1887
Volume 16, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

The Rhine–Meuse system in the west‐central Netherlands is a continental‐scale fluvial system bordered by an extremely wide continental shelf. Consequently, late Quaternary eustatic sea‐level changes have resulted in dramatic shoreline displacements, by as much as 800 km. In addition, changes in climate have been severe, given the latitudinal and palaeogeographic setting of the Rhine–Meuse system. We investigated the relative importance of these allogenic controls on fluvial aggradation and incision during the last two glacial–interglacial cycles. We used optical dating of quartz from ∼30 samples in a cross‐section perpendicular to the palaeoflow direction, allowing us to correlate periods of aggradation and incision with independent records of sea‐level change, climate change and glacio‐isostatic crustal movements. We found the long‐term aggradation rate to be ∼8 cm kyr−1, a value similar to previous estimates of tectonic subsidence rates in the study area. Several excursions from this long‐term aggradation trend could be identified for the last glacial–interglacial cycle. Dry climatic conditions with relatively high sediment supply induced aggradation during oxygen‐isotope stages (OIS) 4 and 3. Build‐up of a glacio‐isostatic forebulge during OIS 2 is a likely cause of incision around the Last Glacial Maximum, followed by an aggradation phase during forebulge collapse. Sea‐level highstands during OIS 5 have likely resulted in the aggradation of coastal prisms, but only minor, basal estuarine deposits have been preserved because these coastal prisms were prone to erosion during ensuing sea‐level falls. Overall, the sedimentary record is dominated by strata formed during time intervals when the study area was completely unaffected by sea‐level control, and our evidence shows that the falling‐stage systems tract has the highest preservation potential. Our study highlights the importance of considering the complex interplay of both upstream and downstream controls to obtain a comprehensive understanding of the evolution of basin‐margin successions.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2003.00248.x
2004-12-03
2024-04-19
Loading full text...

Full text loading...

References

  1. Aitken, M.J. (1985) Thermoluminescence Dating. Academic Press, London, 359pp.
    [Google Scholar]
  2. Aitken, M.J. (1998) An Introduction to Optical Dating. Oxford University Press, Oxford, 267pp.
    [Google Scholar]
  3. Amorosi, A. & Colalongo, M.L.The linkage between alluvial and coeval nearshore marine successions: evidence from the Late Quaternary record of the Po River Plain, Italy. In: Fluvial Sedimentology, VII (Ed. by M.D.Blum , S.B.Marriott & S.F.Leclair ), Int. Assoc. Sedimentol. Spec. Publ., 35, in press.
    [Google Scholar]
  4. Amorosi, A., Colalongo, M.L., Fiorini, F., Fusco, F., Pasini, G., Vaiani, S.C. & Sarti, G. (2004) Palaeogeographic and palaeoclimatic evolution of the Po Plain from 150‐ky core records. Global Planet. Change, 40, 55–78.
    [Google Scholar]
  5. Bennema, J. & Pons, L.J. (1952) Donken, fluviatiel Laagterras en Eemzee‐afzettingen in het westelijk gebied van de grote rivieren. Boor en Spade, 5, 126–137.
    [Google Scholar]
  6. Beets, D.J. & Van Der Spek, A.J.F. (2000) The Holocene evolution of the barrier and the back‐barrier basins of Belgium and the Netherlands as a function of late Weichselian morphology, relative sea‐level rise and sediment supply. Geol. Mijnb. – Netherlands J. Geosci., 79, 3–16.
    [Google Scholar]
  7. Berendsen, H.J.A. & Stouthamer, E. (2000) Late Weichselian and Holocene palaeogeography of the Rhine–Meuse delta, The Netherlands. Palaeogeogr. Palaeoclimatol. Palaeoecol., 161, 311–335.
    [Google Scholar]
  8. Blum, M.D. (1993) Genesis and architecture of incised valley fill sequences: a late Quaternary example from the Colorado River, Gulf Coastal Plain of Texas. In: Siliciclastic Sequence Stratigraphy. Recent Developments and Applications (Ed. by P.Weimer & H.W.Posamentier ), AAPG Mem., 58, 259–283.
