1887
Volume 16, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

We propose and test a conceptual framework for evaluating the relative timing of different types of sedimentary indicators of tectonism in alluvial foreland basin settings. We take the first occurrence of a detrital grain from a newly exposed source‐area lithology to provide the best indicator of the onset of tectonic uplift in the source area. Source‐area unroofing may lag behind initial uplift because of the type, thickness and structure of rocks in the uplifted mountain block, drainage patterns and climate. However, once exposed, advective transport disperses grains quickly throughout fluvial systems. Because of increased subsidence rate from thrust belt loading, an increase in sedimentation rate begins coincident with tectonic load emplacement within the flexural half‐width of the basin. However, farther out into the basin increased sedimentation rates lag behind the composition signal because of time lags associated with propagation of the thrust load and attendant sediment loads into the basin. The progradation of syntectonic gravel lags behind all of these signals as a direct function of the relative proportion of gravel fraction within transported sediment and rates and geometry of subsidence, which selectively traps the coarsest grain‐size fractions in the most proximal parts of the basin.

We demonstrate this signal attenuation in the syntectonic Horta–Gandesa alluvial system (late Eocene–Oligocene), exposed along the southeast margin of the Ebro Basin, Spain. The results demonstrate that: (1) the time spans between the compositional signal and the progradation of the gravel front can be geologically significant, on the order of more than a million years within as little as 20 km of the thrust front; and (2) time lags between the signals increase with distance away from the deformation front. No lag time was observed between the first appearance of a new clast composition and the arrival of gravel front when the thrust front was within a few tens of metres from the depositional site. In contrast, the time lag was 0.5–1 Myr when the thrust front was about 5–6 km away and it increased to >1 Myr when the deformation front was about 8 km away. At the most extreme position, when the thrust front was 15–20 km away, the gravel front never reached the study area.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2004.00244.x
2004-12-03
2024-04-16
Loading full text...

Full text loading...

References

  1. Agustí, J., Cabrera, L., Anadón, P. & Arbiol, S. (1988) A Late Oligocene–Early Miocene rodent biozonation from the SE Ebro Basin (NE Spain): a potential mammal stage stratotype. Newsl. Stratigr., 18 (2), 81–97.
    [Google Scholar]
  2. Anadón, P., Cabrera, L., Choi, S.J., Colombo, F., Feist, M. & Sáez, A. (1992a) Biozonación del Paleógeno continental de la zona oriental de la Cunca del Ebro mediante carófitas: implicaciones en la biozonación general de carófitas de Europa occidental. Acta Geol. Hispanica, 27 (2), 29–40.
    [Google Scholar]
  3. Anadón, P., Cabrera, L., Choi, S.J., Colombo, F., Feist, M. & Sáez, A. (1992b) Biozonación mediante carófitas del Paleógeno de la zona oriental de la Cuenca del Ebro: implcaciones cronoestratográficas. Acta Geol. Hispanica, 27 (2), 69–94.
    [Google Scholar]
  4. Anadón, P., Cabrera, L., Colldeforns, B. & Sáez, A. (1989) Los sistemas lacustres del Eoceno superior y Oligoceno del sector Oriental de la cuenca del Ebro. Acta Geol. Hispanica, 24 (2), 69–74.
    [Google Scholar]
  5. Anadón, P., Cabrera, L., Columbo, F., Marzo, M. & Riba, O. (1986) Syntectonic intraformational unconformities in alluvial fan deposits, eastern Ebro Basin margins (NE Spain). In: Foreland Basins (Ed. by P.A.Allen & P.Homewood ), Spec. Publ. Int. Ass. Sediment ., 8, 259–271.
    [Google Scholar]
  6. Anadón, P., Cabrera, L., Guimera, J. & Santanach, P. (1985) Paleogene strike‐slip deformation, basin formation and sedimentation along the southeastern margin of the Ebro Basin. In: Strike‐Slip Deformation, Basin Formation and Sedimentation (Ed. by K.T.Biddle & N.Christie‐Blick ), SEPM Spec. Publ ., 37, 303–318.
    [Google Scholar]
  7. Anadón, P., Colombo, F., Esteban, M., Marzo, M., Robles, S., Santanach, P. & Sole‐Sugrañes, L. (1979) Evolución tectonoestratigráfica de los Catalánides. Acta Geol. Hispanica, 14, 242–270.
    [Google Scholar]
  8. Arbiol, S., Agustic, J. & Hugueney, M. (1997) A new species of Theridomys (Rodentia, Mammalia) from the upper Oligocene of the Ebro Basin (NE Spain). Geobios, 30 (3), 447–451.
