1887
Volume 17, Issue 4
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

The Central Graben in the Danish North Sea sector consists of a series of N–S to NW–SE trending, eastward‐tilted half‐grabens, bound to the east by the Coffee Soil Fault zone. This fault zone has a complex Jurassic history that encompasses at least two fault populations; N–S to NNW–SSE striking faults active in the Late Aalenian–Early Oxfordian, and NNW–SSE to WNW–ESE striking faults forming in Late Kimmeridgian time (), following a short period of tectonic quiescence. Sediment transport across the Coffee Soil Fault zone was controlled by fault array evolution, and in particular the development of relay ramps that formed potential entry points for antecedent drainage systems from the Ringkøbing–Fyn High east of the rift. Fault and isochore trends of the Upper Kimmeridgian–Lower Volgian succession in the northeast Danish Central Graben show that accommodation space was initially generated close to several minor, isolated or overlapping faults. Subsidence became focused along a few master faults in the Early Volgian through progressive linkage of selected faults. Seismic time isochore geometries, seismic facies, amplitude trends and well ties indicate the presence of coarse clastic lithologies locally along the fault zone. The deposits probably represent submarine mass flow deposits supplied from footwall degradation and possibly also from the graben hinterland via a relay ramp. The latter source appears to have been cut off as the relay ramp was breached and the footwall block are uplifted. Fault growth and linkage processes thus controlled the spatial and temporal trends of accommodation space generation and sediment supply to the rift basin.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2005.00276.x
2005-11-29
2020-04-03
Loading full text...

Full text loading...

References

  1. Abramovitz, T. & Thybo, H. (1999) Pre‐zechstein structures around the MONA LISA deep seismic lines in the southern Horn Graben area. Bull.Geol. Soc. Den., 45, 99–116.
    [Google Scholar]
  2. Anders, M.H. & Schlische, R.W. (1995) Overlapping faults, intrabasinal highs, and the growth of normal faults. J. Geol., 102, 165–180.
    [Google Scholar]
  3. Andsbjerg, J. (2003) Sedimentology and sequence stratigraphy of the Bryne and Lulu formations, middle Jurassic, northern Danish Central Graben. In: The Jurassic of Denmark and Greenland (Ed. by J.Ineson & F.Surlyk ), Geol. Den. Greenland Bull. , 1, 301–347.
    [Google Scholar]
  4. Andsbjerg, J. & Dybkjær, K. (2003) Jurassic sequence stratigraphy of the Danish Central Graben. In: The Jurassic of Denmark and Greenland (Ed. by J.Ineson & F.Surlyk ), Geol. Den. Greenland Bull., 1, 256–300.
    [Google Scholar]
  5. Bailey, E.B. & Weir, J. (1932) Submarine faulting in Kimmeridgian times: East Sutherland. Trans. R. Soc. Edin., LVII (Part II), 430–470.
    [Google Scholar]
  6. Britze, P., Japsen, P. & Andersen, C. (1995) Base upper Jurassic and the upper Jurassic, interval velocity map. Geol. Surv. Den. Map Ser., 50.
    [Google Scholar]
  7. Bruhn, R. & Surlyk, F. (2004) Sand‐grade gravity flow evolution on a shelf‐edge – slope – basin floor complex in the Upper Jurassic Olympen Formation, East Greenland. Petrol. Geosci., 10, 81–92.
    [Google Scholar]
  8. Carruthers, A., McKie, T., Price, J., Dyer, R., Williams, G. & Watson, P. (1996) The application of sequence stratigraphy to the understanding of late Jurassic plays in the Central North Sea, UKCS. In: Geology of the Humber Group (Ed. by A.Hurst , H.D.Johnson , S.D.Burley , A.C.Canham & D.S.Mackertich ), Geol. Soc. Lond. Spec. Publ., 114, 29–45.
    [Google Scholar]
  9. Cartwright, J.A. (1991) The kinematic evolution of the Coffee Soil Fault. In: The Geometry of Normal Faults (Ed. by A.M.Roberts , G.Yielding & B.Freeman ), Geol. Soc. Spec. Publ., 56, 29–40.