    [Google Scholar]
  9. Blum, M.D. & Price, D.M. (1998) Quaternary alluvial plain construction in response to glacio‐eustatic and climatic controls, Texas Gulf Coastal Plain. In: Relative Role of Eustasy, Climate, and Tectonism in Continental Rocks (Ed. by K.W.Shanley & P.J.McCabe ), SEPM Spec. Publ., 59, 31–48.
    [Google Scholar]
  10. Blum, M.D. & Törnqvist, T.E. (2000) Fluvial responses to climate and sea‐level change: a review and look forward. Sedimentology, 47 (Suppl. 1), 2–48.
    [Google Scholar]
  11. Blum, M.D., Guccione, M.J., Wysocki, D.A., Robnett, P.C. & Rutledge, E.M. (2000) Late Pleistocene evolution of the lower Mississippi River valley, southern Missouri to Arkansas. Geol. Soc. Am. Bull., 112, 221–235.
    [Google Scholar]
  12. Bogaart, P.W., Van Balen, R.T., Kasse, C. & Vandenberghe, J. (2003) Process‐based modelling of fluvial system response to rapid climate change – I: model formulation and generic applications. Quat. Sci. Rev., 22, 2077–2095.
    [Google Scholar]
  13. Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J. & Bonani, G. (1993) Correlations between climate records from North Atlantic sediments and Greenland ice. Nature, 365, 143–147.
    [Google Scholar]
  14. Bosch, J.H.A. & Kok, H. (1994) Toelichtingen bij de Geologische Kaart van Nederland 1:50.000. Blad Gorinchem West (38 W). Rijks Geologische Dienst, Haarlem, 159pp.
  15. Boulton, G.S., Dongelmans, P., Punkari, M. & Broadgate, M. (2001) Palaeoglaciology of an ice sheet through a glacial cycle: the European ice sheet through the Weichselian. Quat. Sci. Rev., 20, 591–625.
    [Google Scholar]
  16. Brakenridge, G.R. (1980) Widespread episodes of stream erosion during the Holocene and their climatic cause. Nature, 283, 655–656.
    [Google Scholar]
  17. Bridgland, D.R. & D'Olier, B. (1995) The Pleistocene evolution of the Thames and Rhine drainage systems in the southern North Sea Basin. In: Island Britain: a Quaternary Perspective (Ed. by R.C.Preece ), Geol. Soc. Spec. Publ., 96, 27–45.
    [Google Scholar]
  18. Bridgland, D.R. & Gibbard, P.L. (1997) Quaternary river diversions in the London Basin and the Eastern English Channel. Geogr. Phys. Quat., 51, 337–346.
    [Google Scholar]
  19. Busschers, F.S., Weerts, H.J.T., Wallinga, J., Cleveringa, P., Kasse, C. & De Wolf, H.Sedimentary architecture and optical dating of Middle and Late Pleistocene Rhine–Meuse deposits – fluvial response to climate change, sea‐level fluctuation and glaciation. Geol. Mijnb. – Netherlands J. Geosci., in press.
    [Google Scholar]
  20. Bøtter‐Jensen, L., Bulur, E., Duller, G.A.T. & Murray, A.S. (2000) Advances in luminescence instrument systems. Radiat. Meas., 32, 57–73.
    [Google Scholar]
  21. Castelltort, S. & Van Den Driessche, J.H. (2003) How plausible are high‐frequency sediment supply‐driven cycles in the stratigraphic record?Sediment. Geol., 157, 3–13.
    [Google Scholar]
  22. Coe, A.L. & Church, K.D. (2003) Sequence stratigraphy. In: The Sedimentary Record of Sea‐Level Change (Ed. by A.L.Coe ), pp. 57–98. Cambridge University Press, Cambridge.
    [Google Scholar]
  23. Costard, F., Dupeyrat, L., Gautier, E. & Carey‐Gailhardis, E. (2003) Fluvial thermal erosion investigations along a rapidly eroding river bank: application to the Lena River (central Siberia). Earth Surf. Proc. Landformation, 28, 1349–1359.
    [Google Scholar]
  24. De Gans, W. & Van Gijssel, K. (1996) The Late Weichselian morphology of the Netherlands and its influence on the Holocene coastal development. Mededelingen Rijks Geologische Dienst, 57, 11–25.
