1887
Volume 17, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

At the geological time scale, the way in which the erosion of drainage catchments responds to tectonic uplift and climate changes depends on boundary conditions. In particular, sediment accumulation and erosion occurring at the edge of mountain ranges should influence the base level of mountain catchments, as well as sediment and water discharges. In this paper, we use a landform evolution model (LEM) to investigate how the presence of alluvial sedimentation at range fronts affects catchment responses to climatic or tectonic changes. This approach is applied to a 25 km × 50 km domain, in which the central part is uplifted progressively to simulate the growth of a small mountain range. The LEM includes different slope and river processes that can compete with each other. This competition leads to ‘transport‐limited’, ‘detachment‐limited’ or ‘mixed’ transport conditions in mountains at dynamic equilibrium. In addition, two end‐member algorithms (the channellized‐flow and the sheet‐flow regimes) have been included for the alluvial fan‐flow regime. The three transport conditions and the two flow algorithms represent six different models for which the responses to increase of rock uplift rate and/or cyclic variation of the precipitation rate are investigated.

Our results indicate that addition of an alluvial apron increases the long‐term mountain denudation. In response to uplift, mountain rivers adapt their profile in two successive stages; first by propagation of an erosion wave and then by slowly increasing their channel gradients. During the second stage, the erosion rate is almost uniform across the catchment area at any one time, which suggests that dynamic equilibrium has been reached, although the balance between erosion and rock uplift rates has not yet been achieved. This second stage is initiated by the uplift of the mountain river outlets because of sedimentation aggradation at the mountain front. The response time depends on the type of water flow imposed on the alluvial fans domains (× by 1.5 for channelized flow regime and by 10 for the sheet flow one).

Cyclic variations of precipitation rate generate cyclic incisions in the alluvial apron. These incision pulses create knick‐points in the river profile in the case of ‘detachment‐limited’ and ‘mixed’ river conditions, which could be mistaken for tectonically induced knick‐points. ‘Transport‐limited’ conditions do not create such knick‐points, but nevertheless trigger erosion in catchments. The feedbacks linked to sedimentation and erosion at range front can therefore control catchment incision or aggradation. In addition, random river captures in the range front trigger auto‐cyclic erosion pulses in the catchment, capable of generating incision–aggradation cycles.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2005.00270.x
2005-08-31
2020-05-31
Loading full text...

Full text loading...

References

  1. Allen, P.A. & Densmore, A.L. (2000) Sediment flux from an uplifting fault block. Basin Res., 12, 367–380.
    [Google Scholar]
  2. Armstrong, L. (2003) Bank erosion and sediment transport in a microscale straight river. PhD Thesis, Institut de Physique du Globe de Paris.
  3. Babault, J., Bonnet, S., Crave, A. & Van Den Driessche, J. (2005) Influence of piedmont sedimentation on erosion dynamics of an uplifting landscape: an experimental approach. Geology, 33 (4), doi:10.1130/G21095.1, 301–304.
    [Google Scholar]
  4. Baldwin, J.A., Whipple, K.X. & Tucker, G.E. (2003) Implication of the shear stress river incision model for the timescale of postorogenic decay of topography. J. Geophys. Res., 108 (B3), 2158, doi:10.1029/200IJB000550.
    [Google Scholar]
  5. Bayasgalan, A., Jackson, J., Ritz, J.‐F. & Carretier, S. (1999) Forebergs, flower structures, and the development of large intra‐continental strike‐slip faults: the Gurvan Bogd fault system in Mongolia. J. Struct. Geol., 21, 1285–1302.
    [Google Scholar]
  6. Blair, T. & McPherson, J. (1994) Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes and facies assemblages. J. Sediment. Res., A64 (3), 450–489.