    [Google Scholar]
  10. Cowie, P.A. (1998) A healing‐reloading feedback control on the growth rate of seismogenic faults. J. Struct. Geol., 20, 1075–1087.
    [Google Scholar]
  11. Cowie, P.A., Gupta, S. & Dawers, N.H. (2000) Implications of fault array evolution for synrift depocentre development: insights from a numerical fault growth model. Basin Res., 12, 241–261.
    [Google Scholar]
  12. Damtoft, K., Nielsen, L.H., Johannessen, P.N., Thomsen, E. & Andersen, P.R. (1992) Hydrocarbon plays of the Danish Central Trough. In: Generation, Accumulation and Production of Europe's Hydrocarbons, II (Ed. by A.M.Spencer ), Eur. Assoc. Petro. Geoscientists, Spec. Publ., 2, 35–58.
    [Google Scholar]
  13. Dawers, N.H. & Underhill, J.R. (2000) The role of fault interaction and linkage in controlling synrift stratigraphic sequences: late Jurassic, Statfjord East Area, northern North Sea. Am. Assoc. Petrol. Geol. Bull., 84, 45–64.
    [Google Scholar]
  14. Frandsen, N., Vejbæk, O.V., Møller, J.J. & Michelsen, O. (1987) A dynamic geological model of the Danish Central Trough during the Jurassic–Early Cretaceous. In: Petroleum Geology of Northwest Europe, Proceedings of the 3 (Ed. by J.Brooks & K.W.Glennie ), PP. 453–469. Graham and Trotman, London.
    [Google Scholar]
  15. Gawthorpe, R.L. & Hurst, J.M. (1993) Transfer zones in extensional settings: their structural style and influence on basin drainage and stratigraphy. J. Geol. Soc., 150, 1137–1152.
    [Google Scholar]
  16. Gawthorpe, R.L., Jackson, C.A.‐L., Young, M.J., Sharp, I.R., Moustafa, A.R. & Leppard, C.W. (2003) Normal fault growth, displacement localisation and the evolution of normal fault populations: the Hammam Faraun block, Suez rift, Egypt. J. Struct. Geol., 25, 883–895.
    [Google Scholar]
  17. Gawthorpe, R.L. & Leeder, M.R. (2000) Tectono‐sedimentary evolution of active extensional basins. Basin Res., 12, 195–218.
    [Google Scholar]
  18. Gowers, M.B. & Sæbøe, A. (1985) On the structural evolution of the Central Trough in the Norwegian and Danish sectors of the North Sea. Mar. Petrol.m Geol., 2, 298–318.
    [Google Scholar]
  19. Gupta, S., Cowie, P.A., Dawers, N.H. & Underhill, J.R. (1998) A mechanism to explain rift‐basin subsidence and stratigraphic patterns through fault‐array evolution. Geology, 26, 595–598.
    [Google Scholar]
  20. Gupta, S., Underhill, J.R., Sharp, I.R. & Gawthorpe, R.L. (1999) Role of fault interactions in controlling synrift sediment dispersal patterns: miocene, Abu Alaqa group, Suez Rift, Egypt. Basin Res., 11, 167–189.
    [Google Scholar]
  21. Hallam, A. (1988) A re‐evaluation of Jurassic eustasy in the light of new data and the revised EXXON curve. In: Sea‐Level Changes: An Integrated Approach (Ed. by C.K.Wilgus , B.S.Hastings , G.S.C.Kendall , H.W.Posamentier , C.A.Ross & J.C.Van Wagoner ), Soc. Econ. Paleontol. Mineral. Spec. Publ., 42, 261–274.
    [Google Scholar]
  22. Hjelm, L. & Andsbjerg, J. (2005) 3D seismic expression of the depositional architecture of the rift initiation to rift climax stage transition: observations from the Mid Jurassic Danish Central Graben. Fault controlled Basin Development and Sediment Distribution: Examples from the Eastern Danish Central Graben, PhD Thesis, University of Aarhus, 205pp, unpublished.
    [Google Scholar]
  23. Hjelm, L. & Bruhn, R. (2005) Tectonostratigraphic evolution of the Tail End Graben, Danish North Sea. Fault controlled Basin Development and Sediment Distribution: examples from the Eastern Danish Central Graben, PhD Thesis, University of Aarhus, 205pp, unpublished.
