1887
Volume 16, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

A basin model was built to simulate in three dimensions the 248 Myr geological history of the Paris basin, France, i.e. sedimentation, erosion, compaction heat and fluid flow. This multidisciplinary study was based on a detailed stratigraphic database of more than 1100 well logs together with a hydrodynamic database of 1000 data (heads and permeabilities). The region covers a maximum surface area of 700 000 km2. The NEWBAS code of the Ecole des Mines de Paris was used in order to simulate compaction and heat and fluid flow. Three examples of the use of this model are given to illustrate different features of the geological functioning of the basin.

(i) By modelling processes such as sedimentation, compaction, fluid and heat flow, the model provides estimates of the hydraulic conductivity fields within one order of magnitude from observations at the regional scale. This permeability field can reproduce the present‐day observed pressures and fluxes in the basin.

(ii) Observed excess pressures in the main aquitards are considered as possible consequences of the geological history of the basin. The calculated excess pressures are small and stay within the range of the measured values, between 0 and 2.75 MPa, close to the pressures in the aquifers. However, the weak excess pressures measured in the Callovo–Oxfordian sequence in the eastern part of the basin are not reproduced by the model. Mechanisms other than compaction disequilibrium must be invoked.

(iii) This model also calculates regional‐scale palaeofluid flow whose value is currently arbitrarily assumed by geochemists when studying diagenetic processes. Hence, it provides a hydrologic background for diagenetic models. The cementation in the western Keuper reservoirs was investigated. Topographically driven flow during tectonic inversion periods, e.g. the Lower Cretaceous and Early Tertiary, is shown to be a plausible cause of brine migrations. This brine displacement would then explain the high salinities recorded in the fluid inclusions trapped in the Keuper cements. The conditions for the migration would have been most favourable at the time of the maximum burial, i.e. the Early Tertiary and not the Early Cretaceous as previously suggested.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2004.00243.x
2004-12-03
2020-05-27
Loading full text...

Full text loading...

References

  1. Andra
    Andra (1999) Referentiel Geologique du Site de Meuse/haute‐Marne. Tome 4 Le Callovo–Oxfordian, ANDRA, Châtenay Malabry, France, 154 pp.
    [Google Scholar]
  2. Appold, M.S. & Garven, G. (1999) The hydrology of ore formation in the Southeast Missouri district: numerical models of topography-driven fluid flow during the Ouachita Orogeny. Econ. Geol., 94, 913–936.
    [Google Scholar]
  3. Audet, D.M. & Mcconnell, J.D.C. (1992) Forward modelling of porosity and pore pressure evolution in sedimentary basins. Basin Res., 4, 147–162.
    [Google Scholar]
  4. Baldschuhn, R., Frisch, U. & Kockel, F. (1996) Geotektonisher Atlas Von NW Deutschland. BGR, Honnover, Germany.
    [Google Scholar]
  5. Belmouhoub, R. (1996) Modélisation tridimensionnelle hydro‐thermo‐mécanique d'un bassin sédimentaire au cours de son histoire géologique. PhD Dissertation, Ecole Nationale des Mines de Paris, Fontainebleau, France, 256 pp.
  6. Bethke, C. (1985) A numerical model of compaction‐driven groundwater flow and heat transport and its application to paleohydrology of intracratonic sedimentary basins. J. Geophys. Res., 90, 6817–6828.
    [Google Scholar]
  7. Bethke, C., Lee, M.K., Quinodoz, H.A.M. & Kreiling, W.N. (1993) Basin Modeling with Basin vol. 2. University of Illinois, Urbana, USA, 225 pp.
    [Google Scholar]
  8. Bignot, G. (1993) The position of the Montian stage and related facies within the stratigraphic‐paleogeographic framework of NW Europe during the Danian. Contrib. Tertiary Quat. Geol., 29, 47–59.
    [Google Scholar]
  9. Bril, H., Velde, B., Meunier, A. & Iqdari, A. (1994) Effect of the “Pays de Bray” fault on fluid paleocirculations in the Paris basin Dogger reservoir, France. Geothermics, 23, 305–315.
