1887
Volume 7 Number 1
  • E-ISSN: 1365-2117

Abstract

Abstract

In the Earth's crust the temperature is largely controlled by heat conduction. However, under some circumstances, the thermal state is disturbed by advection of heat associated with groundwater flow. The corresponding thermal disturbance depends on the water flow velocity (modulus and direction) and therefore thermal data may be used to constrain the pattern of natural fluid flow. In this paper, some models of thermal disturbance induced by convective heat transfer are presented. They are based on the assumption that the water flow is concentrated in thin permeable structures such as aquifer or fault zones. The steady‐state and transient thermal effects associated with such scenarios are computed using a somewhat idealized model which depends on a small number of parameters: flow rate, time, aquifer geometry and thermal parameters of surrounding rocks. In order to extract the conductive and convective components of heat transfer from temperature data and to estimate the corresponding fluid flow rate, it is first necessary to estimate the thermal conductivity field. The problem of the estimation of thermal conductivity in clay‐rich rocks, based on laboratory and measurements, is emphasized. Then a method is proposed for the inversion of temperature data in terms of fluid flow. Vertical and lateral variations of thermal conductivity are taken into account and the fluid flow is assumed to be concentrated on a specified surface (2‐D quasi‐horizontal pattern). Thermal effects of the flow are simulated by a distribution of surface heat production which can be calculated and then inverted in terms of horizontal fluid flow pattern.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.1995.tb00096.x
2007-11-06
2024-04-25
Loading full text...

Full text loading...