    [Google Scholar]
  9. Arenas, C., Casanova, J. & Pardo, G. (1997) Stable‐isotope characterization of the Miocene lacustrine systems of Los Monegros (Ebro Basin, Spain): palaeogeographic and palaeoclimatic implications. Palaeogeog. Palaeoclim. Palaeoecol., 128, 133–155.DOI: 10.1016/S0031-0182(96)00052-1
    [Google Scholar]
  10. Arenas, C. & Pardo, G. (1999) Latest Oligocene–Late Miocene lacustrine systems of the north‐central part of the Ebro Basin (Spain): sedimentary facies model and palaeogeographic synthesis. Palaeogeog. Palaeoclim. Palaeoecol., 151, 127–148.DOI: 10.1016/S0031-0182(99)00025-5
    [Google Scholar]
  11. Barberà, X., Cabrera, L., Marzo, M., Parés, J.M. & Agustí, J. (2001) A complete terrestrial Oligocene magnetostratigraphy from the Ebro Basin, Spain. Earth Planet. Sci. Lett., 187, 1–16.DOI: 10.1016/S0012-821X(01)00270-9
    [Google Scholar]
  12. Beaumont, C. (1978) The evolution of sedimentary basins on a visoelastic lithosphere: theory and examples. Geophys. J. R. Astronom. Soc., 55, 471–497.
    [Google Scholar]
  13. Beaumont, C. (1981) Foreland basins. Geophys. J. R. Astronom. Soc., 65, 291–329.
    [Google Scholar]
  14. Beaumont, C., Fullsack, P. & Hamilton, J. (1992) Erosional control of active compressional orogens. In: Thrust Tectonics (Ed. by K.R.McClay ), pp. 1–18. Chapman & Hall, London.
    [Google Scholar]
  15. Bradley, D.C. & Hanson, L.S. (2002) Paleocurrent analysis of a deformed Devonian foreland basin in the Northern Appalachians, Maine, USA. Sediment. Geol., 148, 425–447.
    [Google Scholar]
  16. Braun, J. & Sambridge, M. (1997) Modelling landscape evolution on geologic time scales: a new method based on irregular spatial discretization. Basin Res., 9 (1), 27–52.
    [Google Scholar]
  17. Bridge, J.S. & Bennett, S.J. (1992) A model for the entrainment and transport of sediment grains of mixed sizes, shapes, and densities. Water Resource Res., 28 (2), 337–363.
    [Google Scholar]
  18. Burbank, D.W., Beck, R.A., Raynolds, R.G.H., Hobbs, R. & Tahirkheli, R.A.K. (1988) Thrusting and gravel progradation in foreland basins: a test of post‐thrusting gravel dispersal. Geology, 16, 1143–1146.
    [Google Scholar]
  19. Burbank, D.W. & Raynolds, R.G.H. (1984) Sequential late Cenozoic structural disruption of the northern Himalayan foredeep. Nature (London), 311 (5982), 114–118.
    [Google Scholar]
  20. Burbank, D.W. & Raynolds, R.G.H. (1988) Stratigraphic keys to the timing of thrusting in terrestrial foreland basins: applications to the Northwestern Himalaya. In: New Perspectives in Basin Analysis (Ed. by K.L.Kleinsphen & C.Paola ), pp. 331–351. Springer‐Verlag, New York.
    [Google Scholar]
  21. Burns, B.A., Heller, P.L., Marzo, M. & Paola, C. (1997) Fluvial response in a sequence stratigraphic framework: example from the Montserrat Fan Delta, Spain. J. Sediment. Res., 67 (2), 311–321.
    [Google Scholar]
  22. Cabrera, L., Cabrera, M., Gorchs, R. & De Las Heras, F.X.C. (2002) Lacustrine basin dynamics and organosulphur compound origin in a carbonate‐rich lacustrine system (Late Oligocene Mequinenza Formation, SE Ebro Basin, NE Spain). Sediment. Geol., 148 (1–2), 289–317.
    [Google Scholar]
  23. Cabrera, L., Colombo, F. & Robles, S. (1985) Sedimentation and tectonic interrelationships in the Paleogene marginal alluvial systems of the SE Ebro Basin: transition from alluvial to shallow lacustrine environments. In: Excursion Guide Book of the 6th European Regional IAS Meeting, Lleida (Ed. by M.Milá & S.Rosell ), pp. 393–492. Institut D´Estudis, Ilerdencs, Lleida, Spain.