    [Google Scholar]
  25. Doppert, J.W.Chr., Ruegg, G.H.J., Van Staalduinen, C.J., Zagwijn, W.H. & Zandstra, J.G. (1975) Formaties van het Kwartair en Boven‐Tertiair in Nederland. In: Toelichting bij Geologische Overzichtskaarten van Nederland (Ed. by W.H.Zagwijn & C.J.Van Staalduinen ), pp. 11–56. Rijks Geologische Dienst, Haarlem.
    [Google Scholar]
  26. Ehlers, J.
    & Gibbard, P.L. (Eds) (2004) Quaternary Glaciations – Extent and Chronology, Part I: Europe. Developments in Quaternary Science, Vol. 2a. Elsevier, Amsterdam, 488pp.
    [Google Scholar]
  27. Emery, D.
    & Myers, K.J. (Eds) (1996) Sequence Stratigraphy. Blackwell, Oxford.
    [Google Scholar]
  28. Fisher, T.G.2003Chronology of glacial Lake Agassiz meltwater routed to the Gulf of Mexico. Quat. Res., 59, 272–276.
    [Google Scholar]
  29. Friedrich, M., Kromer, B., Spurk, M., Hofmann, J. & Kaiser, K.L. (1999) Paleo‐environment and radiocarbon calibration as derived from Lateglacial/Early Holocene tree‐ring chronologies. Quat. Int., 61, 27–39.
    [Google Scholar]
  30. Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J. & Van‐Exter, S. (2003) Precise dating of Dansgaard–Oeschger climate oscillations in western Europe from stalagmite data. Nature, 421, 833–837.
    [Google Scholar]
  31. Gibbard, P.L. (1988) The history of the great northwest European rivers during the past three million years. Philos. Trans. Roy. Soc. London, B318, 559–602.
    [Google Scholar]
  32. Gibbard, P.L. (1995) The formation of the Strait of Dover. In: Island Britain: a Quaternary Perspective (Ed. by R.C.Preece ), Geol. Soc. Spec. Publ., 96, 15–26.
    [Google Scholar]
  33. Guiot, J., Pons, A., De Beaulieu, J.L. & Reille, M. (1989) A 140,000‐year continental climate reconstruction from two European pollen records. Nature, 338, 309–313.
    [Google Scholar]
  34. Holbrook, J. (2001) Origin, genetic interrelationships, and stratigraphy over the continuum of fluvial channel‐form bounding surfaces: an illustration from middle Cretaceous strata, southeastern Colorado. Sediment. Geol., 144, 179–222.
    [Google Scholar]
  35. Houmark‐Nielsen, M. & Kjær, K.H. (2003) Southwest Scandinavia, 40‐15 kyr BP: palaeogeography and environmental change. J. Quat. Sci., 18, 769–786.
    [Google Scholar]
  36. Huijzer, B. & Vandenberghe, J. (1998) Climatic reconstruction of the Weichselian Pleniglacial in northwestern and central Europe. J. Quat. Sci., 13, 391–417.
    [Google Scholar]
  37. Hydrografisch Bureau
    Hydrografisch Bureau . (1982) Internationale kaartserie 1:152.000, INT 1704 (Het Kanaal: zuidkust Engeland van New Haven tot Dover; noordkust Frankrijk van Cap d'Antifer tot Cap Gris‐Nez. Chef der Hydrografie, 's‐Gravenhage, 1p.
  38. Hydrografisch Bureau
    Hydrografisch Bureau . (1983) Hydrografische kaart 1:375000, 1035 (Noordzee; Dungeness en Cap Gris Nez tot Doggersbank en Terschelling). Chef der Hydrografie, 's‐Gravenhage, 1p.
  39. Johnsen, S.J., Clausen, H.B., Dansgaard, W., Fuhrer, K., Gundestrup, N., Hammer, C.U., Iversen, P., Jouzel, J., Stauffer, B. & Steffensen, J.P. (1992) Irregular glacial interstadials recorded in a new Greenland ice core. Nature, 359, 311–313.
    [Google Scholar]
  40. Kasse, C. (1996) Paleomagnetic dating and effects of Weichselian periglacial processes on the magnetization of early Pleistocene deposits (southern Netherlands, northern Belgium). Geol. Mijnb., 75, 19–31.