    [Google Scholar]
  10. Bruel, D. (2002) Coupling diagenetic effects in a basin model for mass transfer predictions at the regional scale. AAPG Annual Meeting, Houston, USA.
  11. Bruel, D., Preziosi, E. & Renard, P. (1999) Importance of 3D modelling in understanding high pressure developments. The Greater Alwyn Area – Viking graben – North Sea: Transport in sedimentary systems: from the pore scale to the basin scale, Paris.
  12. Burrus, J. (1998) Overpressure models for clastic rocks, their relation to hydrocarbon expulsion: a critical reevaluation. In: Abnormal Pressures in Hydrocarbon Environments (Ed. by B.E.A.Law , G.F.A.Ulmishek & V.I.Slavin ), pp. 35–63. APPG, Tulsa.
    [Google Scholar]
  13. Burrus, J., Osadetz, K., Wolf, S., Doligez, B., Visser, K. & Dearborn, D. (1996) Two‐dimensional Regional basin model of Williston basin hydrocarbon system. AAPG Bull., 80, 265–291.
    [Google Scholar]
  14. Castro, M.C., Goblet, P., Ledoux, E., Violette, S. & De, M.G. (1998a) Noble gases as natural tracers of water circulation in the Paris basin. Part 2. Calibration of a groundwater flow model using noble gas isotope data. Water Resour. Res., 34, 2467–2483.
    [Google Scholar]
  15. Castro, M.C., Jambon, A., Marsily, G. & De Schlosser, P. (1998b) Noble gases as natural tracers of water circulation in the Paris basin. Part 1. Measuremements and discussion of their origin and mechanisms of vertical transport in the basin. Water Resour. Res., 34, 2443–2466.
    [Google Scholar]
  16. Castro, M.C. (1995), Transfert des Gaz Rares dans les Eaux des Bassins Sédimentaires: Exemple du Bassin de Paris. PhD Dissertation, University Pierre et Marie Curie, Paris, 240 pp.
  17. Clauer, N., O'Neil, J.R. & Furlan, S. (1995) Clay minerals as records of temperature conditions and duration of thermal anomalies in the Paris basin, France. Clay Miner., 30, 1–13.
    [Google Scholar]
  18. Cosenza, P., Ghoreychi, M., Marsily, G.D., Vasseur, G. & Violette, S. (2002) Theoretical prediction of poroelastic properties of argillaceous rocks from in situ specific storage coefficient. Water Resour. Res., 38, 1207–1218.
    [Google Scholar]
  19. Curnelle, P. & Dubois, P. (1986) Evolution mésozoique des grands bassins sédimentaires français: bassins de Paris d'aquitaine et du Sud-Est. Bull. Soc. Géol. France, 8, 529–546.
    [Google Scholar]
  20. Demars, C. & Pagel, M. (1994) Paléotempératures et paléosalinités dans les grès du Keuper du bassin de Paris: inclusions fluides dans les minéraux authigènes. Compte Rendus Acad. Sci. Paris, 319, 427–434.
    [Google Scholar]
  21. Demars, C., Pagel, M., Deloule, E. & Blanc, P. (1996) Cathodoluminescence of quartz from sandstones: interpretation of the UV range by determination of the trace element distribution and of fluid inclusion P,T,X properties in authigenic quartz. Am. Mineral., 81, 891–901.
    [Google Scholar]
  22. Demongodin, L. (1992) Reconnaissance de l'etat Thermique des Bassins Sédimentaires: Transferts de Chaleur par Conduction et Convection. PhD Dissertation, University Montpellier 2, Montpellier, France, 218 pp.
  23. Demongodin, L., Pinoteau, B., Vasseur, G. & Gable, R. (1991) Thermal conductivity and well logs: a case study in the Paris Basin. Geophys. J. Int., 105, 675–691.