    [Google Scholar]
  24. Cabrera, L. & Sáez, A. (1987) Coal deposition in carbonate‐rich shallow lacustrine systems: the Calaf and Mequinenza sequences (Oligocene, eastern Ebro basin, NE Spain). J. Geol. Soc. London, 144, 451–461.
    [Google Scholar]
  25. Cande, S.C. & Kent, D.V. (1995) Revised calibration of the geomagnetic polarity time‐scale for the Late Cretaceous and Cenozoic. J. Geophys. Res., 100 (B4), 6093–6095.
    [Google Scholar]
  26. Colombo, F. (1980) Estratigrafía y Sedimentología del Terciario continental de Los Catalánides. PhD Thesis, University of Barcelona, Barcelona, Spain, 608pp.
  27. Colombo, F. (1994) Normal and reverse unroofing sequences in syntectonic conglomerates as evidence of progressive basinward deformation. Geology, 22 (3), 235–238.
    [Google Scholar]
  28. Coney, P., Muñoz, J.A., McClay, K.R. & Evenchick, C.A. (1996) Syntectonic burial and post‐tectonic exhunmation of the Southern Pyrenees foreland fold‐thrust belt. J. Geol. Soc. London, 153, 9–16.
    [Google Scholar]
  29. Critelli, S. & Ingersoll, R.V. (1994) Sandstone petrology and provenance of the Siwalik Group (northwestern Pakistan and western‐southeastern Nepal). J. Sediment. Res., A64 (4), 815–823.
    [Google Scholar]
  30. DeCelles, P.G. (1988) Lithologic provenance modeling applied to the Late Cretaceous synorogenic Echo Canyon Conglomerate, Utah: a case of multiple source areas. Geology, 16, 1039–1043.DOI: 10.1130/0091-7613(1988)016<1039:LPMATT>2.3.CO;2
    [Google Scholar]
  31. DeCelles, P.G. (1994) Late Cretaceous–Paleocene synorogenic sedimentation and kinematic history of the Sevier thrust belt, northeast Utah and southwest Wyoming. Geol. Soc. Am. Bull., 106, 32–56.DOI: 10.1130/0016-7606(1994)106<0032:LCPSSA>2.3.CO;2
    [Google Scholar]
  32. DeCelles, P.G., Gehrels, G.E., Quade, J., Ojha, T.P., Kap, P.A. & Upreti, B.N. (1998) Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold‐thrust belt, western Nepal. Geol. Soc. Am. Bull., 110 (1), 2–21.DOI: 10.1130/0016-7606(1998)110<0002:NFBDEU>2.3.CO;2
    [Google Scholar]
  33. DeCelles, P.G. & Giles, K.A. (1996) Foreland basins systems. Basin Res., 8, 105–123.DOI: 10.1046/j.1365-2117.1996.01491.x
    [Google Scholar]
  34. DeCelles, P.G., Gray, M.B., Ridgway, K.D., Cole, R.B., Srivastava, P., Pequera, N. & Pivnik, D.A. (1991) Kinematic history of a foreland uplift from Paleocene synorogenic conglomerate, Beartooth Range, Wyoming and Montana. Geol. Soc. Am. Bull., 104, 1458–1475.DOI: 10.1130/0016-7606(1991)103<1458:KHOAFU>2.3.CO;2
    [Google Scholar]
  35. DeCelles, P.G., Lawton, T.F. & Mitra, G. (1995) Thrust timing, growth of structural culminations, and synorogenic sedimentation in the type Sevier orogenic belt, western United States. Geology, 23 (8), 699–702.DOI: 10.1130/0091-7613(1995)023<0699:TTGOSC>2.3.CO;2
    [Google Scholar]
  36. Desegaulx, P. & Moretti, I. (1988) Subsidence history of the Ebro Basin. J. Geodynam., 10, 9–24.DOI: 10.1016/0264-3707(88)90003-8
    [Google Scholar]
  37. Dickinson, W.R. (1970) Interpreting detrital modes of graywacke and arkose. J. Sedment. Petrol., 40, 695–707.
    [Google Scholar]
  38. Dickinson, W.R. (1985) Interpreting provenance relations from detrital modes of sandstones. In: Provenace of Arenites (Ed. by G.G.Zuffa ), Nato Adv. Study Inst. Ser ., 148, 333–361. Reidel Publishing Company, the Netherlands.