    [Google Scholar]
  24. Hjelm, L., Clausen, O.R. & Korstgård, J.A. (2005) Geometry of cover sequences in rift basins: examples of structural constraints from evaporites and rotation of extensional riders in the Danish Central Graben. Fault controlled Basin Development and Sediment Distribution: Examples from the Eastern Danish Central Graben, PhD Thesis, University of Aarhus, 205pp, unpublished.
    [Google Scholar]
  25. Ineson, J.R., Bojesen‐Koefoed, J.A., Dybkjær, K. & Nielsen, L. (2003) Volgian – ryazanian ‘hot shales’ of the bo member (Farsund formation) in the Danish Central Graben, North Sea: stratigraphy, facies and geochemistry. In: The Jurassic of Denmark and Greenland (Ed. by J.Ineson & F.Surlyk ), Geol. Den. Greenland Bull., 1, 403–436.
    [Google Scholar]
  26. Japsen, P., Britze, P. & Andersen, C. (2003) Upper Jurassic – Lower Cretaceous of the Danish Central Graben: structural framework and nomenclature. In: The Jurassic of Denmark and Greenland (Ed. by J.Ineson & F.Surlyk ), Geol. Den. Greenland Bull., 1, 233–246.
    [Google Scholar]
  27. Jensen, T.F., Holm, L., Frandsen, N. & Michelsen, O. (1986) Jurassic–Lower cretaceous lithostratigraphic nomenclature for the Danish Central Trough. Dan. Geol. Unders. Ser. A, 12, 65.
    [Google Scholar]
  28. Johannessen, P.N. (2003) Sedimentology and sequence stratigraphy of paralic and shallow marine Upper Jurassic sandstones in the northern Danish Central Graben. In: The Jurassic of Denmark and Greenland (Ed. by J.Ineson & F.Surlyk ), Geol. Den. Greenland Bull., 1, 349–366.
    [Google Scholar]
  29. Johannessen, P.N. & Andsbjerg, J. (1993) Middle to Late Jurassic basin evolution and sandstone reservoir distribution in the Danish Central Trough. In: Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference (Ed. by J.R.Parker ), Geol. Soc. Lond., 1, 271–283.
    [Google Scholar]
  30. Johannessen, P.N., Dybkjær, K. & Rasmussen E, S. (1996) Sequence stratigraphy of Upper Jurassic reservoir sandstones in the northern part of the Danish Central Trough, North Sea. Mar. Petrol. Geol., 13, 755–770.
    [Google Scholar]
  31. Korstgård, J., Lerche, I., Mogensen, T.E. & Thomsen, R.O. (1993) Salt and fault interactions in the northeastern Danish Central Graben. Bull. Geol. Sur. Den., 40, 197–256.
    [Google Scholar]
  32. Larsen, P‐H. (1988) Relay structures in a Lower Permian basement‐involved extension system, East Greenland. J. Struct. Geol., 10, 3–8.
    [Google Scholar]
  33. Larsen, M. & Surlyk, F. (2003) Shelf edge and slope deposition in the Late Callovian – Middle Oxfordian Olympen Formation. In: The Jurassic of Denmark and Greenland (Ed. by J.Ineson & F.Surlyk ), Geol. Den. Greenland Bull., 1, 931–948.
    [Google Scholar]
  34. MacDonald, A.C. & Trewin, N.H. (1993) The Upper Jurassic of the Helmsdale area. In: Excursion Guide to the Geology of East Sunderland and Caithness (Ed. by N.H.Trewin & A.Hurst ), Geol. Soc. Aberdeen , 75–114.
    [Google Scholar]
  35. McLeod, A.E., Dawers, N.H. & Underhill, J.R. (2000) The propagation and linkage of normal faults: insights from the Strathspey-Brent-Statfjord fault array, Northern North Sea. Basin Res., 12, 263–284.
    [Google Scholar]
  36. Michelsen, O., Frandsen, N., Holm, L., Jensen, T.F., Møller, J.J. & Vejbæk, O.V. (1987) Jurassic–Lower Cretaceous of the central Trough; depositional environments, Tectonism, and Reservoirs. Dan. Geol. Under., Serie A, 16, 45.