    [Google Scholar]
  7. Bull, W.B. (1991) Geomorphic Responses to Climatic Change. Oxford Universtity Press, Oxford, 326.
    [Google Scholar]
  8. Carretier, S., Lucazeau, F. & Ritz, J.‐F. (1998) Approche numérique des interactions entre climat, tectonique et erosion. Exemple de la faille de Bogd, Mongolie. Compt. R. Acad. Sci., 326, 1–7.
    [Google Scholar]
  9. Carretier, S., Ritz, J.‐F., Jackson, J. & Bayasgalan, A. (2002) Morphological dating of cumulative reverse fault scarp, example of the Gurvan Bogd Range, Mongolia. Geophys. J. Int., 148, 256–277.
    [Google Scholar]
  10. Castelltort, S. & Van Den Driessche, J. (2003) How plausible are high‐frequency sediment supply‐driven cycles in the stratigraphic record?Sediment. Geol., 157, doi:10.1016/S0037‐0738(03)00066–6.
    [Google Scholar]
  11. Coulthard, T.J., Macklin, M.G. & Kirkby, M.J. (2002) Simulating upland river catchment and alluvial fan evolution. Earth Surf. Proc. Land., 27, 269–288.
    [Google Scholar]
  12. Culling, W. (1960) Analytical theory of erosion. J. Geol, 68, 336–344.
    [Google Scholar]
  13. Davy, P. & Crave, A. (2000) Upscaling local‐scale transport processes in large‐scale relief dynamics. Phys. Chem. Earth, 25, 533–541.
    [Google Scholar]
  14. Densmore, A.L., Anderson, R.S., McAdoo, B.G. & Ellis, M.A. (1997) Hillslope evolution by bedrock landslides. Science, 275, 369–372.
    [Google Scholar]
  15. Densmore, A.L., Ellis, M.A. & Anderson, R.S. (1998) Landsliding and the evolution of normal‐fault‐bounded mountains. J. Geophys. Res., 103 (B7), 15,203–15,219.
    [Google Scholar]
  16. Doyle, M.W. & Harbor, J.M. (2003) Modelling the effect of form and profile adjustments on channel equilibrium timescales. Earth Surf. Proc. Land., 28, 1271–1287.
    [Google Scholar]
  17. Duvall, A., Kirby, E. & Burbank, D. (2004) Tectonic and lithologic controls on bedrock channel profiles and processes in Coastal California. J. Geophys. Res., 109, F03002, doi:10.1029/2003JF000086.
    [Google Scholar]
  18. Ellis, M.A., Densmore, A.L. & Anderson, R.S. (1999) Development of mountainous topography in the Basin Ranges, USA. Basin Res., 11, 21–41.
    [Google Scholar]
  19. Engelung, F.
    & Hansen, E. , (Eds.) (1972) A Monograph on Sediment Transport. Technisk Forlag, Copenhagen, Denmark.
    [Google Scholar]
  20. Flemings, P.B. & Jordan, T.E. (1989) A synthetic stratigraphic model of foreland basin development. J. Geophys. Res., 94 (B4), 3851–3866.
    [Google Scholar]
  21. Garcia‐Castellanos, D. (2001) Interplay between lithospheric flexure and river transport in foreland basins. Basin Res., 14 (2), 89–104.
    [Google Scholar]
  22. Gasparini, N.M., Tucker, G.E. & Bras, R.L. (2004) Network‐scale dynamics of grain‐size sorting: implications for downstream fining, stream-profile concavity, and drainage basin morphology. Earth Surf. Proc. Land., 29, doi:10.1002/esp.1031, 401–421.
    [Google Scholar]
  23. Gawthorpe, R.L., Hardy, S. & Ritchie, B. (2003) Numerical modelling of depositional sequences in half‐graben rift basins. Sedimentology, 50, doi:10.1046/j.1365‐3091.2003.00543.x, 401–421.
    [Google Scholar]
  24. Hack, J.T. (1957) Studies of longitudinal stream profiles in Virginia and Maryland. United States Geological Survey Professionnal Paper, 294B, 45–81.
