1887
Volume 7 Number 3
  • E-ISSN: 1365-2117

Abstract

Abstract

We present results of three sand‐box experiments that model the association between tectonic accretion and sedimentation in a forearc basin. Experimental sedimentation occurs step by step in the forearc basin during shortening of the sand wedge.

In each experiment, the development of the accretionary wedge leads to the formation of a major backthrust zone. This major deformation zone accounts for the thickening in the rear part of the wedge. In natural settings this tectonic bulge dams sediments that are transported toward the trench from mountainous terrain behind the forearc.

We test the variation of friction along the déollement and note the following: (1) shortening of a low‐friction wedge involves a mechanical balance between forethrusts and backthrust propagation and this balance is recorded by the sedimentary sequence trapped in the forearc basin. Indeed, if most of the movement occurs along the backthrust, the deepening of the basin will be larger and consequently the thickness of the sedimentary sequence will be greater. (2) Such balance does not exist in the case of a high‐friction wedge. (3) Variation of friction along the décollement during shortening of the sand wedge leads to modification in the forearc basin filling. Thus, for similar increments of convergence, the sequence deposited in the forearc basin shows relatively larger thickness when the wedge is shortened above a high‐friction décollement.

We suggest that contraction and thickening in the rear part of the wedge is an efficient mechanism to, initiate and develop a forearc basin. Thus, this kind of basin occurs in convergent settings, without collapse related to local extension or tectonic erosion. They represent a sedimentary trap on a passive basement, bounded by a tectonic bulge.

The Quaternary Hikurangi forearc basin, southeast of the North Island of New Zealand, is bounded by two actively uplifting ridges. Thus, this basin is considered to be a possible example of the basins modelled in our experiments, and we suggest that the limit between the basin and the wedge could be a complex backthrust zone.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.1995.tb00109.x
2007-11-06
2020-06-03
Loading full text...

Full text loading...