    [Google Scholar]
  24. Dercourt, J., Gaetani, M., Vrielynch, B., Barrier, E., Biju‐Duval, B., Brunet, M.F., Cadet, J.P., Crasquin, S. & Sandulescu, M. (2000) Atlas Peri‐Tethys of Paleoenvironmental Maps. Commission for the Geologic Maps of the World, Paris, France.
    [Google Scholar]
  25. Espitalié, J., Marquis, F. & Sage, L. (1987) Organic geochemistry of the Paris basin. In: Petroleum Geology of Northwest Europe (Ed. by J.A.Brooks & K.Glennie ), pp. 71–86. Graham & Trotman, London, UK.
    [Google Scholar]
  26. Fontes, J.C. & Matray, J.M. (1993a) Geochemistry and origin of formation brines from the Paris basin, France, 1 Brines associated with Triassic salts. Chem. Geol., 109, 149–175.
    [Google Scholar]
  27. Fontes, J.C. & Matray, J.M. (1993b) Geochemistry and origin of formation brines from the Paris basin, France, 2. Saline solutions associated with oil fields. Chem. Geol., 109, 177–200.
    [Google Scholar]
  28. Gaulier, J.M. & Burrus, J. (1998) Modeling present and past thermal regimes in the Paris basin: petroleum implications. In: Hydrocarbon and Geology of France (Ed. by A.Mascle ), pp. 61–74. Springer‐Verlag, Berlin.
    [Google Scholar]
  29. Geyer, O. & Gwinner, M. (1968) Einfuehrung in Die Geologie von Baden Wurtemberg. E. Scheizerbart, Stuttgart, Germany.
    [Google Scholar]
  30. Gibson, R.E. (1958) The progress of consolidation in a clay layer increasing in thickness with time. Geothechnique, 8, 171–179.
    [Google Scholar]
  31. Gonçalvès, J., Violette, S., Robin, C., Bruel, D., Guillocheau, F. & Ledoux, E. (2004a) Combining a compaction model with a facies model to reproduce permeability fields at the regional scale. Phys. Chem. Earth, A/B/C, 29, 17–24.
    [Google Scholar]
  32. Gonçalvès, J., Violette, S. & Wendling, J. (2004b) Analytical and numerical solutions for alternative overpressuring processes: application to the Callovo-Oxfordian sedimentary sequence in the Paris basin, France. J. Geophys. Res., 109, 1–14.
    [Google Scholar]
  33. Gradstein, F.M., Agterberg, F., Ogg, J.G., Hardenbol, J., Van Veen, P., Thierry, J. & Huang, Z. (1995) A Triassic, Jurassic and Cretaceous time scale. In: Geochronology Time Scales and Global Stratigraphic Correlation (Ed. by W. A. Berggren ), pp. 95–126. SEPM, Tulsa.
    [Google Scholar]
  34. Guilhaumou, N. (1993) Paleotemperatures inferred from fluid inclusions in diagenetic cements: implications for the thermal history of the Paris basin. Eur. J. Mineral., 5, 1217–1226.
    [Google Scholar]
  35. Guillocheau, F., Robin, C., Allemand, P., Bourquin, S., Brault, S., Dromart, G., Friedenberg, R., Garcia, J.P., Gaulier, J.M., Gaumet, F., Grosdoy, B., Hanot, F., Le Strat, P., Mettraux, M., Nalpas, T., Prijac, C., Rigollet, C., Serrano, O. & Grandjean, G. (2000) Meso‐Cenosoic geodynamic evolution of the Paris basin: 3D stratigraphic constraints. Geodynamica Acta, 13, 189–246.
    [Google Scholar]
  36. Habicht, J.K.A. (1979) Paleoclimate, paleomagnetism and continental drift. AAPG Stud. Geol., 9, 31 pp.
    [Google Scholar]
  37. Hayba, D.O. & Bethke, C.M. (1995) Timing and velocity of petroleum migration in the Los Angeles basin. J. Geol., 103, 33–49.