    [Google Scholar]
  25. Hanks, T.C. (1999) The age of scarplike landforms from diffusion‐equation analysis. In: Quaternary Geochronology: Methods and Applications (Ed. by J.S.Noller , J.M.Sowers & W.R.Lettis ), pp. 313–338. AGU, Washington DC.
    [Google Scholar]
  26. Heller, P.L., Paola, C., Hwang, I.‐G., John, B. & Steel, R. (2001) Geomorphology and sequence stratigraphy due to slow and rapid base‐level changes in an experimental subsiding basin (96–1). AAPG Bull., 85 (5), 817–838.
    [Google Scholar]
  27. Hovius, N., Stark, C.P., Tutton, M.A. & Abbott, L.D. (1998) Landslide‐driven drainage network evolution in a pre‐steady‐state mountain belt: Finisterre Mountains, Papua New Guinea. Geology, 26, 1071–1074.
    [Google Scholar]
  28. Howard, A.D. (1980) Thresholds in river regime. In: The concept of Geomorphic Thresholds (Ed. by D.Coates & J.Vitek ), pp. 227–258. Allen and Unwin, Boston.
    [Google Scholar]
  29. Howard, A.D. (1997) Badland morphology and evolution: interpretation using a simulation model. Earth Surf. Proc. Land., 22, 211–227.
    [Google Scholar]
  30. Humphrey, N. & Heller, P.L. (1995) Natural oscillations in coupled geomorphic systems: an alternative origin for cyclic sedimentation. Geology, 23, 499–502.
    [Google Scholar]
  31. Hurtrez, J.‐E., Lucazeau, F., Lavé, J. & Avouac, J.‐P. (1999) Investigation of the relationships between basin morphology, tectonic uplift, and denudation from the study of an active fold belt in the Silawik hills, central Nepal. J. Geophys. Res., 104, 12,779–12,796.
    [Google Scholar]
  32. Kirby, E., Whipple, K.X., Tang, W. & Chen, Z. (2003) Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: inferences from bedrock channel longitudinal profiles. J. Geophys. Res., 108 (B4), doi:10/1029/2001JB000861.
    [Google Scholar]
  33. Kooi, H. & Beaumont, C. (1996) Large‐scale geomorphology: classical concepts reconciled and integrated with contemporary ideas via surface processes model. J. Geophys. Res., 101, 3361–3386.
    [Google Scholar]
  34. Lague, D. (2001) Dynamique de l'érosion continentale aux grandes échelles de temps et d'espace : modélisation expérimentale, numérique et théorique. PhD Thesis, Université de Rennes.
  35. Lague, D., Crave, A. & Davy, P. (2003) Laboratory experiments simulating the geomorphic response to tectonic uplift. J. Geophys. Res., 108 (B1), doi:10.1029/2002JB001785.
    [Google Scholar]
  36. Lavé, J. & Avouac, J.‐P. (2001) Fluvial incision and tectonic uplift across the Himalayas of central Nepal. J. Geophys. Res., 106 (B11), 26,561–26,591.
    [Google Scholar]
  37. Leopold, L.B. & Maddock, T.J. (1953) The hydraulic geometry of stream channels and some physiographic implications. U. S. Geol. Survey Professional Paper, 252, 57.
    [Google Scholar]
  38. Metivier, F. & Gaudemer, Y. (1999) Stability of output fluxes of large rivers in South and East Asia during the last 2 million years: implications on floodplain processes. Basin Res., 11, 293–303.
    [Google Scholar]
  39. Meyer‐Peter, E. & Müller, R. (1948) Formulas for bed‐load transportation. In: Proceedings of the Second Congress I.A.H.R., Stockholm, pp. 39–64.
  40. Molnar, P. (2001) Climate change, flooding in arid environments, and erosion rates. Geology, 29 (12), 1071–1074.
    [Google Scholar]
  41. Montgomery, D.R. & Dietrich, W.E. (1992) Channel initiation and the problem of landscape scale. Science, 255, 826–830.
