.org/10.3986/ac.v39i2.91.
    [Google Scholar]
  29. Grool, A. R., M.Ford, J.Vergés, R. S.Huismans, F.Christophoul, and A.Dielforder. 2018. “Insights Into the Crustal‐Scale Dynamics of a Doubly Vergent Orogen From a Quantitative Analysis of Its Forelands: A Case Study of the Eastern Pyrenees.” Tectonics37: 450–476. https://doi.org/10.1002/2017TC004731.
    [Google Scholar]
  30. Handy, M. R. M., S.Schmid, R.Bousquet, E.Kissling, and D.Bernoulli. 2010. “Reconciling Plate‐Tectonic Reconstructions of Alpine Tethys With the Geological–Geophysical Record of Spreading and Subduction in the Alps.” Earth‐Science Reviews102: 121–158. https://doi.org/10.1016/j.earscirev.2010.06.002.
    [Google Scholar]
  31. Huet, B.2024. Dynamique des bassins d'avant‐pays et collision dans les Alpes de l'Ouest: sources, routage et bilans sédimentaires. Sorbonne Université.
    [Google Scholar]
  32. Jagercikova, M., F.Lemot, and P.Valla. 2022. “Relief and Paleoenvironmental Conditions During the Mid‐Late Miocene in the French Western Alps (Dévoluy Massif) Revealed by Obiou Cave Deposits.” Karstologia Mémoires25: 63–66.
    [Google Scholar]
  33. Jagercikova, M., L.Mocochain, A.Lebatard, et al. 2021. “Découverte et étude de remplissages karstiques allochtones d'âge miocène dans l'Obiou (Dévoluy, Alpes françaises).” Implications géomorphologiques et paléogéographiques. Karst77: 49–62. https://doi.org/10.3406/karst.2021.3251.
    [Google Scholar]
  34. Jódar, J., I.Herms, L. J.Lambán, et al. 2021. “Isotopic Content in High Mountain Karst Aquifers as a Proxy for Climate Change Impact in Mediterranean Zones: The Port del Comte Karst Aquifer (SE Pyrenees, Catalonia, Spain).” Science of the Total Environment790: 148036. https://doi.org/10.1016/j.scitotenv.2021.148036.
    [Google Scholar]
  35. Klaba, V., H.Celle, P.Trap, et al. 2024. “Multi‐Scale Hydrostructural Approach for Karst Environment. Application to the Arcier Hydrosystem (Eastern France).” Journal of Structural Geology184: 105154. https://doi.org/10.1016/j.jsg.2024.105154.
    [Google Scholar]
  36. Kuang, X., J.Liu, B. R.Scanlon, et al. 2024. “The Changing Nature of Groundwater in the Global Water Cycle.” Science383: eadf0630. https://doi.org/10.1126/science.adf0630.
    [Google Scholar]
  37. Labat, C., F.Larroque, B.De Grissac, A.Dupuy, M.Saltel, and P.Bourbon. 2021. “Influence of an Anticline Structure on Hydrogeological Functioning and Aquifer Interactions in a Multilayered Aquifer System: the Case of Villagrains‐Landiras Anticline (Gironde, France).” Hydrogeology Journal29: 1711–1732. https://doi.org/10.1007/s10040‐021‐02333‐z.
    [Google Scholar]
  38. Legarreta‐González, M. A., C. A.Meza‐Herrera, R.Rodríguez‐Martínez, et al. 2024. “Selecting a Time‐Series Model to Predict Drinking Water Extraction in a Semi‐Arid Region in Chihuahua, Mexico.” Sustainability16: 9722. https://doi.org/10.3390/su16229722.
    [Google Scholar]
  39. Lemot, F., P. G.Valla, P.Van der Beek, et al. 2023. “Miocene Cave Sediments Record Topographic, Erosional and Drainage Development in the Western European Alps.” Earth and Planetary Science Letters621: 118344. https://doi.org/10.1016/j.epsl.2023.118344.
    [Google Scholar]
  40. Lickorish, W. H., and M.Ford. 1998. “Sequential Restoration of the External Alpine Digne Thrust System, SE France, Constrained by Kinematic Data and Synorogenic Sediments.” Geological Society, London, Special Publications134: 189–211. https://doi.org/10.1144/GSL.SP.1998.134.01.09.