    [Google Scholar]
  38. Luo, X. & Vasseur, G. (1992) Contributions of compaction and aquathermal pressuring to geopressure and the influence of environmental conditions. AAPG Bull., 76, 1550–1559.
    [Google Scholar]
  39. Luo, X. & Vasseur, G. (1995) Modelling of pore pressure evolution associated with sedimentation and uplift in sedimentary basins. Basin Res., 7, 35–52.
    [Google Scholar]
  40. Mailloux, B.J., Pearson, M., Kelley, S., Dunbar, N., Cather, S., Strayer, L. & Hudleston, P. (1999) Tectonic controls on the hydrogeology of the Rio Grande Rift, New Mexico. Water Resour. Res., 35, 2641–2659.
    [Google Scholar]
  41. Marty, B., Torgersen, T., Meynier, V., O'Nions, R.K. & De Marsily, G. (1993) Helium isotope fluxes and groundwater ages in the Dogger aquifer, Paris basin. Water Resour. Res., 29, 1025–1035.
    [Google Scholar]
  42. Matray, J.M. & Fontes, J.C. (1990) Origin of oil‐field brines in the Paris basin. Geology, 18, 501–504.
    [Google Scholar]
  43. Matray, J.M., Lambert, M. & Fontes, J.C. (1994) Stable isotope conservation and origin of saline waters from the middle Jurassic aquifer of the Paris basin, France. Appl. Geochem., 9, 297–309.
    [Google Scholar]
  44. Matray, J.M., Meunier, A., Thomas, M. & Fontes, J.C. (1989) Les eaux de formation du Trias et du Dogger du bassin parisien: histoire et effets diagénétiques sur les réservoirs. Bull. Cent. Rech. Explor. Prod. Elf‐Aquitaine, 13, 483–504.
    [Google Scholar]
  45. Mégnien, C. & Mégnien, F. (1980) Stratigraphie et paleogeographie. In: Synthèse Géologique du Bassin de Paris (Ed. by BRGM ), 1, pp. Orléans, France.
    [Google Scholar]
  46. Mossmann, J.R., Clauer, N. & Liewig, N. (1992) Dating thermal anomalies in sedimentary basins: the diagenetic history of clay minerals in the triassic sandstones of the Paris basin, France. Clay Mineral., 27, 211–226.
    [Google Scholar]
  47. Neuzil, C.E. (1995) Abnormal pressures as hydrodynamic phenomena. Am. J. Sci., 295, 742–786.
    [Google Scholar]
  48. Neuzil, C.E. (2000) Osmotic generation of ‘anomalous’ fluid pressures in geological environments. Nature, 403, 182–184.
    [Google Scholar]
  49. Person, M., Neuzil, C.E. & Mailloux, B. (1998) A Finite Element Model for Simulating Two‐Dimensional Ground Water Flow, Heat, and Solute Transport within Evolving Sedimentary Basins. University of Minnesota, Minneapolis, 250 pp.
    [Google Scholar]
  50. Person, M., Raffensperger, J.P., Ge, S. & Garven, G. (1996) Basin‐scale hydrogeologic modeling. Rev. Geophys., 34, 61–87.
    [Google Scholar]
  51. Pinti, D.L. & Marty, B. (1995) Noble gases in crude oils from the Paris Basin, France: implications for the origin of the fluids and constraints on the oil-water-gas interactions. Geochim Cosmochim Acta, 59, 3389–3404.
    [Google Scholar]
  52. Prijac, C., Doin, M.P., Gaulier, J.M. & Guillocheau, F. (2000) Subsidence of the Paris basin and its bearing on the late Variscan lithosphere evolution: a comparison between Plate and Chablis models. Tectonophysics, 323, 1–38.
    [Google Scholar]
  53. Raoult, Y. (1999) La Nappe de l'Albien Dans le Bassin de Paris: de Nouvelles idées Pour de Vielles Eaux, PhD Dissertation, university Pierre et Marie Curie, Paris, France, 170 pp.