    [Google Scholar]
  37. Michelsen, O., Mogensen, T.E. & Korstgård, J. (1992) Pre‐Cretaceous structural development of the Danish Central Through and its implications of the distribution of Jurassic sands. In: Structural and Tectonic Modeling and its Application to Petroleum Geology (Ed. by R.M.Larsen , H.Brekke , B.T.Larsen & E.Talleraas ), Norwegian Petrol. Soc. Spec. Publ., 1, 481–494.
    [Google Scholar]
  38. Michelsen, O., Nielsen, L.H., Johannessen, P.N., Andsbjerg, J. & Surlyk, F. (2003) Jurassic lithostratigraphy and stratigraphic development onshore and offshore Denmark. In: The Jurassic of Denmark and Greenland (Ed. by J.Ineson & F.Surlyk ), Geol. Den. Greenland Bull., 1, 147–216.
    [Google Scholar]
  39. Møller, J.J. (1986) Seismic structural mapping of the Middle and Upper Jurassic in the Danish Central Trough. Dan. Geol. Under., Ser. A, 13, 40.
    [Google Scholar]
  40. Møller, J.J. & Rasmussen, E.S. (2003) Middle Jurassic–early Cretaceous rifting of the Danish Central Graben. In: The Jurassic of Denmark and Greenland (Ed. by J.Ineson & F.Surlyk ), Geol. Den. Greenland Bull., 1, 247–264.
    [Google Scholar]
  41. Morley, C.K. (1999) Patterns of displacement along large normal faults: implications for basin evolution and fault propagation, based on examples from East Africa. Am. Assoc. Petrol. Geol., 83, 613–634.
    [Google Scholar]
  42. Mutti, E., Davoli, G., Tinterri, R. & Zavala, C. (1996) The importance of ancient fluvio‐deltaic systems dominated by catastrophic flooding in tectonically active areas. Mem. Sci. Geol., 48, 233–291.
    [Google Scholar]
  43. Mutti, E., Tinterri, R., Di Biase, D., Fava, L., Mavilla, N., Angella, S. & Calabrese, L. (2000) Delta front associations of ancient flood‐dominated fluvio‐deltaic systems. Rev. la Soc. Geol. España, 13, 165–190.
    [Google Scholar]
  44. Nielsen, L., Balling, N., Jacobsen, B.H. & MONA LISA Working Group (2000) Seismic and gravity modelling of crustal structure in the Central Graben, North Sea. Observations along MONA LISA profile 3. Tectonophysics, 328, 229–244.
    [Google Scholar]
  45. Nielsen, L., Klinkby, L. & Balling, N. (1998) Seismic evidence for deep Palaeozoic sedimentary units in the Ringkøbing–Fyn High offshore Denmark. Bull. Geol. Soc. Den., 45, 1–10.
    [Google Scholar]
  46. Partington, M.A., Michener, B.C., Milton, N.J. & Fraser, A.J. (1993) Genetic sequence stratigraphy for the North Sea Late Jurassic end Early Cretaceous: distribution and prediction of Kimmeridgian–Late Ryazanian reservoirs in the North Sean and adjacent areas. In: Petroleum Geology of Northwest Europe (Ed. by J.R.Parker ), Geol. Soc. Lond., 1, 347–370.
    [Google Scholar]
  47. Peacock, D.C.P. & Sanderson, D.J. (1994) Geometry and development of relay ramps in normal fault systems. Am. Assoc. Petrol. Geol., 78, 147–165.
    [Google Scholar]
  48. Pickering, K.T. (1984) The Upper Jurassic “Boulder Beds” and related deposits: a fault-controlled submarine-slope, NE Scotland. J. Geol. Soc. Lond., 141, 357–374.
    [Google Scholar]
  49. Rasmussen, E.S. (1995) Structural evolution of the Gert‐Mjølner field. Mar. Petrol Geol., 12, 377–385.
    [Google Scholar]
  50. Ravnås, R. & Steel, R. (1998) Architecture of marine Rift‐basin successions. Am. Assoc. Petrol. Geol. Bull., 82, 110–146.
