1887
Volume 7 Number 1
  • E-ISSN: 1365-2117

Abstract

Abstract

We investigate the effects of convective heat transfer on the thermal history of sediments and petroleum formation within continental rift basins using one‐dimensional mathematical modelling. The transport equations used in this study to describe vertical groundwater flow and conductive/convective heat transfer are solved by the finite element method. Sediment thermal history is quantitatively represented using first‐order rate kinetic expressions for kerogen degradation and an empirical fanning Arrhenius model for apatite fission track annealing. Petroleum generation is also represented in the model by a suite of first‐order rate kinetic expressions. The analysis provides insights into how pore fluid circulation patterns are preserved in the rock record as anomalies in palaeogeothermometric data within continental rifts. Parameters varied in the numerical experiments include the ratio of conductive to convective heat transfer (thermal Peclet number; ) and the composition of the disseminated organic matter in the sediment (type II and III kerogen).

Quantitative results indicate that vertical groundwater flow rates on the order of a mm/yr cause a change in computed vitrinite reflectance of the rocks and a shift in the depth to oil generation by as much as 3000 m. Differences in thermal gradients between recharge and discharge areas (= 0.6) also change the width of the zone of oil generation by a factor of two. Even more dramatic, however, are the large changes in predicted apatite fission track length distributions and model ages between recharge and discharge areas. For example, a sediment package buried to a depth of 2400 m over 200 Myr within the groundwater recharge column had a fission track length distribution with a computed mean and standard deviation of 12.83 μm and 0.77 μm, respectively. The fission track model age for this sediment package was 209 Ma. The same sediment package in the discharge area has a distribution with a mean track length of 5.68 μm, a standard deviation of 3.37 μm, and a fission track model age of 2.6 Ma.

Transient groundwater flow simulations, in which fluid circulation ceases after a period of time within the rift basin, are also presented to illustrate how disturbances in palaeogeothermometric parameters are preserved on geological time‐scales. Vitrinite reflectance profiles require about 10 Myr to return to conductive conditions within groundwater recharge areas while the convective disturbances are preserved indefinitely along the discharge column, as long as further subsidence does not occur. Ancient groundwater flow systems are preserved as anomalies in computed apatite fission track model ages and distributions much longer after groundwater flow stops, relative to organic‐based geothermometers. Significant differences exist in model ages between recharge (145 Ma) and discharge (90 Ma) areas 200 Myr after flow has ceased. However, calculated fission track histogram distributions are virtually identical in recharge and discharge areas after about 50 Myr.

Our study suggests that ancient groundwater flow systems can be detected by comparing thermochronometric data between suspected recharge and discharge areas within continental rifts. Vitrinite reflectance profiles, observed offsets in the depth to the onset of petroleum generation, and apatite fission track annealing studies are all well suited for detecting groundwater flow systems which have been relatively long lived (107 years). Apatite fission track age data are probably best suited for identifying ancient groundwater flow systems within rifts long (>200 Myr) after flow ceases.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.1995.tb00097.x
2007-11-06
2024-04-25
Loading full text...

Full text loading...