    [Google Scholar]
  41. Kiden, P., Denys, L. & Johnston, P. (2002) Late Quaternary sea‐level change and isostatic and tectonic land movements along the Belgian–Dutch North Sea coast: geological data and model results. J. Quat. Sci., 17, 535–546.
    [Google Scholar]
  42. Knox, J.C. (1995) Fluvial systems since 20 000 years BP. In: Global Continental Palaeohydrology (Ed. by K.J.Gregory , L.Starkel & V.R.Baker ), pp. 87–108. John Wiley, Chichester.
    [Google Scholar]
  43. Knox, J.C. (1996) Late Quaternary Upper Mississippi River alluvial episodes and their significance to the Lower Mississippi River system. Eng. Geol., 45, 263–285.
    [Google Scholar]
  44. Kooi, H., Johnston, P., Lambeck, K., Smither, C. & Molendijk, R. (1998) Geological causes of recent (∼100 years) vertical land movement in the Netherlands. Tectonophysics, 299, 297–316.
    [Google Scholar]
  45. Laban, C. & Rijsdijk, K.F. (2002) De Rijn‐Maasdelta's in de Noordzee. Grondboor en Hamer, 56, 60–65.
    [Google Scholar]
  46. Lagarde, J.L., Amorese, D., Font, M., Laville, E. & Dugue, O. (2003) The structural evolution of the English Channel area. J. Quat. Sci., 18, 201–213.
    [Google Scholar]
  47. Lambeck, K. (1995) Late Devensian and Holocene shorelines of the British Isles and North Sea from models of glacio‐hydro‐isostatic rebound. J. Geol. Soc. London, 152, 437–448.
    [Google Scholar]
  48. Lambeck, K., Smither, C. & Johnston, P. (1998) Sea‐level change, glacial rebound and mantle viscosity for northern Europe. Geophys. J. Int., 134, 102–144.
    [Google Scholar]
  49. Lericolais, G., Auffret, J.P. & Bourillet, J.F. (2003) The Quaternary Channel River: seismic stratigraphy of its palaeo-valleys and deeps. J. Quat. Sci., 18, 245–260.
    [Google Scholar]
  50. Maddy, D. & Bridgland, D.R. (2000) Accelerated uplift resulting from Anglian glacioisostatic rebound in the Middle Thames Valley, UK?: evidence from the river terrace record. Quat. Sci. Rev., 19, 1581–1588.
    [Google Scholar]
  51. Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C. & Shackleton, N.J. (1987) Age dating and orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat. Res., 27, 1–29.
    [Google Scholar]
  52. Mejdahl, V. (1979) Thermoluminescence dating: beta dose attenuation in quartz grains. Archaeometry, 21, 61–72.
    [Google Scholar]
  53. Miall, A.D. & Arush, M. (2001) Cryptic sequence boundaries in braided fluvial successions. Sedimentology, 48, 971–985.
    [Google Scholar]
  54. Mulder, T. & Syvitski, J.P.M. (1996) Climatic and morphologic relationships of rivers: implications of sea-level fluctuations on river loads. J. Geol., 104, 509–523.
    [Google Scholar]
  55. Murray, A.S., Marten, R., Johnston, A. & Marten, P. (1987) Analysis for naturally occurring radionuclides at environmental concentrations by gamma spectrometry. J. Radioanal. Nucl. Chem., 115, 263–288.
    [Google Scholar]
  56. Murray, A.S. & Olley, J.M. (2002) Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review. Geochronometria, 21, 1–16.
    [Google Scholar]
  57. Murray, A.S. & Wintle, A.G. (2000) Luminescence dating of quartz using an improved single‐aliquot regenerative‐dose protocol. Radiat. Meas., 32, 57–73.
    [Google Scholar]
  58. Murray, A.S., Wintle, A.G. & Wallinga, J. (2002) Dose estimation using quartz OSL in the non‐linear region of the growth curve. Radiat. Prot. Dosim., 101, 371–374.
    [Google Scholar]
  59. Oele, E., Apon, W., Fischer, M.M., Hoogendoorn, R., Mesdag, C.S., De Mulder, E.F.J., Overzee, B., Sesören, A. & Westerhoff, W.E. (1983) Surveying The Netherlands: sampling techniques, maps and their applications. Geol. Mijnb., 62, 355–372.
    [Google Scholar]
  60. Olley, J.M., Caitcheon, G.G. & Roberts, R.G. (1999) The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence. Radiat. Meas., 30, 207–217.