References

  1. Biju‐Duval., B., Le Quellec, P., Mascle, A. & Renard, V. & Valery, P. (1982) Multibeam bathymetric survey and high resolution seismic investigations on the Barbados ridge complex (eastern Caribbean): a key to the knowledge and interpretation of an accretionary wedge. Tectonophysics, 86, 275–304.
    [Google Scholar]
  2. Byerlee, J. (1978) Friction of rocks. Pure Appl. Geophys., 116, 615–626.
    [Google Scholar]
  3. Byrne, T. & Hibbard, J. (1987) Landward vergence in accretionary prisms: the role of the backstop and thermal history. Geology, 15, 1163–1167.
    [Google Scholar]
  4. Boynton, C. H., Westbrook, G. K., Bott, M. H. P. & Long, R. E. (1979) A seismic refraction investigation of crustal structure beneath the lesser Antilles island arc. Geophp. J. R. Astron. Soc., 58, 371–393.
    [Google Scholar]
  5. Byrne, D. E., Wang, W. H. & Davis, D. M. (1993) Mechanical role of backstops in the growth of forearcs. Tectonics, 12, 123–144.
    [Google Scholar]
  6. Cashman, S. M., Kelsey, H. M., Erdman, C. F., Cutten, H. N. C. & Berryman, K. R. (1992) Strain partitioning between structural domains in the Hikurangi subduction zone, New Zealand. Tectonics, 11, 242–257.
    [Google Scholar]
  7. Calassou, S., Larroque, C. & Malavieille, J. (1993) Transfer zones of deformation in thrust wedges: an experimental study. Tectonophysics, 221, 325–344.
    [Google Scholar]
  8. Cape, C. D., Lamb, S. H., Vella, P., Wells, P. E. & Woodward, D. J. (1990) Geological structure of the Wairarapa Valley, New Zealand, from seismic profiling. J. Roy. Soc. N. Z., 20, 85–105.
    [Google Scholar]
  9. Chanier, F. (1991) Le prisme d'accretion d'Hikurangi un témoin de l'évolution géodynamique d'une marge active péripacifique. PhD thesis, Université Sc. Tech. Lille.
  10. Chanier, F., Ferrière, J. & Angelier, J. (1992) extension et erosion tectonique dans un prisme d'accrétion: l'exemple du prisme Hikurangi (Nouvelle Zélande). C.R. Acad. Sci. Paris, série II, 315, 741–747.
    [Google Scholar]
  11. Chanier, F., Buret, C., Ferriere, J. & Larroque, C. (1994) Le bassin avant‐arc de la marge active Néo‐Zélandaise. Géologie alpine, série spéciale colloque et excursions no.4, 20–21.
    [Google Scholar]
  12. Cobbold, P. R. (1993) Sedimentary basins and crustal thickening. Sediment. Geol., 86, 77–89.
    [Google Scholar]
  13. Colletta, B., Letouzey, J., Pinedo, R., Ballard, J. F. & Balé, P. (1991) Computerized X‐ray tomography analysis of sandbox models: examples of thin‐skinned thrust systems. Geology, 19, 1063–1067.
    [Google Scholar]
  14. Collot, J. Y. & Fischer, M. A. (1989) Formation of forearc basins by collision between seamonts and accretionary wedges: an example from New Hebrides subduction zone. Geology, 17, 930–933.
    [Google Scholar]
  15. Dahlen, F. A. (1984) Non‐cohesive critical Coulomb wedges: an exact solution. J. geophys. Res., 89, 10125–10133.
    [Google Scholar]
  16. Davey, F. J., Hampton, M., Childs, J., Fisher, M. A., Lewis, K. & Pettinga, J. R. (1986) Structure of a growing accretionary prism, Hikurangi margin, New Zealand. Geology, 14, 663–666.
    [Google Scholar]
  17. Davis, D. M., Suppe, J. & Dahlen, F. A. (1983) Mechanics of fold and thrust belts and accretionary wedges. J. geophys. Res., 88, 1153–1172.
    [Google Scholar]
  18. Davis, D. M. & Engelder, T. (1985) The role of salt in fold and thrust belts. Tectonophysics. 119, 67–88.
    [Google Scholar]
  19. Davy, P. & Cobbold, P. (1991) Experiments on shortening of a 4‐layer model of the continental lithosphere. Tectonophysics, 188, 1–26.
    [Google Scholar]
  20. Hubbert, M. K. (1951) Mechanical basis for certain familiar geologic structures. Bull. geol, Soc. Am., 62, 335–372.
    [Google Scholar]
  21. Karig, D. E. & Sharman, G. F. (1975) Subduction and accretion at trenches. Bull. geol. Soc. Am., 86, 377–389.
    [Google Scholar]
  22. Krantz, R. W. (1991) Measurements of friction coefficients and cohesion for faulting and fault reactivation in laboratory models, using sand and sand mixtures. Tectonophysics, 188, 203–207.
    [Google Scholar]
  23. Ladd, J. W., Truchan, M., Talwani, M., Stoffa, P. L., Buhl, P., Hourz, R., Mauffret, A. & Westbrook, G. (1984) Seismic reflexinn profiles across the southern margin of the Caribbean. Mem. geol. Soc. Am., 162, 153–169.
    [Google Scholar]
  24. Lallemand, S. E. & Le Pichon, X. (1987) Coulomb wedge model applied to subduction of seamonts in the Japan trench. Geology, 15, 1065–1069.
    [Google Scholar]
  25. Lallemand, S. E., Schnurle, P. & Mallavieielle, J. (1994) Coulomb wedge theory applied to accretionary and non accretionary wedges: possible cause for tectonic erosion and/or frontal accretion. J. geophys. Res., 99, 12033–12056,.
    [Google Scholar]
  26. Lamarche, G., Heanland, S. & Ravens, J.Deformation style and history of the Eketahuna region, Hikurangi forearc, New Zealand, from shallow seismic reflection data. New Zealand J. Geol. Geophys. (in press).
  27. Lamb, S. H. (1988) Tectonic rotations about vertical axes during the last 4 Ma in part of the New Zealand plate boundary zone. J, struct. Geol., 10, 875–893.
