1887
Volume 16, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

The <1.5‐km thick Fiq Member of the Ghadir Manqil Formation, Huqf Supergroup, Oman, contains a succession of Marinoan‐age glacially and non‐glacially influenced deposits overlain by a transgressive, 13C‐depleted, deep‐water dolostone (Hadash Formation) that deepens up into the marine shales and siltstones of the Masirah Bay Formation. The Fiq Member and Hadash–Masirah Bay Formations are well exposed in the core of the Jebel Akhdar of northern Oman and provide a valuable insight into the processes operating during a Neoproterozoic glacial epoch and its aftermath.

The Fiq Member comprises seven stratigraphic units (F1–F7) of proximal and distal glacimarine, non‐glacial sediment gravity flow, and non‐glacial shallow marine facies associations. These units can be correlated over almost the entire Neoproterozoic outcrop belt (ca. 80 km) of the Jebel Akhdar. Four units contain glacimarine rainout diamictites, commonly at the top of cycles beneath strong lithofacies dislocations suggesting flooding. The units are thought to have been generated by combined glacio‐isostatic and glacio‐eustatic forcing caused by changing volumes of terrestrial glacier ice. The lateral persistence and thickness of massive diamictite units increase upwards in the stratigraphy, the youngest (F7) diamictite being abruptly overlain by the Hadash Formation. Correlation of lithofacies associations across the rift basin and palaeocurrents indicate that siliciclastic sediment and glacially entrained debris were derived from both basin margins. Open‐water conditions existed during interglacials, attested to by the presence of wave‐rippled sandstones in the western part of the basin. The Hadash carbonate also exhibits variations between east and west, showing that despite an overall deep‐water depositional setting, rift margin and intrabasinal structure continued to exert a control on facies development during the post‐glacial aftermath. Onlap of basin margins continued through the deposition of the Masirah Bay Formation.

The sedimentology and stratigraphy of the Fiq Member and Hadash–Masirah Bay Formations have a number of implications for the Snowball Earth hypothesis. The overall stratigraphic evolution of the Fiq Member suggests a dynamic, temperate/polythermal style of glaciation, perhaps nucleated on uplifted continental or rift margin topography, with marine‐terminating glaciers. Some transgressions coupled to deglaciations within the Fiq glacial epoch were accompanied by minor deposition of carbonate. However, final deglaciation triggered the deposition of a <8‐m thick, deep‐water dolomite contaminated with siliciclastics, with a lithofacies assemblage still reflecting the underlying bathymetric template, followed by relatively deep marine shales and siltstones. The preservation of relatively deep marine Masirah Bay sediments above the Fiq basin margin suggests either tectonic collapse of the rift shoulder or, more likely, rapid eustatic rise accompanying deglaciation.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2004.00249.x
2004-12-03
2020-07-15
Loading full text...

Full text loading...

References

  1. Allen, P.A. & Hoffman, P.F.Extreme winds and waves during the aftermath of a Neoproterozoic glaciation. Nature, in press, doi: 10.1038/nature03176.
    [Google Scholar]
  2. Amthor, J.E., Grotzinger, J.P., Schröder, S., Bowring, S.A., Ramezani, J., Martin, M.W. & Matter, A. (2003) Extinction of Cloudina and Namacalathus at the Precambrian–Cambrian boundary in Oman. Geology, 31, 431–434.
    [Google Scholar]
  3. Anderson, J.B., Brake, C.F. & Myers, N.C. (1984) Sedimentation on the Ross Sea continental shelf, Antarctica. Marine Geol., 57, 295–334.
    [Google Scholar]
  4. Anderson, J.B., Domack, E.W. & Kutz, D.D. (1980) Observations of sediment laden icebergs in Antarctic waters: implications for glacial erosion and transportation. J. Glaciol., 25, 387–397.
    [Google Scholar]
  5. Arnaud, E. & Eyles, C.H. (2002) Glacial influence on Neoproterozoic sedimentation: the Smalfjord Formation, northern Norway. Sedimentology, 49, 765–788.
    [Google Scholar]
  6. Atkins, C.B., Barrett, P.J. & Hicock, S.R. (2002) Cold glaciers erode and deposit: evidence from Allan Hills, Antarctica. Geology, 30, 659–662.
    [Google Scholar]
  7. Boulton, G.S. (1978) Boulder shapes and grain size distributions of debris as indicators of transport paths through a glacier and till genesis. Sedimentology, 25, 773–799.