References

  1. Arne, D. (1991) Regional thermal history of the Pine Point area, Northwest Territories, Canada, from apatite fission‐track analysis. Econ. Geol., 86, 428–435.
    [Google Scholar]
  2. Arne, D., Duddy, I. R. & Sangster, D. F. (1990b) Thermochronologic constraints on ore formation at the Gays River Pb‐Zn deposit, Nova Scotia, Canada, from apatite fission track analysis. Can. J. Earth Sci.. 27, 1013–1022.
    [Google Scholar]
  3. Arne, D., Green, P. F. & Duddy, I. R. (1990a) Thermochronologic constraints on the timing of Missippi Valley‐Type ore formation from apatite fission track analysis. Nucl. Tracks Radia. Meas.. 17, 319–323.
    [Google Scholar]
  4. Arne, D. & Zentilli, M. (1994) Apatite fission track thennochronology integrated with vitrinite reflectance; reevaluation of vitrinite reflectance as a maturity parameter—applications and limitations. Vitrinite Reflectance as a Maturity Parameter: Petrologic, Kinetic, and Geochemical (Ed by P. K.Mukhopadhyay and W. G.Dow ), pp. 249–268. American Chemical Society.
    [Google Scholar]
  5. Bethke, C. (1985) A numerical model of compaction‐driven groundwater flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basins. J. geophys. Res., 90B, 6817–6828.
    [Google Scholar]
  6. Bethke, C. M. & Marshak, S. (1990) Brine migrations across North America ‐ The plate tectonics of groundwater. Ann. Rev. Earth planet. Sci., 18, 287–315.
    [Google Scholar]
  7. Bredehoeft, J. D. & Papadopulos, J. S. (1965) Rates of vertical groundwater movement estimated from the earth's thermal profile. Water Resour. Res., 1, 325–328.
    [Google Scholar]
  8. Burnham, A. K. & Sweeney, J. J. (1989) A chemical kinetic model of vitrinite maturation and reflectance. Geochim. Cosmochim. Acta, 53, 2649–2657.
    [Google Scholar]
  9. Clauser, C. (1989) Conductive and convective heat flow components in the Rhinegraben and implications for the deep permeability distribution. In: Geophysical Monograph Series 47, International Union of Geodesy and Geophysics, Vol. 2 (Ed. by A. E.Beck , G.Garven , and L.Stegna ), pp. 56–64. American Geophysical Union.
    [Google Scholar]
  10. Clarkson, G. & Reiter, M. (1987) The thermal regime of the San Juan Basin since Late Cretaceous time and its relationship to the San Juan Mountains thermal sources. J. Volcanol. Geotherm. Res, 31, 217–237.
    [Google Scholar]
  11. Crowley, K. D. (1993) LENMODEL: a forward model for calculating length distributions and fission‐track ages in apatite. Computers Geosci., 19, 619–626.
    [Google Scholar]
  12. Crowley, K. D., Cameron, M. & Schaefer, R. L. (1991) Experimemtan studies of annealing of etched fission tracks in fluorapatite. Geochim. Cosmochim. Acta, 55, 1449–1465.
    [Google Scholar]
  13. Cooper, H. (1966) The equation of groundwater flow in fixed and deforming coordinates. J. geophys. Res., 71, 4785–4790.
    [Google Scholar]
  14. Deming, D., Sass, J. H., Lachenbruch, A. H. & De Rito, F. F. (1992) Heat flow and subsurface temperature as evidence for basin‐scale groundwater flow. Bull. geol. Soc. Am., 104, 528–542.
    [Google Scholar]
  15. Didyk, B. M. & Simoneit, B. R. T. (1989) Hydrothermal oil of Guaymas Basin and implications for petroleum formation mechanisms. Nature, 342, 65–68.
    [Google Scholar]
  16. Domenico, P. A. & Palciauskas, V. V. (1979) Thermal expansion of fluids and fracture initiation in compacting sediments. Bull. geol. Soc. Am., 90, 953–970.
    [Google Scholar]
  17. Duddy, I. R., Green, P. F. & Laslett, G. M. (1988) Thermal annealing of fission tracks in apatite 3. Variable temperature behavior. Chem. Geol., 73, 25–38.
    [Google Scholar]
  18. Duffy, C. J. & Al‐Hassan, S. (1988) Groundwater circulation in a closed desert basin: Topographic scaling and climatic forcing. Water Resour. Res., 24, 1675–1688.
    [Google Scholar]
  19. Eadington, P. J., Hamilton, P. J. & Green, P. (1989) Hydrocarbon fluid history in relation to diagenesis in the Hutton Sandstone, south‐west Queensland, In: The Cooper and Eromanga Basins (Ed. by J. P.O'Neil ), pp. 601–617. Australia Proceedings of the Petroleum Exploration Society of Australia, Society of Petroleum Engineers, Australian Society of Exploration Geophysicists, Adelaide .
    [Google Scholar]
  20. Espitalié, J. (1984) Tentative reconstruction of geothermal paleogradients in some wells of the Rhine Graben. In: Thermal Phenomena in Sedimentary Basins: Collection et Séminaires, Vol. 41 (Ed. by B.Durrand ), pp. 147–166. Institut Françis due Pétrole.
    [Google Scholar]