    [Google Scholar]
  51. Schlische, R.W. (1992) Structural and stratigraphic development of the Newark extensional basin, eastern North America: evidence for the growth of the basin and its bounding structures. Geol. Soc. Am. Bull., 104, 1246–1263.
    [Google Scholar]
  52. Schlische, R.W. (1995) Geometry and origin of fault‐related folds in extensional settings. Am. Assoc. Pet. Geol. Bull., 79, 1661–1678.
    [Google Scholar]
  53. Sornette, D., Davy, P. & Sornette, A. (1990) Structuration of the lithosphere in plate tectonics as a self‐organized critical phenomenon. J. Geophys. Res.-Solid Earth, 89, 17353–17361.
    [Google Scholar]
  54. Stemmerik, L., Ineson, J.R. & Mitchell, J.G. (2000) Stratigraphy of the Rotliegend group in the Danish part of the Northern Permian Basin, North Sea. J. Geol. Soc., 157, 1127–1136.
    [Google Scholar]
  55. Stow, D.A.V., Bishop, C.D. & Mills, S.J. (1982) Sedimentology of the Brae oilfield, North sea: fan models and controls. J. Petrol. Geol., 5, 129–148.
    [Google Scholar]
  56. Surlyk, F. (1978) Submarine fan sedimentation along fault scarps on tilted fault blocks (Jurassic – Cretaceous boundary, East Greenland). Grønlands Geol. Under. Bull., 128, 108.
    [Google Scholar]
  57. Surlyk, F. (1984) Fan‐delta to submarine fan conglomerates of the Volgian – Valanginian Wollaston Forland Group, East Greenland. In: Sedimentology of Gravels and Conglomerates (Ed. by E.H.Koster & R.J.Steel ), Canad. Soc. Petrol. Geol. Mem., 10, 359–382.
    [Google Scholar]
  58. Surlyk, F. & Noe‐Nygaard, N.N. (2001) Cretaceous faulting and associated coarse‐grained marine gravity flow sedimentation, Traill Ø, East Greenland. In: Sedimentary Environments Offshore Norway (Ed. by O.J.Martinsen & T.Dreyer ), Norwegian Petrol. Geol. Spec. Publ., 10, 293–319.
    [Google Scholar]
  59. Thomson, K. & Underhill, J.R. (1993) Controls on the development and evolution of structural styles in the Inner Moray Firth Basin. In: Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference (Ed. by J.R.Parker ), Geol. Soc. Lond., 1167–1178.
    [Google Scholar]
  60. Turner, C.C., Cohen, J.M., Connell, E.R. & Cooper, D.M. (1987) A depositional model for the South Brae oilfield. In: Petroleum Geology of Northwest Europe: Proceedings of the 3rd Conference (Ed. by J.Brooks & K.W.Glennie ), PP. 853–864. Graham and Trotman, London.
    [Google Scholar]
  61. Underhill, J.R. (1991) Implications of Mesozoic ‐ Recent basin development in the western inner Moray Firth, UK. Mar. Petrol. Geol., 8, 359–369.
    [Google Scholar]
  62. Vejbæk, O.V. (1986) Seismic stratigraphy and tectonic evolution of the Lower Cretaceous in the Danish Central Trough. Dan. Geol. Under. Ser. A, 11, 46.
    [Google Scholar]
  63. Vejbæk, O.V (1997) Dybe strukturer i danske sedimentære bassiner. Geol. Tidsskrift, 1997 hæfte 4, 40.
    [Google Scholar]
  64. Vejbæk, O.V. & Andersen, C. (1987) Cretaceous–Early Tertiary inversion tectonism in the Danish Central Trough. Tectonophysics, 137, 221–238.
    [Google Scholar]
  65. Wignall, P.B. & Pickering, K.T. (1993) Palaeoecology and sedimentology across a Jurassic fault scarp, NE Scotland. J. Geol. Soc. Lond., 150, 323–340.
    [Google Scholar]
  66. Young, M.J., Gawthorpe, R.L. & Hardy, S. (2001) Growth and linkage of a segmented normal fault zone; the Late Juassic Murchison–Statfjord North Fault, Northern North Sea. J. Struct. Geol., 23, 1933–1952.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2005.00276.x
Loading
/content/journals/10.1111/j.1365-2117.2005.00276.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error