    [Google Scholar]
  8. Brand, U. & Veizer, J. (1980) Chemical diagenesis of a multicomponent carbonate system 1: trace elements. J. Sediment. Petrol., 50, 1219–1236.
    [Google Scholar]
  9. Brand, U. & Veizer, J. (1981) Chemical diagenesis of a multicomponent carbonate system 2: stable isotopes. J. Sediment. Petrol., 51, 987–997.
    [Google Scholar]
  10. Brasier, M.D., McCarron, G., Tucker, R., Leather, J., Allen, P.A. & Shields, G. (2000) New U‐Pb zircon dates for Neoproterozoic Ghubrah glaciation and for the top of the Huqf Supergroup, Oman. Geology, 28, 175–178.
    [Google Scholar]
  11. Brodzikowski, K. & Van Loon, A.J. (1991) Glacigenic Sediments. Developments in Sedimentology, Vol. 49. Elsevier, Amsterdam, 674pp.
    [Google Scholar]
  12. Burns, S.J., Haudenschild, U. & Matter, A. (1994) The strontium isotopic composition of carbonates from the late Precambrian (∼560–540 Ma) Huqf Group of Oman. Chem. Geol., 111, 269–282.
    [Google Scholar]
  13. Burns, S.J. & Matter, A. (1993) Carbon isotope record of the latest Proterozoic from Oman. Eclogae Geol. Helvetiae, 86, 595–607.
    [Google Scholar]
  14. Calver, C.R. (2000) Isotope stratigraphy of the Ediacaran (Neoproterozoic III) of the Adelaide Rift Complex, Australia, and the overprint of water column stratification. Precambrian Res., 100, 121–150.
    [Google Scholar]
  15. Collinson, J.D. & Thompson, D.B. (1989) Sedimentary Structures. Chapman & Hall, London, 207pp.
    [Google Scholar]
  16. Condon, D. & Prave, A.R. (2000) Two from Donegal: Neoproterozoic glacial episodes on the northeast margin of Laurentia. Geology, 28, 951–954.
    [Google Scholar]
  17. Corsetti, F.A. & Kaufman, A.J. (2003) Stratigraphic investigations of carbon isotope anomalies and Neoproterozoic ice ages in Death Valley, California. Geol. Soc. Am. Bull., 115, 916–932.
    [Google Scholar]
  18. Costa, J.E. (1988) Rheologic, geomorphic, and sedimentologic differentiation of water floods, hyperconcentrated flows, and debris flows. In: Flood Geomorphology (Ed. by V.R.Baker , R.C.Kochel & P.C.Patton ), pp. 113–122. Wiley, New York.
    [Google Scholar]
  19. Cozzi, A., Allen, P.A. & Grotzinger, J.P. (2004a) Understanding carbonate ramp dynamics using δ13C profiles: examples from the Neoproterozoic Buah Formation of Oman. Terra Nova, 16, 62–67.
    [Google Scholar]
  20. Cozzi, A. & Al‐Siyabi, H.A. (2004) Sedimentology and play potential of the late Neoproterozoic Buah carbonates of Oman. GeoArabia, 9, 11–36.
    [Google Scholar]
  21. Cozzi, A., Grotzinger, J.P. & Allen, P.A. (2004b) Evolution of a terminal Neoproterozoic carbonate ramp system (Buah Formation, Sultanate of Oman): effects of basement palaeotopography. Bull. Geol. Soc. Am., 116, 1367–1384.
    [Google Scholar]
  22. Crowley, T.J., Hyde, W.T. & Peltier, R.W. (2001) CO2 levels required for deglaciation of a ‘Near‐Snowball’ earth. Geophys. Res. Lett., 28, 283–286.
    [Google Scholar]
  23. Cuffey, K.M., Conway, H., Gades, A.M., Hallet, B., Lorrain, R., Severinghaus, J.P., Steig, E.J., Vaughn, B. & White, J.W.C. (2000) Entrainment at cold glacier beds. Geology, 28, 351–354.
    [Google Scholar]
  24. De Raaf, J.F.M., Boersma, J.R. & Van Gelder, A. (1977) Wave‐generated structures and sequences from a shallow marine succession, Lower Carboniferous, County Cork, Ireland. Sedimentology, 24, 451–483.