    [Google Scholar]
  39. Dickinson, W.R., Klute, M.A., Hayes, M.J., Janecke, S.U., Lundin, E.R., McKittrick, M.A. & Olivares, M.D. (1988) Paleogeographic and paleotectonic setting of Laramide sedimentary basins in the central Rocky Mountain region. Geol. Soc. Am. Bull., 100, 1023–1039.DOI: 10.1130/0016-7606(1988)100<1023:PAPSOL>2.3.CO;2
    [Google Scholar]
  40. Eisbacher, G.H., Carrigy, M.A. & Campbell, R.B. (1974) Paleodrainage pattern and late‐orogeic basins of the Canadian Cordillera. In: Tectonics and Sedimentation (Ed. by W.R.Dickinson ), SEPM Spec. Publ ., 22, 143–166.
    [Google Scholar]
  41. Ferguson, R., Hoey, T., Wathen, S. & Werritty, A. (1996) Field evidence for rapid downstream fining of river gravels through selective transport. Geology, 24 (2), 179–182.DOI: 10.1130/0091-7613(1996)024<0179:FEFRDF>2.3.CO;2
    [Google Scholar]
  42. Garcia‐Castellanos, D. (2002) Interplay between lithospheric flexture and river transport in foreland basins. Basin Res., 14, 89–104.DOI: 10.1046/j.1365-2117.2002.00174.x
    [Google Scholar]
  43. Garcia‐Castellanos, D., Verges, J., Gaspar‐Escribano, J. & Cloetingh, S. (2003) Interplay between tectonics, climate, and fluvial transport during the Cenozoic evolution of the Ebro Baisn (NE Iberia). J. Geophys. Res., 108 (7), 2347.
    [Google Scholar]
  44. Graham, S.A., Tolson, R.B., DeCelles, P.G., Ingersoll, R.V., Bargar, E., Caldwell, M., Cavazza, W., Edwards, D.P., Follo, M.F., Handschy, J.F., Lemke, L., Moxon, I., Rice, R., Smith, G.A. & White, J. (1986) Provenance modelling as a technique for analysing source terrane evolution and controls on foreland sedimentation. In: Foreland Basins (Ed. by P.A.Allen & P.Homewood ), Spec. Publ. Int. Ass. Sediment ., 8, 425–436. Blackwell Scientific Publications, Oxford, UK.
    [Google Scholar]
  45. Guimerà, J. & Álvaro, M. (1990) Structure et évolution de la compression alpine dans la Chaîne ibérique et la Chaîne Côtiére catalane (Espagne). Bull. Soc. Géol. France, Ser. 8, 6, 339–348.
    [Google Scholar]
  46. Heller, P.L., Angevine, C.L., Winslow, N.S. & Paola, C. (1988) Two‐phase stratigraphic model of foreland‐basin sequences. Geology, 16, 501–504.
    [Google Scholar]
  47. Heller, P.L., Renne, P. & O'Neil, J. (1992) River mixing rate, residence time and subsidence rates from isotopic indicators: eocene sandstones of the U.S. Pacific Northwest. Geology, 20 (12), 1095–1098.
    [Google Scholar]
  48. Horton, B.K. & DeCelles, P.G. (2001) Modern and ancient fluvial megafans in the foreland basin system of the central Andes, southern Bolivia: implications for drainage network evolution in fold‐thrust belts. Basin Res., 13, 43–63.
    [Google Scholar]
  49. Jones, M.A. (1997) Interaction between proximal foreland basin sedimentation and the structural evolution of the Catalan Coastal Range, near Gandesa, Catalunya, Spain. PhD Dissertation, University of Wyoming, Laramie, USA, 237pp.
  50. Jordan, T.E. (1981) Thrust loads and foreland basin evolution, Cretaceous, western United States. Am. Assoc. Petrol. Geol. Bull., 65, 2506–2520.
    [Google Scholar]
  51. Jordan, T.E., Flemings, P.B. & Beer, J.A. (1988) Dating thrust‐fault activity by use of foreland‐basin strata. In: New Perspectives in Basin Analysis (Ed. by K.L.Kleinsphen & C.Paola ), pp. 307–330. Springer‐Verlag, New York.
    [Google Scholar]
  52. Koons, P.O. (1995) Modeling the topographic evolution of collisional belts. Annu. Rev. Earth Planet. Sci., 23, 375–408.
    [Google Scholar]
  53. Lawton, T.F. (1986) Compositional trends within a clastic wedge adjacen to a fold‐thrust belt: indianola Group, central Utah, USA. In: Foreland Basins (Ed. by P.A.Allen & P.Homewood ), Spec. Publ. Int. Ass. Sediment ., 8, 411–423. Blackwell Scientific Publications, Oxford, UK.