    [Google Scholar]
  28. Lamb, S. H. & Vella, P. (1987) The last million years of deformation in part of the New Zealand plate boundary zone. J. struct. Geol., 9, 877–891.
    [Google Scholar]
  29. Larroque, C., Calassou, S. & Malavielle, J. (1993) Experimental modeling of forearc basins development during accretionary wedge grow‐up. Terra Abstracts, 5, 170.
    [Google Scholar]
  30. Larroque, C., Calassou, S., Malavieille, J. & Chanier, F. (1994) Modklisation analogique de la formation des bassins avant‐arc. Application au bassin du prisme d'Hikurangie (Nouvelle‐Zélande). Géologie Alpine, série spéciale colloque et excursions no.4, 60–61.
    [Google Scholar]
  31. Le Pichon, X., Henry, P. & Lallemant, S. (1993) Accretion and erosion in subduction zones: the role of fluids. Ann. Rev. Earth planet. Sci., 21, 307–331.
    [Google Scholar]
  32. Liu Huiqi McClay, K. R. & Powell, D. (1991) Physical models of thrust wedges. In: Thrust Tectonics (Ed. by K. R.McClay ), pp. 71–80. Chapman & Hall.
    [Google Scholar]
  33. Lewis, S. D. & Hayes, D. E. (1984) A geophysical study of the Manila trench, Luzon, Philippines. J. geophys. Res., 89, 9196–9214.
    [Google Scholar]
  34. Lewis, K. B. & Pettinga, J. R. (1993) The emerging, imbricate frontal wedge of the Hikurangi Margin. In: South Pacific Sedimentary Basins, Sedimentary Basins of the World 2 (Ed. by P. F.Ballance ), pp. 225–250. Elsevier Science Publisher.
    [Google Scholar]
  35. Malavieille, J. (1984) Modelisation experimentale des chevauchements imbriqués: application aux chaines de montagnes. Bull. Soc. géol. France, 26, 129–138.
    [Google Scholar]
  36. Malavieille, J. & Ritz, J. F. (1989) Mylonitic defromation of evaporites in décollements: Examples from the southern Alps, France. J. strut. Geol., 11, 583–590.
    [Google Scholar]
  37. Malavieille, J., Calassou, S., Larroque, C. & Lallemand, S. (1991a) Experimental modelling of ac cretionary wedges. Terra Abstracts, 3, 367.
    [Google Scholar]
  38. Malavieille, J., Calassou, S., Larroque, C. & Lallemand, S. (1991b) Experimental modelling of ac cretionary wedge. Cassette vidéo, série cows SNEAP, 30′.
  39. Malavieille, J., Larroque, C. & Calassou, S. (1993) Modtlisation expérimentale des relations tectonique/ sédimentation entre bassin avant‐arc et prisme d'accrétion. C.R. Acad. Sci, 316, 1131–1137.
    [Google Scholar]
  40. Mulugeta, G. (1988) Modelling of the geometry of the Coulomb thrust wedges. J. struct. Geol., 10, 857.
    [Google Scholar]
  41. Mulugeta, G. & Koyi, H. (1992) Episodic accretion and strain partitioning in a model sand wedge. Tectonophysics, 202, 319–333.
    [Google Scholar]
  42. Pillans, B. (1986) A Late quaternary uplift map for North Island, New Zealand. In: Recent Crustal Movements of the Pacific Region (Ed. by W. I.Kielly & B. E.Harford), Bull. Royal Soc. New Zealand. 24, 409–417.
  43. Ryan, H. F. & Scholl., D. W. (1989) The evolution of forearc structures along an oblique convergent margin, Central Aleutian arc. Tectonics, 8, 497–516.
    [Google Scholar]
  44. Scholl, D. W., von Huene, R., Vallier, T. L. & Howell., D. G. (1980) Sedimentary masses and concepts about tectonic processes at underthrust processes at underthrust ocean margins. Geology, 8, 564–568.
    [Google Scholar]
  45. Shemenda, A. I. (1994) Subduction: Insight from Physical Modeling. Kluwer Acad. Pub.
    [Google Scholar]
  46. Silver, E. A. & Reed, D. L. (1988) Backthrusting in accretionary wedges. J. geophys. Res., 93, 3116–3126.
    [Google Scholar]
  47. Speed, R., Torrini, R. & Smith, P. L. (1989) Tectonic evolution of the Tobago trough forearc basin. J geophys. Res., 94, 2913–2936.
    [Google Scholar]
  48. Torrini, R., Speed, R. C. & Mattioli, G. S. (1985) 'Tectonic relationships between forearc‐basin strata and the ac cretionary complex at Bath, Barbados. Bull. geol. Soc. Am., 96, 861–874.
    [Google Scholar]
  49. Torrini, R. & Speed, R. (1989) Tectonic wedging in the forearc basin accretionary prism transition. J geophys. Res., 94, 10549–10584,.
    [Google Scholar]
  50. von Huene, R. (1984) Structural diversity along modern convergent margins and the role of overpressured pore fluids in subduction zones, Bull. Soc. géol. France. 7, 207–219.
    [Google Scholar]
  51. Walcott, R. I. (1984) The kinematics of the plate boundary zone through New Zealand: a comparison of short‐ and long‐term deformations. Geophys. J. R. Astron. Soc., 79, 613–633.
    [Google Scholar]
  52. Westbrook, G. K. & Smith, M. J. (1983) Long décollement and mud volcanoes: Evidence from the Barbados ridge complex for the role of high pore‐fluid pressure in the development of an accretionary complex. Geology, 11, 279–283.
    [Google Scholar]
  53. Westbrook, G. K., Lado, J. W., Buhl, P., Bangs, N. & Tiley, G. J. (1988) Cross section of an accretionary wedge: Barbados ridge complex. Geology, 16, 631–635.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.1995.tb00109.x
Loading
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error