    [Google Scholar]
  25. Deynoux, M. (1985) Terrestrial or waterlain diamictites? Three case studies from the Late Precambrian and Late Ordovician glacial drifts in West Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol., 51, 97–142.
    [Google Scholar]
  26. Donnadieu, Y., Fluteau, F., Ramstein, G., Ritz, C. & Besse, J. (2003) Is there a conflict between Neoproterozoic glacial deposits and the Snowball Earth interpretation? An improved understanding with numerical modeling. Earth Planet. Sci. Lett., 208, 101–112.
    [Google Scholar]
  27. Dowdeswell, J.A., Hambrey, M.J. & Wu, R. (1985) A comparison of clast fabric and shape in Late Precambrian and modern glacigenic sediments. J. Sediment. Petrol., 55, 691–704.
    [Google Scholar]
  28. Edwards, M.B. (1984) Sedimentology of the Upper Proterozoic glacial record, Vestertan Group, Finnmark, North Norway. Norges Geologiske Undersokelse, 384, 1–76.
    [Google Scholar]
  29. Elverhoi, A., Pfirman, S.L., Solheim, A. & Larssen, B.B. (1989) Glaciomarine sedimentation in epicontinental seas exemplified by the northern Barents Sea. Marine Geol., 85, 225–250.
    [Google Scholar]
  30. Evans, D.A.D. (2000) Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox. Am. J. Sci., 300, 347–433.
    [Google Scholar]
  31. Eyles, C.H. (1988) Glacially‐ and tidally‐influenced shallow marine sedimentation of the Late Precambrian Port Askaig Formation. Palaeogeogr. Palaeoclimatol. Palaeoecol., 68, 1–25.
    [Google Scholar]
  32. Eyles, N., Eyles, C.H. & Miall, A.D. (1983) Lithofacies types and vertical facies models: an alternative approach to the description and environmental interpretation of glacial diamict and diamict sequences. Sedimentology, 30, 393–410.
    [Google Scholar]
  33. Eyles, N., Eyles, C.H. & Miall, A.D. (1985) Models of glacimarine sedimentation and their application to the interpretation of ancient glacial sequences. Paleogeogr. Paleoclimatol. Paleoecol., 51, 15–84.
    [Google Scholar]
  34. Eyles, N. & Januszczak, N. (2004) ‘Zipper‐rift’: a tectonic model for Neoproterozoic glaciation during the break-up of Rodinia after 750 Ma. Earth Sci. Rev., 65, 1–73.
    [Google Scholar]
  35. Eyles, C.H. & Lagoe, M.B. (1990) Sedimentation patterns and facies geometries on a temperate glacially‐influenced continental shelf: the Yakataga Formation, Middleton Island, Alaska. In: Glacimarine Environments: Processes and Sediments (Ed. by J.A.Dowdeswell & J.D.Scourse ), Spec. Publ. Geol. Soc., London53, 363–386.
    [Google Scholar]
  36. Fairchild, I.J. & Hambrey, M.J. (1984) The Vendian succession of northeastern Spitzbergen: petrogenesis of a dolomite-tillite association. Precambrian Res., 26, 111–167.
    [Google Scholar]
  37. Fairchild, I.J., Marshall, J.D. & Bertrand‐Sarfati, J. (1990) Stratigraphic shifts in carbon isotopes from Proterozoic stromatolitic carbonates (Mauritania): influences of primary mineralogy and diagenesis. Am. J. Sci., 290‐A, 46–79.
    [Google Scholar]
  38. Flint, R.F., Sanders, J.E. & Rodgers, J. (1960a) Symmictite: a name for nonsorted terrigenous sedimentary rocks that contain a wide range of particle sizes. Bull. Geol. Soc. Am., 71, 507–510.
    [Google Scholar]
  39. Flint, R.F., Sanders, J.E. & Rodgers, J. (1960b) Diamictite: a substitute term for symmictite. Bull. Geol. Soc. Am., 71, 1809–1810.
    [Google Scholar]
  40. Fölling, P.G. & Frimmel, H.E. (2002) Chemostratigraphic correlation of carbonate successions in the Gariep and Saldania Belts, Namibia and South Africa. Basin Res., 14, 69–88.
    [Google Scholar]
  41. Frimmel, H.E., Fölling, P.G. & Eriksson, P.G. (2002) Neoproterozoic tectonic and climatic evolution recorded in the Gariep Belt, Namibia and South Africa. Basin Res., 14, 55–68.