  21. Fernandez, M. & Banda, E. (1990) Geothermal anomalies in the Valles‐Penedes Graben master fault: convection through the horst as a possible mechanism. J. geophys. Res., 95, 4887–4894.
    [Google Scholar]
  22. Freeze, R. A. & Cherry, J. A. (1979) Groundwater. Prentice‐Hall Inc., Englewood Cliffs , NJ .
    [Google Scholar]
  23. Garven, G. & Freeze, R. A. (1984a) Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits: 1. Mathematical and numerical model. Am. J. Sci.. 284, 1085–1124.
    [Google Scholar]
  24. Garven, G. & Freeze, R. A. (1984b) Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits: 2. Quantitative results. Am. J. Sci.. 284, 1124–1156.
    [Google Scholar]
  25. Green, P. F. & Duddy, I. R. (1989) Some comments on paleotemperature estimation from apatite fission track analysis. J petrol. Geol., 12, 111–114.
    [Google Scholar]
  26. Green, P. F., Duddy, I. R. & Lasslett, G. M. (1988) Can fission track annealing in apatite be described by first‐order kineticsEarth planet. Sci. Lett.. 87, 216–228.
    [Google Scholar]
  27. Green, P. F., Duddy, I. R., Laslett, G. M., Gleadow, A. J. W. & Tingate, P. R. (1986) Thermal annealing of fission tracks in apatite 1. A qualitative descriptions. Chem. Geol., 59, 237–253.
    [Google Scholar]
  28. Green, P. F., Duddy, I. R., Laslett, G. M., Hegarty, K. A., Gleadow, A. J. W. & Lovering, J. F. (1989) Thermal annealing of fission tracks in apatite 4. Quantitative modeling techniques and extension to geological time‐scales. Chem. Geol., 79, 155–182.
    [Google Scholar]
  29. Harding, T. P. (1984) Graben hydrocarbon occurrences and structural styles, Bull. Am. Ass. petrol. Geol.. 68, 333–362.
    [Google Scholar]
  30. Hulen, J. B., Goff, F., Bortz, L. C. & Bereskin, S. R. (1994) Geology and geothermal origin of Grant Canyon and Bacon Flat oil fields, Railroad Valley, Nevada. Bull. Am. Ass. petrol. Geol., 78, 596–623.
    [Google Scholar]
  31. Hunstberger, T. L. & Lerche, I. (1987) Determination of paleo heat‐flux from fission scar tracks in apatite. J. petrol. Geol., 10, 365–394.
    [Google Scholar]
  32. Issar, A. (1985) Fossil water under the Sinai‐Negev Peninsula. Sci. Am., 29, 241–248.
    [Google Scholar]
  33. Issler, D. R., Beaumont, C., Willet, S. D., Donelick, R. A., Mooers, J. & Grist, A. (1990) Preliminary evidence from apatite fission‐track data concerning the thermal history of the Peace River Arch region, Western Canada Sedimentary Basin. Bull. Can. petrol. Geol., 38a, 250–269.
    [Google Scholar]
  34. Krebs, W. & MacQueen, R. W. (1984) Sequence of diagenetic and mineralizing events, Pine Point lead‐zinc property, Northwest Territories, Canada. Econ. Geol., 78, 1–25.
    [Google Scholar]
  35. Kvenvolden, K. A. & Simoneit, B. R. T. (1990) Hydrothermally derived petroleum: Examples from Guaymas Basin, Gulf of California, and Escanaba Trough, Northeast Pacific Ocean. Bull. Am. Ass. petrol. Geol. 74, 223–237.
    [Google Scholar]
  36. Kwaka, O. E. & Simoneit, B. R. T. (1987) Survey of hydrothemally‐generated petroleums from the Guaymas Basin spreading center. Organic Geochem., 11, 311–328.
    [Google Scholar]
  37. Laslett, G. M., Green, P. F., Duddy, I. R. & Gleadow, A. J. W. (1987) Thermal annealing of fission tracks in apatite 2. A quantitative analysis. Chem. Geol., 65, 1–13.
    [Google Scholar]
  38. Laslett, G. M., Kendal, W. S., Gleadow, A. J. W. & Duddy, J. R. (1982) Bias in measurement of fission‐track length distributions. Nuclear Tracks, 6, 79–85.
    [Google Scholar]
  39. McCabe, C. & Elmore, R. D. (1989) The Occurrence and origin of late Paleozoic remagnetization in the sedimentary rocks of North America. Rev. Geophys., 27, 471–494.
    [Google Scholar]
  40. Morgan, P. (1982) Heat flow in Rift Zones. In: Continental and Oceanic Riftr (Ed. by G.Palmason ), pp. 107–122. American Geophysical Union.
    [Google Scholar]
  41. Oliver, J. (1986) Fluids expelled tectonically from orogenic belts: their role in hydrocarbon migration and other geologic phenomena. Geology, 14, 99–102.
    [Google Scholar]
  42. Oliver, J. (1992) The spots and stains of plate tectonics. Earth Sci. Rev., 32, 77–106.
    [Google Scholar]
  43. Peter, J. M., Peltonen, P., Simoneit, B. R. T., Kawka, O. E. & Scott, S. D. (1990) Liquid hydrocarbon‐bearing inclusions in modem hydrothermal chimneys and mounds from the southern trough of Guaymas Basin, Gulf of California. Appl. Geochem., 5, 51–63.
    [Google Scholar]
  44. Peter, J. M., Peltonen, P., Scott, S. D., Simoneit, B. R. T. & Kawka, O. E. (1991) 14C ages of hydrothermal petroleum and carbonate in Guaymas Basin, Gulf of California: implications for oil generation, expulsion, and migration. Geology, 19, 253–256.