    [Google Scholar]
  54. Lawton, T.F., Roca, E. & Guimerà, J. (1999) Kinematic‐stratigraphic evolution of a growth syncline and its implications for tectonic development of the proximal foreland basin, southeastern Ebro basin Catalunya, Spain. Geol. Soc. Am. Bull., 111 (3), 412–431.
    [Google Scholar]
  55. Lawton, T.F. & Trexler, J.H.Jr. (1991) Piggyback basin in the Sevier thrust belt, Utah: implications for development of the thrust wedge. Geology, 19, 827–830.
    [Google Scholar]
  56. Llopis, N. (1947) Contribución al conocimiento de la morfoestructura de los Catalánides. Consejo Superior de Investigaciones Científicas, Instituto Lucas Mallada, Barcelona, 372pp.
  57. López‐Blanco, M. (2002) Sedimentary response to thrusting and fold growing on the SE margin of the Ebro basin (Paleogene, NE Spain). Sediment. Geol., 146, 133–154.
    [Google Scholar]
  58. López Olmedo, F., García de Domingo, A., Barnolas Cortinas, A., Simó, A., González Lastra, J., Calvet, F. & Granados Granados, L. (1985) Horta de San Juan 496. Instituto Geológico y Minero de España, Madrid.
  59. Mohrig, D., Heller, P.L., Paola, C. & Lyons, W.J. (2000) Interpreting avulsion processes from ancient alluvial sequences; Guadalope‐Matarranya system (northern Spain) and Wasatch Formation (western Colorado). Geol. Soc. Am. Bull., 112 (12), 1787–1803.
    [Google Scholar]
  60. Muñoz, J.A. (1992) Evolution of a continental collision belt: ECORS‐Pyrenees crustal balanced cross‐section. In: Thrust Tectonics (Ed. by K.R.McClay ), pp. 235–246. Chapman & Hall, London.
    [Google Scholar]
  61. Orche Garcia, E., Robles Orozco, S. & Rosell Sanuy, J. (1978) Perello 497. Instituto Geológico y Minero de España, Madrid.
  62. Paola, C. (1988) Subsidence and gravel transport in alluvial basins. In: New Perspectives in Basin Analysis (Ed. by K.L.Kleinsphen & C.Paola ), pp. 231–243. Springer‐Verlag, New York.
    [Google Scholar]
  63. Paola, C., Heller, P.L. & Angevine, C.L. (1992a) The large‐scale dynamics of grain‐size variation in alluvial basins, 1: theory. Basin Res., 4 (2), 73–90.
    [Google Scholar]
  64. Paola, C. & Mohrig, D. (1996) Paleohydraulics revisited: paleoslope estimation in coarse‐grained braided rivers. Basin Res., 8, 243–254.
    [Google Scholar]
  65. Paola, C., Parker, G., Seal, R., Sinha, S.K., Southard, J.B. & Wilcock, P.R. (1992b) Downstream fining by selective deposition in a laboratory flume. Science, 258 (5089), 1757–1760.
    [Google Scholar]
  66. Paola, C. & Seal, R. (1995) Grain‐size patchiness as a cause of selective deposition and downstream fining. Water Resource Res., 31 (5), 1395–1407.
    [Google Scholar]
  67. Paola, C. & Swenson, J.B. (1998) Geometric constraints on composition of sediment derived from erosional landscapes. Basin Res., 10 (1), 37–48.
    [Google Scholar]
  68. Pivnik, D.A. (1990) Thrust generated fan‐delta deposition: little Muddy Creek Conglomerate, SW Wyoming. J. Sediment. Petrol., 60, 489–503.
    [Google Scholar]
  69. Price, R.A. (1973) Large‐scale gravitational flow of supracrustal rocks, southern Canadian Rockies. In: Gravity and Tectonics (Ed. by K.A.De Jong & R.Scholten ), pp. 491–502. John Wiley and Sons, New York.
    [Google Scholar]
  70. Puigdefàbregas, C., Muñoz, J.A. & Vergès, J. (1992) Thrusting and foreland basin evolution in the Southern Pyrenees. In: Thrust Tectonics (Ed. by K.R.McClay ), pp. 247–254. Chapman & Hall, London.
    [Google Scholar]
  71. Quinlan, G.M. & Beaumont, C. (1984) Appalachian thrusting, lithospheric flexure and the Paleozoic stratigraphy of the Eastern interior of North America. Can. J. Earth Sci., 21, 973–996.