    [Google Scholar]
  42. Gilbert, R. (1990) Rafting in glacimarine environments. In: Glacimarine Environments: Processes and Sediments (Ed. by J.A.Dowdeswell & J.D.Scourse ), Spec. Publ. Geol. Soc. London , 53, 105–120.
    [Google Scholar]
  43. Goodman, J.C. & Pierrehumbert, R.T. (2003) Glacial flow of floating marine ice in ‘Snowball Earth’. J. Geophys. Res., 108, C10, 3308, doi: 10.1029/2002JC001471.
    [Google Scholar]
  44. Gorin, G.E., Raacz, L.G. & Walter, M.R. (1982) Late Precambrian–Cambrian sediments of Huqf Group, Sultanate of Oman. Bull. Am. Assoc. Petrol. Geol., 66, 2609–2627.
    [Google Scholar]
  45. Halverson, G.P., Hoffman, P.F., Schrag, D.P. & Kaufman, A.J. (2002) A major perturbation of the carbon cycle before the Ghaub glaciation (Neoproterozoic) in Namibia: prelude to snowball Earth? Geochem. Geophys. Geosystems, 3, doi:10.1029/2001GC000244.
    [Google Scholar]
  46. Halverson, G.P., Maloof, A.C. & Hoffman, P.F. (2004) The Marinoan glaciation (Neoproterozoic) in northeast Svalbard. Basin Res., 16, 297–324.
    [Google Scholar]
  47. Hambrey, M.J. & Harland, W.B. (1981) Earth's Pre‐Pleistocene Glacial Record. Cambridge University Press, Cambridge.
    [Google Scholar]
  48. Harland, W.B. (1964) Evidence of late Precambrian glaciation and its significance. In: Problems in Palaeoclimatology (Ed. by A.E.M.Nairn ), pp. 119–149, 180–184 Interscience, John Wiley & Sons, London.
    [Google Scholar]
  49. Harland, W.B., Herod, K.N. & Krinsley, D.H. (1966) The definition and identification of tills and tillites. Earth Sci. Rev., 2, 225–256.
    [Google Scholar]
  50. Higgins, J.A. & Schrag, D.P. (2003) The aftermath of a snowball earth. Geochem. Geophys. Geosystems, 4 (3), 1028.
    [Google Scholar]
  51. Hoffman, P.F., Kaufman, A.J. & Halverson, G.P. (1998a) Comings and goings of global glaciation on a Neoproterozoic tropical platform in Namibia. GSA Today, 8, 1–9.
    [Google Scholar]
  52. Hoffman, P.F., Kaufman, A.J., Halverson, G.P. & Schrag, D.P. (1998b) A Neoproterozoic snowball earth. Science, 281, 1342–1346.
    [Google Scholar]
  53. Hoffman, P.F. & Schrag, D.P. (2000) Snowball earth. Scientific Am., 282, 62–75.
    [Google Scholar]
  54. Hoffman, P.F. & Schrag, D.P. (2002) The snowball earth hypothesis: testing the limits of global change. Terra Nova, 14, 129–155.
    [Google Scholar]
  55. Hyde, W.T., Crowley, T.J., Baum, S.K. & Peltier, R.W. (2000) Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice‐sheet model. Nature, 405, 425–429.
    [Google Scholar]
  56. Irwin, H., Curtis, C. & Coleman, M. (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic‐rich sediments. Nature, 269, 209–213.
    [Google Scholar]
  57. Kaufman, A.J., Jacobsen, S.B. & Knoll, A.H. (1993) The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate. Earth Planet. Sci. Lett., 120, 409–430.
    [Google Scholar]
  58. Kaufman, A.J. & Knoll, A.H. (1995) Neoproterozoic variations in the C‐isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res., 73, 27–49.
    [Google Scholar]
  59. Kaufman, A.J., Knoll, A.H. & Narbonne, G.M. (1997) Isotopes, ice ages, and terminal Proterozoic earth history. Proc. Natl. Acad. Sci., 94, 6600–6605.
    [Google Scholar]
  60. Kellerhals, P. & Matter, A. (2003) Facies analysis of a glaciomarine sequence, the Neoproterozoic Mirbat Sandstone formation, Sultanate of Oman. Eclogae Geologicae Helvetiae, 96, 49–50.