    [Google Scholar]
  61. Olley, J.M., Murray, A.S. & Roberts, R.G. (1996) The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments. Quat. Sci. Rev., 15, 751–760.
    [Google Scholar]
  62. Pisias, N.G., Martinson, D.G., Moore, T.CJr, Shackleton, N.J., Prell, W., Hays, J. & Boden, G. (1984) High resolution stratigraphic correlation of benthic oxygen isotopic records spanning the last 300,000 years. Marine Geol., 56, 119–136.
    [Google Scholar]
  63. Pons, L.J. (1957) Die geologie, de bodemvoming en de waterstaatkundige ontwikkeling van het Land van Maas en Waal en een gedeelte van het Rijk van Nijmegen. Verslagen Landbouwkundige Onderzoekingen., 646, 1–129.
    [Google Scholar]
  64. Posamentier, H.W. & Allen, G.P. (1999) Siliciclastic sequence stratigraphy – concepts and applications. SEPM (Soc. Sediment. Geol.) Concepts Sedimentol. Paleontol., 7, 1–210.
    [Google Scholar]
  65. Posamentier, H.W., Allen, G.P., James, D.P. & Tesson, M. (1992) Forced regressions in a sequence stratigraphic framework: concepts, examples, and exploration significance. AAPG Bull., 76, 1687–1709.
    [Google Scholar]
  66. Posamentier, H.W. & Vail, P.R. (1988) Eustatic controls on clastic deposition II – Sequence and systems tract models. In: Sea‐Level Changes: An Integrated Approach (Ed. by C.K.Wilgus , B.S.Hastings , C.G.S.C.Kendall , H.W.Posamentier , C.A.Ross & J.C.Van Wagoner ), SEPM Spec. Publ., 42, 125–154.
    [Google Scholar]
  67. Prescott, J.R. & Hutton, J.T. (1994) Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiat. Meas., 23, 497–500.
    [Google Scholar]
  68. Salter, T. (1993) Fluvial scour and incision: models for their influence on the development of realistic reservoir geometries. In: Characterization of Fluvial and Aeolian Reservoirs (Ed. by C.P.North & D.J.Prosser ), Geol. Soc. Spec. Publ., 73, 33–51.
    [Google Scholar]
  69. Shanley, K.W. & McCabe, P.J. (1994) Perspectives on the sequence stratigraphy of continental strata. Am. Assoc. Petrol. Geol. Bull., 78, 544–568.
    [Google Scholar]
  70. Starkel, L. (1991) The Vistula river valley: a case study for central Europe. In: Temperate Palaeohydrology. Fluvial Processes in the Temperate Zone during the Last 15 000 Years (Ed. by L.Starkel , K.J.Gregory & J.B.Thornes ), pp. 171–188. John Wiley, Chichester.
    [Google Scholar]
  71. Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., Van Der Plicht, J. & Spurk, M. (1998) INTCAL98 radiocarbon age calibration, 24,000‐0 cal BP. Radiocarbon, 40, 1041–1083.
    [Google Scholar]
  72. Talling, P.J. (1998) How and where do incised valleys form if sea level remains above the shelf edge?Geology, 26, 87–90.
    [Google Scholar]
  73. Tauxe, L., Herbert, T., Shackleton, N.J. & Kok, Y.S. (1996) Astronomical calibration of the Matuyama–Brunhes boundary: consequences for magnetic remanence acquisition in marine carbonates and the Asian loess sequences. Earth Planet. Sci. Lett., 140, 133–146.
    [Google Scholar]
  74. Törnqvist, T.E. (1995) Alluvial architecture of the Quaternary Rhine–Meuse system in The Netherlands – discussion. Geol Mijnb., 74, 183–186.
    [Google Scholar]
  75. Törnqvist, T.E., Wallinga, J. & Busschers, F.S. (2003) Timing of the last sequence boundary in a fluvial setting near the highstand shoreline – Insights from optical dating. Geology, 31, 279–282.
    [Google Scholar]
  76. Törnqvist, T.E., Wallinga, J., Murray, A.S., De Wolf, H., Cleveringa, P. & De Gans, W. (2000) Response of the Rhine–Meuse system (west‐central Netherlands) to the last Quaternary glacio‐eustatic cycles: a first assessment. Glob. Planet. Change, 27, 89–111.