  54. Renard, P., Le Loc'h, G., Ledoux, E., De Marsily, G. & Mackay, R. (2000) A fast algorithm for the estimation of the equivalent hydraulic conductivity of heterogeneous media. Water Resour. Res., 36, 3567–3580.
    [Google Scholar]
  55. Rowan, L.R., Goldhaber, M.B. & Hatch, J.R. (2002) The role of regional fluid flow in the Illinois basin's thermal history: constraints from fluid inclusions and the maturity of pennsylvanian coals. AAPG Bull., 86, 257–278.
    [Google Scholar]
  56. Scheidegger, A.L. (1960) The Physics of Flow Through Porous Media. University of Toronto Press, Toronto, Canada.
    [Google Scholar]
  57. Schneider, F., Potdevin, J.L., Wolf, S. & Faille, I. (1996) Mechanical and chemical compaction model for sedimentary basin simulators. Tectonophysics, 263, 307–317.
    [Google Scholar]
  58. Sclater, J.G. & Christie, P. (1980) Continental stretching: an explanation of the post-mid-cretaceous subsidence in the central north sea basin. J. Geophys. Res., 85, 3711–3739.
    [Google Scholar]
  59. Sellwood, B.W., Scott, J. & Lunn, G. (1986) Mesozoic basin evolution in southern England. Proc. Geol. Assoc., 97, 259–289.
    [Google Scholar]
  60. Spötl, C., Matter, A. & Brévart, O. (1993) Diagenesis and pore water evolution in the keuper reservoir, Paris basin (France). J. Sediment. Petrol., 63, 909–928.
    [Google Scholar]
  61. Ungerer, P., Bessis, F., Chénet, P.Y., Durand, B., Nogaret, E., Chiarelli, A., Oudin, J.L. & Perrin, J.F. (1984) Geological and geochemical models in oil exploration: principles and practical examples. In: Petroleum Geochemistry and Basin Evaluation (Ed. by G.Demaison ), pp. 53–77. AAPG, Tulsa.
    [Google Scholar]
  62. Ungerer, P., Burrus, J., Doligez, B., Chénet, P.Y. & Bessis, F. (1990) Basin evaluation by integrated two dimensional modeling of heat transfer, fluid flow, hydrocarbon generation, and migration. AAPG Bull., 74, 309–335.
    [Google Scholar]
  63. Wei, H.F. (1990) Modélisation Tridimensionnelle du Transfert d'eau, de Chaleur et de Masse Dans l'Aquifère Geothermique du Dogger Dans le Bassin de Paris. PhD Dissertation, EcoleNationale Supérieure des Mines de Paris, Fontainebleau, France, 227 pp.
  64. Wei, H.F., Ledoux, E. & De Marsily, G. (1990) Regional modelling of groundwater flow and salt and environmental tracer transport in deep aquifers in the Paris basin. J. Hydrol., 120, 341–358.
    [Google Scholar]
  65. Welte, D.H. & Yükler, M.A. (1981) Petroleum origin and accumulation in basin evolution; a quantitative model. AAPG Bull., 65, 1387–1396.
    [Google Scholar]
  66. Wieck, J., Pearson, M. & Strayer, L. (1995) A finite element method for simulating fault block motion and hydrothermal fluid flow within rifting basins. Water Resour. Res., 31, 3241–3258.
    [Google Scholar]
  67. Worden, R.H. (2002) Basin scale fluid flow: does it occur and does it matter? A case study of the Paris basin, France. AAPG Annual Meeting, Houston, USA.
  68. Worden, R.H., Coleman, M.L. & Matray, J.M. (1999) Basin scale evolution of formation waters: a diagenetic and formation water study of the Triassic Chaunoy Formation, Paris Basin. Geochim Cosmochim Acta, 63, 2513–2528.
    [Google Scholar]
  69. Worden, R.H. & Matray, J.M. (1995) Cross formational flow in the Paris basin. Basin Res., 7, 53–66.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2004.00243.x
Loading
/content/journals/10.1111/j.1365-2117.2004.00243.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error