    [Google Scholar]
  61. Kennedy, M.J. (1996) Stratigraphy, sedimentology, and isotopic geochemistry of Australian Neoproterozoic postglacial cap dolostones: deglaciation, δ13C excursions, and carbonate precipitation. J. Sediment. Res., 66, 1050–1064.
    [Google Scholar]
  62. Kennedy, M.J., Christie‐Blick, N. & Sohl, L.E. (2001) Carbon isotopic composition of Neoproterozoic glacial carbonates as a test of palaeoceanographic models for snowball earth phenomena. Geology, 29, 1135–1138.
    [Google Scholar]
  63. Kennedy, M.J., Runnegar, B., Prave, A.R., Hoffman, K.H. & Arthur, M. (1998) Two or four Neoproterozoic glaciations?Geology, 26, 1059–1063.
    [Google Scholar]
  64. Kirschvink, J.L. (1992) Late Proterozoic low‐latitude global glaciation: the snowball Earth. In: The Proterozoic Biosphere (Ed. By J.W.Schopf & C.Klein ), pp. 51–52. Cambridge University Press, Cambridge.
    [Google Scholar]
  65. Knoll, A.H. (2000) Learning to tell Neoproterozoic time. Precambrian Res., 100, 3–20.
    [Google Scholar]
  66. Leather, J. (2001) Sedimentology, chemostratigraphy and geochronology of the lower Huqf Supergroup, Oman, Vols. 1 and 2. PhD Thesis, Trinity College Dublin.
  67. Leather, J., Allen, P.A., Brasier, M.D. & Cozzi, A. (2002) Neoproterozoic snowball earth under scrutiny: evidence from the Fiq glaciation of Oman. Geology, 30, 891–894.
    [Google Scholar]
  68. Le Guerroué, E., Allen, P.A. & Cozzi, A.Two distinct glacial successions in the Neoproterozoic of Oman. GeoArabia, in press.
    [Google Scholar]
  69. Le Métour, J., Villey, M. & De Gramont, X. (1986) Geological map of Quryat, Sheet NF 40‐4D, scale 1:100,000. Directorate of Minerals, Oman Ministry of Petroleum and Minerals.
  70. Levell, B.K., Braakmann, J.H. & Rutten, K.W. (1988) Oil‐bearing sediments of the Gondwana glaciation in Oman. Am. Assoc. Petrol. Geol. Bull., 72, 775–796.
    [Google Scholar]
  71. Loosveld, R.J.H., Bell, A. & Terken, J.J.M. (1996) The tectonic evolution of interior Oman. GeoArabia, 1, 28–50.
    [Google Scholar]
  72. Mackiewicz, N.E., Powell, R.D., Carlson, P.R. & Molnia, B.F. (1984) Interlaminated ice‐proximal glacimarine sediments in Muir Inlet, Alaska. Marine Geol., 57, 113–147.
    [Google Scholar]
  73. Marshall, J.D. (1992) Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol. Mag., 129, 143–160.
    [Google Scholar]
  74. Mattes, B.W. & Conway Morris, S. (1990) Carbonate/evaporite deposition in the Late Precambrian–Early Cambrian Ara Formation of southern Oman. In: The Geology and Tectonics of the Oman Region (Ed. by A.H.F.Robertson , et al.) Geol. Soc. London Spec. Publ., 69, 617–636.
    [Google Scholar]
  75. McCarron, G.M.E. (2000) The sedimentology and chemostratigraphy of the Nafun Group, Huqf Supergroup, Oman. PhD Thesis, University of Oxford.
  76. McKirdy, D.M., Burgess, J.M., Lemon, N.M., Yu, X., Cooper, A.M., Gostin, V.A., Jenkins, R.J.F. & Both, R.A. (2001) A chemostratigraphic overview of the late Cryogenian interglacial sequence in the Adelaide Fold‐Thrust Belt, South Australia. Precambrian Res., 106, 149–186.
    [Google Scholar]
  77. Meschede, M. (1986) A method of discriminating between different types of mid‐ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram. Chem. Geol., 56, 207–218.
    [Google Scholar]
  78. Miall, A.D. (1983) Glaciomarine sedimentation in the Gowganda Formation (Huronian), northern Ontario. J. Sediment. Petrol., 53, 477–491.
    [Google Scholar]
  79. Miller, J.M.G. (1996) Glacial sediments. In: Sedimentary Environments: Processes, Facies and Stratigraphy (Ed. by H.G.Reading ) Blackwell Science Ltd., Oxford, 688pp.