    [Google Scholar]
  41. Lismonde, B., L.Morel, and P.Bertochio. 2008. “Hydrologie du Dévoluy: La Souloise, les Gillardes et le puits des Bans.” karst51: 33–44. https://doi.org/10.3406/karst.2008.2621.
    [Google Scholar]
  42. Lory, M. P.1900. “Les mouvements du sol et la sédimentation en Dévoluy durant le Crétacé supérieur. BSGF‐Earth Sciences Bulletin 3ème sér, t.XXVIII, 780–782.”
  43. Luparini, V.1975. Etude hydrogéologique du massif du Dévoluy. Faculté des Sciences de l'Université de Grenoble.
    [Google Scholar]
  44. Meckel, L. D.1997. Sedimentological and Structural Evolution of the Tertiary Dévoluy Basin, External Western Alps. University of Texas.
    [Google Scholar]
  45. Meckel, L. D., M.Ford, and D.Bernouilli. 1996. “Tectonic and Sedimentary Evolution of the Devoluy Basin, a Remnant of the Tertiary Western Alpine Foreland Basin, SE France.” Géologie de la France2: 3–26.
    [Google Scholar]
  46. Mercier, J.1958. “Sur l'âge de la phase tectonique “antésénonienne” a l'W du Dévoluy (Drôme).” Bulletin De La Société Géologique De FranceS‐6‐VIII, no. 7: 689–697.
    [Google Scholar]
  47. Michard, A., T.Dumont, L.Andreani, and N.Loget. 2010. “Cretaceous Folding in the Dévoluy Mountains (Subalpine Chains, France): Gravity‐Driven Detachment at the European Paleomargin Versus Compressional Event.” Bulletin de la Société Géologique de France181: 565–581. https://doi.org/10.2113/gssgfbull.181.6.565.
    [Google Scholar]
  48. Morante‐Carballo, F., N.Montalván‐Burbano, M.Arias‐Hidalgo, L.Domínguez‐Granda, B.Apolo‐Masache, and P.Carrión‐Mero. 2022. “Flood Models: An Exploratory Analysis and Research Trends.” Water (Basel)14: 2488. https://doi.org/10.3390/w14162488.
    [Google Scholar]
  49. Philip, J., and J.Allemann. 1982. “Comparaison entre les Plates‐formes du Crétacé supérieur de Provence et de Sardaigne.” Cretaceous Research3: 35–45.
    [Google Scholar]
  50. Ramos, A., B.Lopez‐Mir, E.Wilson, P.Granado, and J. A.Muñoz. 2020. “3D Reconstruction of Syn‐Tectonic Strata in a Salt‐Related Orogen: Learnings From the Llert Syncline (South‐Central Pyrenees).” GeA18: 1–19. https://doi.org/10.1344/GeologicaActa2020.18.20.
    [Google Scholar]
  51. Ramsay, J. G., and M. I.Huber. 1987. Modern Structural Geology Vol 2: Folds and Fractures. Academic Press.
    [Google Scholar]
  52. Roest, W. R., and S. P.Srivastava. 1991. “Kinematics of the Plate Boundaries Between Eurasia, Iberia, and Africa in the North Atlantic From the Late Cretaceous to the Present.” Geology19: 613. https://doi.org/10.1130/0091‐7613(1991)019<0613:KOTPBB>2.3.CO;2.
    [Google Scholar]
  53. Somers, L. D., and J. M.McKenzie. 2020. “A Review of Groundwater in High Mountain Environments.” WIREs Water7: e1475. https://doi.org/10.1002/wat2.1475.
    [Google Scholar]
  54. Suppe, J.1985. “Principles of Structural Geology, Prentice‐Hall, Englewood Cliffs.” New Jersey.
  55. Viviroli, D., M.Kummu, M.Meybeck, M.Kallio, and Y.Wada. 2020. “Increasing Dependence of Lowland Populations on Mountain Water Resources.” Nature Sustainability3: 917–928. https://doi.org/10.1038/s41893‐020‐0559‐9.
    [Google Scholar]
  56. Zappelli, A., A.Belleville, and M.Jagercikova. 2018. “Hydrogeoly of Dévoluy Karstic System: New Insights With Dye Tracing and Rainfall‐Discharge Model. Eurokarst.”
/content/journals/10.1111/bre.70065
Loading
/content/journals/10.1111/bre.70065
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error