    [Google Scholar]
  72. Riba, O. (1976) Syntectonic unconformities of the Alto Cardener, Spanish Pyrenees: a genetic interpretation. Sediment. Geol., 15, 213–233.
    [Google Scholar]
  73. Robinson, R.A.J. & Slingerland, R.L. (1998) Grain‐size trends, basin subsidence and sediment supply in the Campanian Castlegate Sandstone and equivalent conglomerates of central Utah. Basin Res., 10 (1), 109–127.
    [Google Scholar]
  74. Royden, L. & Karner, G.D. (1984) Flexure of the continental lithosphere beneath Apennine and Carpathian foredeep basins. Nature, 309, 142–144.
    [Google Scholar]
  75. Schedl, A. & Wiltschko, D.V. (1984) Sedimentological effects of a moving terrane. J. Geol., 92, 273–287.
    [Google Scholar]
  76. Schick, A.P., Lekach, J. & Hassan, M.A. (1987) Bed load transport in desert floods: observations in the Negev. In: Sediment Transport in Gravel‐Bed Rivers (Ed. by C.R.Thorne , J.C.Bathurst & R.D.Hey ), pp. 617–642. John Wiley and Sons Ltd., London.
    [Google Scholar]
  77. Schlunegger, F., Jordan, T.E. & Klaper, E.M. (1997) Controls of erosional denudation in the orogen on foreland basin evolution; the Oligocene central Swiss Molasse Basin as an example. Tectonics, 16, 823–840.
    [Google Scholar]
  78. Seal, R., Toro‐Escobár, C., Cui, Y., Paola, C., Parker, G., Southard, J.B. & Wilcock, P.R. (1998) Downstream fining by selective deposition; theory, laboratory and field observations. In: Gravel‐Bed Rivers in the Environment (Ed. by P.C.Klingeman , R.L.Beschta , P.D.Komar & J.B.Bradley ), Int. Gravel‐Bed Rivers Workshop4, 61–84.
    [Google Scholar]
  79. Smith, G.H.S. & Ferguson, R.I. (1995) The gravel‐sand transition along river channels. J. Sediment. Res., A65 (2), 423–430.
    [Google Scholar]
  80. Steidtmann, J.R. & Schmitt, J.G. (1988) Provenance and dispersal of tectogenic sediment in thin‐skinned thrusted terrains. In: New Perspectives in Basin Analysis (Ed. by K.L.Kleinsphen & C.Paola ), pp. 353–366. Springer‐Verlag, New York.
    [Google Scholar]
  81. Suppe, J., Chou, G.T. & Hook, S.C. (1992) Rates of folding and faulting determined from growth strata. In: Thrust Tectonics (Ed. by K.R.McClay ), pp. 105–122. Chapman & Hall, London.
    [Google Scholar]
  82. Teixell, A. (1988) Desarrollo de un anticlinorio por transpresión, ailando una cuenca sedimentaria marginal (borde oriental de la cuenca del Ebro, Tarragona). Rev. Soc. Geol. España, 1 (1–2), 229–238.
    [Google Scholar]
  83. Tucker, G.E. & Slingerland, R.L. (1996) Predicting sediment flux from fold and thrust belts. Basin Res., 8, 329–349.
    [Google Scholar]
  84. Villena, J., Pardo, G., Pérez, A., Muñoz, A. & González, A. (1996) The Tertiary of the Iberian margin of the Ebro basin: paleogeography and tectonic control. In: Tertiary Basins of Spain: The Stratigraphic Record of Crustal Kinematics (Ed. by P.Friend & C.J.Dabrio ), World Regional Geol ., 6, 83–88. Cambridge University Press, Cambridge.
    [Google Scholar]
  85. Virgili, C. (1958) El Triásico de los Catalánides. Boletin Instituto Geologico y Minero de España, LXIX, VII–XIII.
  86. Willgoose, G., Bras, R.L. & Iturbe, I. (1991) A coupled channel network growth and hillslope evolution model. Water Resource Res., 27 (7), 1671–1684.
    [Google Scholar]
  87. Zaleha, M.J., Way, J.N. & Suttner, L.J. (2001) Effects of syndepositional faulting and folding on Early Cretaceous rivers and alluvial architecture (Lakota and Cloverly Formations, Wyoming, U.S.A.). J. Sediment. Res., 71 (6), 880–894.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2004.00244.x
Loading
/content/journals/10.1111/j.1365-2117.2004.00244.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error