    [Google Scholar]
  45. Person, M. (1990) Hydrologic constraints on the thermal evolution of continental rift basins: implications for petroleum maturation . PhD dissertation, The Johns Hopkins University, Baltimore .
  46. Person, M. & Garven, G. (1989) Hydrologic constraints on the thermal evolution of the Rhine Graben. In: Geophysical Monograph Series 47, International Union of Geodesy and Geophysics, Vol. 2 (Ed. by A. E.Beck , G.Garven and L.Stegna ) pp. 35–58. American Geophysical Union.
    [Google Scholar]
  47. Person, M. & Garven, G. (1992) Hydrologic constraints on petroleum generation within contintental rift basins: theory and application to the Rhine Graben. Bull. Am. Ass. petrol. Geol., 76, 468–488.
    [Google Scholar]
  48. Person, M. & Garven, G. (1994) A sensitivity study of the driving forces on fluid flow during continental rift basin evolution. Bull. geol. Sol. Am., 106, 461–475.
    [Google Scholar]
  49. Plöthner, D. (1988) Entwicklung und anwendung einer erdölgeologisch‐geochemischen explorationsmethode unter besonderer beriicksichtigung der hydraulik im Pecehbronner Gebiet‐Fachbericht: Das Pechelbronner Feld; BMFT‐Forschungsvorhaben 032 6476 A, Archrv. no. 103 464, Hannover.
  50. Roedder, E. (1976) Fluid‐inclusion evidence on the genesis of ores in sedimentary and volcanic rocks. In: Handbook of Strata‐bound and Stratiform Ore Deposits (Ed. by K. H.Wolfe ), pp. 67–110. Elsevier, Amsterdam .
    [Google Scholar]
  51. Simoneit, B. R. T. (1988) Petroleum generation in submarine hydrothermal systems: an update. Can. Miner., 26, 827–840.
    [Google Scholar]
  52. Steckler, M. S., Omar, G. I., Karner, G. D. & Kohn, B. P. (1993) Pattern of hydrothermal circulation within the Newark basin from fission‐track analysis. Geology, 21, 735–738.
    [Google Scholar]
  53. Smith, L. & Chapman, D. S. (1983) On the thermal effects of groundwater flow, 1. Regional scale systems. J. geophys. Res., 88, 593–608.
    [Google Scholar]
  54. Sverjensky, D. A. & Garven, G. (1992) Tracing great fluid migrations, 356, 481–482.
    [Google Scholar]
  55. Tiercelin, J. J. & Faure, H. (1978) Rates of sedimentation and vertical subsidence in neorifts and paleorifts. In: Tectonics and Geophysics of Continental Rifts (Ed. by I. B.Ramberg and E. R.Neumann ), pp. 41–47. Reidel Publishing Company, Dordrecht , Holland .
    [Google Scholar]
  56. Tissot, B. P. (1969) Premieres donnes sur les mecanismes et la cinetique de la formation du petrole dans les sediments: simulation d'un schema reactionnel sur ordinateur. Rev. Institut Français Petrol., 24, 470–501.
    [Google Scholar]
  57. Tissot, B. & Espitalie, J. (1975) L'evolution thermique de la simulation rnathematique. Rev. Inst. Français Petrol., 30, 743–777.
    [Google Scholar]
  58. Tissot, B. P., Pelet, R. & Ungerer, P. (1987) Thermal kinetics of oil and gas generation. Bull. Am. Ass. petrol. Geol., 71, 1445–1466.
    [Google Scholar]
  59. Toupin, D. (1993) The efects of groundraater flow patterns in evolving intracratonic sedimentary basins on heat flow and petroleum generation . MSc thesis, University of New Hampshire.
  60. Willet, S. D. (1992) Modelling thermal annealing of fission tracks in apatite. In: Mineralogical Association of Canada Short Course in Low Temperature Thermochronology (Ed. by M.Zentilli and P. H.Reynolds ). Mineralogical Association of Canada, Ontario .
    [Google Scholar]
  61. Willet, S. D. & Chapman, D. S. (1989) Temperatures, fluid flow, and the thermal history in the Uinta Basin. In: Geophysical Monograph Series 47, International Union of Geodesy and Geophysics, Vol. 2 (Ed. by A. E.Beck , G.Garven and L.Stegna ), pp. 29–33. American Geophysical Union.
    [Google Scholar]
  62. Ungerer, P. (1984) Models of petroleum formation: how to take into account geology and chemical kinetics. In: Thermal Phenomena in Sedimentary Basins (Ed. by B.Duran ), pp. 235–246. Paris , Technip.
    [Google Scholar]
  63. Ungerer, P., Doligez, B., Bissis, F., Burrus, J. & Chenet, P. Y. (1986) Integrated numerical modeling of heat‐transfer, hydrocarbon formation, and migration in two dimensions: the Themis model (abs). Bull. Am. Ass. petrol. Geol., 70, 658.
    [Google Scholar]
  64. Ungerer, P. & Pelet, R. (1987) Extrapolation of oil and gas formation kinetics from laboratory experiments to sedimentary basins. Nature, 327, 52–54.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.1995.tb00097.x
Loading
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error