    [Google Scholar]
  42. Montgomery, D.R. & Gran, W.E. (2001) Downstream variations in the width of bedrock channels. Water Resour. Res., 37 (6), 1841–1846.
    [Google Scholar]
  43. Murray, A.B. & Paola, C. (1997) Properties of a cellular braided‐stream model. Earth Surf. Proc. Land., 22, 1001–1025.
    [Google Scholar]
  44. Paola, C., Heller, P.L. & Angevine, C.L. (1992) The large‐scale dynamics of grain‐size variation in alluvial basins, 1: theory. Basin Res., 4, 73–90.
    [Google Scholar]
  45. Parker, G. (2000) Progress in the modeling of alluvial fans. J. Hydraulic Res., 37 (6), 805–825.
    [Google Scholar]
  46. Parker, G., Poala, C., Whipple, K.X. & Mohrig, D. (1998a) Alluvial fans formed by channelized fluvial and sheet flow: I: theory. J. Hydraulic Eng., 124 (10), 985–995.
    [Google Scholar]
  47. Parker, G., Poala, C., Whipple, K.X., Mohrig, D., Toro‐Escobar, C.M., Halverson, M. & Skoglund, T.W. (1998b) Alluvial fans formed by channelized fluvial and sheet flow. II: application. J. Hydraulic Eng., 124 (10), 996–1004.
    [Google Scholar]
  48. Pazzaglia, F.J. & Brandon, M.T. (2001) A fluvial record of long‐term steady state uplift and erosion across the Cascadia forearc high, western Washington State. Am. J. Sci., 301, 385–431.
    [Google Scholar]
  49. Pelletier, J.D. (2004) The influence of piedmont deposition on the time scale of mountain‐belt denudation. Geophys. Res. Lett., 31, L15502, doi:10.1029/2004GL020052.
    [Google Scholar]
  50. Poisson, B. & Avouac, J.‐P. (2004) Holocene Hydrological changes inferred from alluvial stream entrenchment in North Tian Shan (Northwestern China). J. Geol., 112, 231–249.
    [Google Scholar]
  51. Pratt‐Sitaula, B., Burbank, D.W., Heimsath, A. & Ojha, T. (2004) Landscape disequilibrium on 1000 to 10,000 year scales: Marsyandi River, Nepal, central Himalaya. Geomorphology, 58, 223–2416.
    [Google Scholar]
  52. Roering, J.J., Kirchner, J.W. & Dietrich, W.E. (1999) Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology. Water Resour. Res., 35, 853–870.
    [Google Scholar]
  53. Sheets, B.A., Hickson, T.A. & Paola, C. (2002) Assembling the stratigraphic record: depositional patterns and time-scales in an experiment alluvial basin. Basin Res., 14, 287–301.
    [Google Scholar]
  54. Sklar, L. & Dietrich, W.E. (1998) River longitudinal profiles and bedrock incision models: stream power and the influence of sediment supply. In: Rivers over Rock: Fluvial Processes in Bedrock Channels, Geosphys. Monogr. Ser. (Ed. by K.J.Tinkler & E.E.Wohl ), pp. 237–260. AGU, Washington, DC.
    [Google Scholar]
  55. Sklar, L.S. & Dietrich, W.E. (2001) Sediment and rock strength controls on river incision into bedrock. Geology, 29 (12), 1087–1090.
    [Google Scholar]
  56. Sklar, L.S. & Dietrich, W.E. (2004) A mechanistic model for river incision into bedrock by saltating bed load, Wat . Resour. Res., 40, W06301. doi:10.1029/2003WR002496.
    [Google Scholar]
  57. Smith, T.R. & Bretherton, F.P. (1972) Stability and the conservation of mass in drainage basin evolution. Water Resour. Res., 8 (6), 1506–1529.