References

  1. Bernard, D. (1988) Convection naturelle dans les structures gélogiques poreuses: deux exemples numériques. Bull. Minér., 111, 601–611.
    [Google Scholar]
  2. Bethke, C. (1985) A numerical model of compaction‐driven groundwater flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basins. J. geophys. Res., 90, 6817–6828.
    [Google Scholar]
  3. Bethke, E. (1989) Modeling subsurface flow in sedimentary basins. Geol. Rdsch., 78, 129–154.
    [Google Scholar]
  4. Bjorlykke, K. (1993) Fluid flow in sedimentary basins. Sediment. Geol., 86, 137–158.
    [Google Scholar]
  5. Blackwell, D. D. & Steele, J. L. (1989) Thermal conductivity of sedimentary rocks ‐ measurements and significance. In: Thermal History of Sedimentary Basins ‐Methods and Case Histories (Ed. by N. D.Naeser and T. H.McCulloh ), pp. 13–36, Springer‐Verlag.
    [Google Scholar]
  6. Bories, S. & Combarnous, M. (1973) Natural convection in a sloping porous layer. J. fluid. Mech., 57, 63–79.
    [Google Scholar]
  7. Brigaud, F. & Vasseur, G. (1989) Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks. Geophys. J., 98, 525–542.
    [Google Scholar]
  8. Brigaud, F., Chapman, D. S. & LeDouaran, S. (1990) Thermal conductivity in sedimentary basins predicted from lithologic data and geophysical well logs. Bull. Am. Ass. petrol. Geol, 74, 1459–1477.
    [Google Scholar]
  9. Bovardsson, G. (1973) On the temperature of water flowing through fractures. J. geophys. Res., 74, 1987–1992.
    [Google Scholar]
  10. Budiansky, B. (1970) Thermal and thermoelastic properties of isotropic composites. J. Composite Mater., 4, 286–295.
    [Google Scholar]
  11. Carslaw, H. S. & Jaeger, J. C. (1959) Conducton of Heat in Solids, 2nd edn.Oxford University Press, Oxford .
    [Google Scholar]
  12. Cathles, L. M. (1987) A simple analytical method for calculating temperature perturbations in a basin caused by the flow of water through thin, shallow dipping aquifers. Appl. Geochem., 2, 649–655.
    [Google Scholar]
  13. Cathles, L. M. & Smith, A. T. (1983) Thermal constraints on the formation of Mississippi Valley type lead‐zinc deposits and their implications for episodic basin dewatering and deposit genesis. Econ. Geol., 72, 804–826.
    [Google Scholar]
  14. Clarkson, G. & Reiter, M. (1987) The thermal regime of the San Juan Basin since Late Cretaceous time and its relationship to the San Juan Mountains thermal sources. J. Volcanol. Geotherm. Res., 31, 217–237.
    [Google Scholar]
  15. Clark, S. P. (1966) Handbook of Physical Constants. Geological Society of America.
    [Google Scholar]
  16. Clauser, C. (1989) Conductive and convective heat flow components in the Rhine graben and implications for the deep permeability distribution. In: L.Stegena ) pp. 56–64.International Union of Geodesy and Geophysics, v.2.
    [Google Scholar]
  17. Deming, D., Nunn, J. A. & Evans, D. G. (1990) Thermal effects of compaction‐driven groundwater flow from overthrust belts. J. geophys. Res., 95, 6660–6683.
    [Google Scholar]
  18. Deming, D. & Nunn, J. A. (1991) Numerical simulations of brine migration by topographically driven recharge. J. geophys. Res., 96, 2485–2499.
    [Google Scholar]
  19. Deming, D., Sass, J., Lachenbruch, A. & De Rito, R. (1992) Heat flow and subsurface temperature as evidence for basin‐scale ground water flow, North slope of Alaska. Bull. geol. Soc. Am., 104, 528–542.
    [Google Scholar]
  20. Demongodin, L. & Pinoteau, B., Vasseur, G. & Gable, R. (1991) Thermal conductivity and well logs: a case study in the Paris basin. Geophys. J. Int., 105, 675–691.
    [Google Scholar]
  21. Demongodin, (1992) Reconnaissance de l'état thermique des bassins sédimentaires: transferts de chaleur par conduction et Convection. Application Au bassin de Paris. Thesis, Université de Montpellier II.
  22. Demongodin, L., Vasseur, G. & Brigaud, F. (1993) Anisotropy of thermal conductivity in clayey formations. In: Basin Modelling: Advances and Applications (Ed. by A. G.Doré et al.), pp. 209–218. Elsevier, NPF Special publication no. 3..
    [Google Scholar]
  23. Evans, D. G. & Nunn, J. A. (1989) Free thermohaline convection in sediments surrounding a salt column. J. geophys. Res., 94, 12413–12422.
    [Google Scholar]
  24. Garven, G., Ge, S., Person, M. & Sverjenski, D. (1993) The genesis of stratabound ore deposits in the Midcontinent Basins of North America: I the role of regional groundwater flow. Am. J. Sci., 293, 497–568.
    [Google Scholar]
  25. Gaulier, J. M. & Burrus, J. (1994) Modeling present and past thermal regimes in the Paris basin: petroleum implications. In: Hydrocarbon and Petroleum Geology of France. Spec. Publ. Eur. Ass. petrol. Geosci. no. 4 (Ed. by A.Mascle ), pp. 61–73. Springer‐Verlag.
    [Google Scholar]
  26. Freeze, R. A. & Witherspoon, P. A. (1966) Theoretical analysis of regional groundwater flow, I., analytical and numerical solutions to the mathematical model. Water Resour. Res., 2, 641–656.
    [Google Scholar]
  27. Jessop, A. M. & Vigrass, L. W. (1989) Geothermal measurements in a deep well at Regina Saskatchewan. J. Volcanol. Geotherm. Res., 37, 151–166.
    [Google Scholar]
  28. Ludvigsen, A., Gran, K., Palm, P. & Bjorlykke, K. (1993) Effects of convection current on heat transfer in sedimentary basins. In: Basin Modelling: Advances and Applicattons (Ed. by A. G.Doré et al.), pp. 353–359. Elsevier, NPF Special publication no. 3.
    [Google Scholar]
  29. Majorowicz, J. A., Jones, F. W., Lam, H. L. & Jessop, A. M. (1985) Regional heat flow patterns in the western Canadian sedimentary basins. Geophys. J. Roy. Astr. Soc., 81, 479–487.
    [Google Scholar]
  30. Mansure, A. J. & Reiter, M. (1979) A vertical groundwater movement correction for heat flow. J. geophys. Res., 84, 3490–3496.
    [Google Scholar]
  31. Mégnien, C. (1980) Synthèse géologique du bassin de Paris, vols. I, II & III. Mémoires du BRGM, 101, 102, 103. Editions BRGM, Orléns , France .
    [Google Scholar]
  32. Person, M. & Garven, G. (1992) Hydrologic constraints on petroleum generation within continental rift basins: theory and application to the Rhine Graben. Bull. geol. Soc. Am., 104, 528–542.
    [Google Scholar]
  33. Person, M. & Garven, G. (1994) A sensitivity study of the driving forces on fluid flow during continental‐rift basin evolution. Bull. geol. Soc. Am., 106, 461–475.
    [Google Scholar]
  34. Sass, J. H. & Galanis, S. P. (1983) Temperature, thermal conductivity and heat flow from well in Pierre Shale near Hayes, South Dakota. U.S. eological Survey Open‐File, Report 83–25, California.
  35. Sclater, J. H., Jaupart, C. & Galson, D. (1984) The heat flow through oceanic and continental crust and the heat loss of the Earth. Rev. geophys. Space. Rev., 18, 269–311.
    [Google Scholar]
  36. Sekiguchi, K. (1984) A method for determining heat flow in oil basinal areas. Tectonophysics, 103, 67–79.
    [Google Scholar]
  37. Sibson, R. H., Moore, J. M. & Rankin, A. H. (1975) Seismic pumping. A hydrothermal fluid transport mechanism. J. geol. Soc. Lond., 131, 653–659.
    [Google Scholar]
  38. Sibson, R. H. (1990) Conditions for fault‐valve behaviour. In: Deformation Mechanisms, Rheology, and Tectonics (Ed. by R. J.Knipe and E. H.Rutter),
  39. Spec. Publ. geol. Soc.. 54, 15–28.
    [Google Scholar]
  40. Smith, L. & Chapman, D. S. (1983) On the thermal effects of groundwater flow. 1. Regional scale systems. J. geophys. Res., 88, 593–608.
    [Google Scholar]
  41. Vasseur, G., Demongodin, L. & Bonneville, A. (1993) Thermal modelling of fluid flow effects in thin dipping aquifers. Geophys. J. Int., 112, 276–289.
    [Google Scholar]
  42. Wang, K. & Beck, A. E. (1989) An inverse approach to heat flow study in hydrologically active areas. Geophys. J. Int., 98, 69–84.
    [Google Scholar]
  43. Wei, H. F. (1990) Modélisation tridimensionnelle de transport d'eau, de chaleur et de mane dans l'aqutfére géothermique de Dogger dans le bassin de Paris . Thesis, Ecole Nationale des Mines de Paris.
  44. Willet, S. D. & Chapman, D. S. (1987) Analysis of temperature and thermal processes in the Uinta basin. In: Sedimenary Basins and Basin Forming Mechanisms (Ed. by C.Beaumont and A. J.Tankard),
  45. Mem. Can. Soc. petrol. Geol.. 12, 447–461.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.1995.tb00096.x
Loading
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error