    [Google Scholar]
  80. Mitrovica, J.X. & Peltier, W.R. (1991) On postglacial geoid subsidence over the equatorial oceans. J. Geophys. Res., 96, 20 053‐20 071
    [Google Scholar]
  81. Moncrieff, A.C.M. (1989) Classification of poorly sorted sedimentary rocks. Sediment. Geol., 65, 191–194.
    [Google Scholar]
  82. Moncrieff, A.C.M. & Hambrey, M.J. (1990) Marginal marine glacial sedimentation in the late Precambrian succession of east Greenland. In: Glacimarine Environments: Processes and Sediments (Ed. by J.A.Dowdeswell & J.D.Scourse ), Spec. Publ. Geol. Soc. , 53, 387–410.
    [Google Scholar]
  83. Myrow, P.M. & Kaufman, A.J. (1999) A newly discovered cap carbonate above Varanger‐age glacial deposits in Newfoundland. Canad. J. Sediment. Res., 69, 784–793.
    [Google Scholar]
  84. Narbonne, G.M., Kaufman, A.J. & Knoll, A.H. (1994) Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: implications for Neoproterozoic correlations and the early evolution of animals. Geol. Soc. Am. Bull., 106, 1281–1292.
    [Google Scholar]
  85. Nardin, T.R., Hein, F.J., Gorsline, D.S. & Edwards, B.D. (1979) A review of mass movement processes, sediment and acoustic characteristics, and contrasts in slope and base‐of‐slope systems versus canyon‐fan‐basin systems. In: Geology of Continental Slopes (Ed. by L.J.Doyle & O.H.Pilkey ), Soc. Econ. Paleontol. Mineral. Spec. Publ. , 27, 61–73.
    [Google Scholar]
  86. Ovenshine, A.T. (1970) Observations of iceberg rafting in Glacier Bay, Alaska, and the identification of ancient ice‐rafted deposits. Geol. Soc. Am. Bull., 81, 891–894.
    [Google Scholar]
  87. Pearce, J.A. & Cann, J.R. (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett., 19, 290–300.
    [Google Scholar]
  88. Pelechaty, S.M., Kaufman, A.J. & Grotzinger, J.P. (1996) Evaluation of δ13C chemostratigraphy for intrabasinal correlation: Vendian strata of northeast Siberia. Geol. Soc. Am. Bull., 108, 992–1003.
    [Google Scholar]
  89. Poulsen, C.J., Pierrehumbert, R.T. & Jacob, R.L. (2001) Impact of ocean dynamics on the simulation of the Neoproterozoic ‘snowball Earth’. Geophys. Res. Lett., 28, 1575–1578.
    [Google Scholar]
  90. Powell, R.D. (1988) Processes and facies of temperate and sub‐polar glaciers with tidewater fronts. Short Course Notes, Geological Society of America, Centennial Annual Meeting, Denver, CO, 114pp.
  91. Powell, R. & Domack, E. (1995) Glacimarine processes and sediments. In: Modern Glacial Environments (Ed. by J.Menzies ) Butterworth‐Heinemann, Oxford.
    [Google Scholar]
  92. Powell, R.D. & Molnia, B.F. (1989) Glaciomarine processes and sediments. In: Modern Glacial Environments (Ed. by J.Menzies ) Butterworth‐Heinemann, Oxford.
    [Google Scholar]
  93. Prave, A.R. (1999) Two diamictites, two cap carbonates, two δ13C excursions, two rifts: the Neoproterozoic Kingston Peak Formation, Death Valley, California. Geology, 27, 339–342.
    [Google Scholar]
  94. Preiss, W.V. (2000) The Adelaide geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction. Precambrian Res., 100, 21–63.
    [Google Scholar]
  95. Rabu, D. (1988) Géologie de l'authochthone des montagnes d'Oman, la fenetre du Jabal Akhdar. PhD Thesis, Bureau du Récherche Géologiques et Minières, document 130.
  96. Rabu, D., Bechennec, F., Beurrier, M. & Hutin, M. (1986) Geological map of Nakhl: Oman Ministry of Petroleum and Minerals, Directorate General of Minerals, sheet NF‐40‐3E, scale 1:100,000.