    [Google Scholar]
  58. Snyder, N.P., Whipple, K.X., Tucker, G.E. & Merritts, D.J. (2000) Landscape response to tectonic forcing: digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geol. Soc. Am. Bull., 112 (8), 1250–1263.
    [Google Scholar]
  59. Snyder, N.P., Whipple, K.X., Tucker, G.E. & Merritts, D.J. (2003) Importance of a stochastic distribution of floods and erosion thresholds in the bedrock river incision problem. J. Geophys. Res., 108 (B2), doi:10.1029/2001JB001655.
    [Google Scholar]
  60. Stark, C.P. & Stark, G.J. (2001) A channelization model of landscape evolution. Am. J. Sci., 301, 486–512.
    [Google Scholar]
  61. Sun, T., Paola, C., Parker, G. & Meakin, P. (2002) Fluvial fan deltas: linking channel processes with large-scale morphodynamics. Water Resour. Res., 38, doi:10.1029/2001WR000284.
    [Google Scholar]
  62. Swenson, J., Voller, V., Paola, C., Parker, G. & Marr, J. (2000) Fluvio‐deltaic sedimentation: a generalized stefan problem. Eur. J. Appl. Math., 11, 433–452.
    [Google Scholar]
  63. Talling, P.J. (2000) Self‐organization of river networks to threshold states. Water Resour. Res., 36 (4), doi:10.1029/1999WR900339, 1119–1128.
    [Google Scholar]
  64. Tarboton, D.G. (1997) A new method for the determination of flow directions and contributing areas in grid digital elevation models. Water Resour. Res., 33 (2), 309–319.
    [Google Scholar]
  65. Tucker, G.E. (2004) Drainage basin sensitivity to tectonic and climatic forcing: implications of a stochastic model for the role of entrainment and erosion thresholds. Earth Surf. Proc. Land., 29, 185–205.
    [Google Scholar]
  66. Tucker, G.E. & Slingerland, R. (1994) Erosional dynamics, flexural isostasy, and long‐lived escarpments: a numerical modeling study. J. Geophys. Res., 10, 12,229–12,243.
    [Google Scholar]
  67. Tucker, G.E. & Slingerland, R. (1996) Predicting sediment flux from fold and thrust belts. Basin Res., 8, 329–349.
    [Google Scholar]
  68. Tucker, G.E. & Slingerland, R. (1997) Drainage basin responses to climate change. Water Resour. Res., 33, 2031–2047.
    [Google Scholar]
  69. Whipple, K.X. (2001) Fluvial landscape response time: how plausible is steady-state denudation? Am. J. Sci., 301, 313–325.
    [Google Scholar]
  70. Whipple, K.X. & Trayler, C.R. (1996) Tectonic control of fan size: the importance of spatially variable subsidence rates. Basin Res., 8, 351–366.
    [Google Scholar]
  71. Whipple, K.X. & Tucker, G.E. (1999) Dynamics of the stream‐power incision model: implication for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res., 104, 17,661–17,674.
    [Google Scholar]
  72. Whipple, K.X. & Tucker, G.E. (2002) Implication of sediment‐flux‐dependent river incision models for landscape evolution. J. Geophys. Res., 107 (B2), 10.1029/2000JB000044.
    [Google Scholar]
  73. Whipple, K.X., Parker, G., Paola, C. & Mohrig, D. (1998) Channel dynamics, sediment transport, and the slope of alluvial fans: experimental study. J. Geol, 106, 667–693.
    [Google Scholar]
  74. Willgoose, G., Bras, R.L. & Rogdriguez‐Iturbe, I. (1991) A coupled channel network growth and hillslope evolution model 1. theory. Water Resour. Res., 27, 1671–1684.
    [Google Scholar]
  75. Yalin, M.S. (1972) Mechanics of Sediment Transport. Pergamon Press, New York, 289 pp.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2005.00270.x
Loading
/content/journals/10.1111/j.1365-2117.2005.00270.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error