    [Google Scholar]
  77. Van de Meene, E.A. & Zagwijn, W.H. (1978) Die Rheinläufe im deutsch‐niederländischen Grenzgebiet seit der Saale‐Kaltzeit. Überblick neuer geologischer und pollenanalytischer Untersuchingen. Forthschr. Geol. Rheinl. Westfalen, 28, 345–359.
    [Google Scholar]
  78. Van der Hammen, Th., Maarleveld, G.C., Vogel, J.C. & Zagwijn, W. (1967) Stratigraphy, climatic succession and radiocarbon dating of the Last Glacial in the Netherlands. Geol. Mijnb., 46, 79–95.
    [Google Scholar]
  79. Vandenberghe, J. (2003) Climate forcing of fluvial system development: an evolution of ideas. Quat. Sci. Rev., 22, 2053–2060.
    [Google Scholar]
  80. Van der Plicht, J. (1993) The Groningen radiocarbon calibration program. Radiocarbon, 35, 231–237.
    [Google Scholar]
  81. Verbraeck, A. (1984) Toelichtingen bij de Geologische kaart van Nederland 1:50.000. Blad Tiel West (39W) en Tiel Oost (39O). Rijks Geologische Dienst, Haarlem.
    [Google Scholar]
  82. Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J.C., McManus, J.F., Lambeck, K., Balbon, E. & Labracherie, M. (2002) Sea‐level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev., 21, 295–305.
    [Google Scholar]
  83. Wallinga, J. (2001) The Rhine–Meuse system in a new light: optically stimulated luminescence dating and its application to fluvial deposits. Netherlands Geo Stud, 290, 180 pp.
    [Google Scholar]
  84. Wallinga, J. (2002a) Optically stimulated luminescence dating of fluvial deposits: a review. Boreas, 31, 303–322.
    [Google Scholar]
  85. Wallinga, J. (2002b) Detection of OSL age overestimation using single‐aliquot techniques. Geochronometria, 21, 17–26.
    [Google Scholar]
  86. Wallinga, J., Murray, A.S. & Duller, G.A.T. (2000) Underestimation of equivalent dose in single‐aliquot optical dating of feldspar caused by preheating. Radiat. Meas., 32, 691–695.
    [Google Scholar]
  87. Wallinga, J., Murray, A.S., Duller, G.A.T. & Törnqvist, T.E. (2001) Testing optically stimulated luminescence dating of sand‐sized quartz and feldspar from fluvial deposits. Earth Planet. Sci. Lett., 193, 617–630.
    [Google Scholar]
  88. Weerts, H.J.T. (1996) Complex confining layers. Architecture and hydraulic properties of Holocene and Late Weichselian deposits in the fluvial Rhine‐Meuse delta, The Netherlands. Netherlands Geo. Stud., 213, 1–189.
    [Google Scholar]
  89. Zimmerman, D.W. (1971) Thermoluminescent dating using fine grains from pottery. Archaeometry, 13, 29–52.
    [Google Scholar]
  90. Zagwijn, W.H. (1974) The paleogeographic evolution of The Netherlands during the Quaternary. Geol. Mijn, 53, 369–385.
    [Google Scholar]
  91. Zagwijn, W.H. (1989) The Netherlands during the Tertiary and the Quaternary: a case of Coastal Lowland evolution. Geol. Mijn, 68, 107–120.
    [Google Scholar]
  92. Zagwijn, W.H., Van Montfrans, H.M. & Zandstra, J.G. (1971) Subdivision of the ‘Cromerian’ in The Netherlands; pollen‐analysis, palaeomagnetism and sedimentary petrology. Geol. Mijn, 50, 41–58.
    [Google Scholar]
  93. Zonneveld, J.I.S. (1957) River terraces and Quaternary chronology in the Netherlands. Geol. Mijnb N. S., 19, 277–285.
    [Google Scholar]
  94. Zonneveld, J.I.S. (1963) Accumulation and erosion in the Lower Rhine Area. Report of the Sixth International Congress Quarterly, Vol. 3, Warsaw, 1961, pp. 403–410.
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2003.00248.x
Loading
/content/journals/10.1111/j.1365-2117.2003.00248.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error