  97. Rabu, D., Nehlig, P., Roger, J., Bechennec, F., Beurrier, M., Le Metour, J., Bourdillon de Grissac, C., Tegyey, M., Chauvel, J.‐J., Cavalier, C., Al Hazari, H., Juteau, T., Janjou, D., Lemiere, B., Villey, M. & Wyns, R. (1993) Stratigraphy and structure of the Oman Mountains. Bureau Récherches Géol. Minières, 221.
    [Google Scholar]
  98. Rice, A.H.N., Halverson, G.P. & Hoffman, P.F. (2001) δ13C data from Neoproterozoic cap and associated dolostones, Varanger, Finnmark, N. Norway. Abstract, European Union of Geosciences Proceedings, Strasbourg, A101.
  99. Simonson, B.M. & Carney, K.E. (1999) Roll‐up structures: evidence of in situ microbial mats in Late Archaean deep shelf environments. In: Unexplored Microbial Worlds (Ed. by J.W.Hagadorn , F.Pflueger & D.J.Bottjer ), Palaios14, 13–24.
    [Google Scholar]
  100. Stow, D.A.V., Reading, H.G. & Collinson, J.D. (1996) Deep seas. In: Sedimentary Environments: Processes, Facies and Stratigraphy (Ed. by H.G.Reading ) Blackwell Science Ltd., Oxford, 688pp.
    [Google Scholar]
  101. Thomas, G.S.P. & Connell, R.J. (1984 or 1985?) Iceberg drop, dump, and grounding structures from Pleistocene glacio‐lacustrine sediments, Scotland. J. Sediment. Petrol., 55, 243–249.
    [Google Scholar]
  102. Tucker, M.E. (1986) Formerly aragonitic limestones associated with tillites in the Late Proterozoic of Death Valley, California. J. Sediment. Petrol., 56, 818–830.
    [Google Scholar]
  103. Villey, M., Le Métour, J. & Gramont, X. (1986) Geological map of Fanjah. Oman Ministry of Petroleum and Minerals, Directorate General of Minerals, sheet NF 40‐3F, scale 1:100,000.
  104. Warren, S.G., Brandt, R.E., Grenfell, T.C. & McKay, C.P. (2002) Snowball earth: ice thickness on the tropical ocean. J. Geophys. Res., 107C10, 3167, doi:1029/2001JC001123.
    [Google Scholar]
  105. Wentworth, C.K. (1936) An analysis of the shape of glacial cobbles. J. Sediment. Petrol., 6, 85–96.
    [Google Scholar]
  106. Williams, G.E. (1979) Sedimentology, stable isotope geochemistry and palaeoenvironment of dolostones capping late Precambrian glacial sequences in Australia. J. Geol. Soc. Austr., 26, 377–386.
    [Google Scholar]
  107. Williams, G.E. (1996) Soft sediment deformation structures from the Marinoan glacial succession, Adelaide foldbelt: implications for the paleolatitude of late Neoproterozoic glaciation. Sediment. Geol., 106, 165–175.
    [Google Scholar]
  108. Williams, G.E. & Schmidt, P.W. (2000) Palaeomagnetism of the Proterozoic Gowganda and Lorrain formations, Ontario: low palaeolatitude for Huronian glaciation. Earth Planet. Sci. Lett., 153, 157–169.
    [Google Scholar]
  109. Wright, R. & Anderson, J.B. (1982) The importance of sediment gravity flow sediment transport and sorting in a glacial marine environment: Eastern Weddell Sea, Antarctica. Geol. Soc. Am. Bull., 93, 951–963.
    [Google Scholar]
  110. Wright, V.P., Ries, A.C. & Munn, S.G. (1990) Intraplatformal basin‐fill from the Infracambrian Huqf Group, east‐central Oman. In: The Geology and Tectonics of the Oman Region (Ed. by A.H.FRobertson , M.P.Searle & A.C.Ries ), Geol. Soc. London Spec. Publ. , 49, 601–616.
    [Google Scholar]
  111. Xiao, S., Bao, H., Wang, H., Kaufman, A.J., Zhou, C., Li, G., Yuan, X. & Ling, H. (2004) The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: evidence for post-Marinoan glaciation. Precambrian Res., 130, 1–26.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2004.00249.x
Loading
/content/journals/10.1111/j.1365-2117.2004.00249.x
Loading

Data & Media loading...

Supplements

Table S1. Stable isotope data from the Hadash Formation.

Supporting info item

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error