1887
Volume 17, Issue 4
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Fission‐track, U–Pb and Pb–Pb analyses of detrital heavy mineral populations in depositional basins and modern river sediments are widely used to infer the exhumational history of mountain belts. However, relatively few studies address the underlying assumption that detrital mineral populations provide an accurate representation of their entire source region. Implicit in this assumption is the idea that all units have equal potential to contribute heavy minerals in proportion to their exposure area in the source region. In reality, the detrital mineral population may be biased by variable concentrations of minerals in bedrock and differential erosion rates within the source region. This study evaluates the relative importance of these two variables by using mixing of U–Pb zircon ages to trace zircon populations from source units, through the fluvial system, and into the foreland.

The first part of the study focuses on the Marsyandi drainage in central Nepal, using tributaries that drain single formations to define the U–Pb age distributions of individual units and using trunk river samples to evaluate the relative contributions from each lithology. Observed mixing proportions are compared with proportions predicted by a simple model incorporating lithologic exposure area and zircon concentration. The relative erosion rates that account for the discrepancy between the observed and predicted mixing proportions are then modelled and compared with independent erosional proxies. The study also compares U–Pb age distributions from four adjacent drainages spanning ∼250 km along the Himalayan front using the Kolmogorov–Smirnov statistic and statistical estimates of the proportion of zircon derived from each upstream lithology. Results show that, along this broad swath of rugged mountains, the U–Pb age distributions are remarkably similar, thereby allowing data from more localized sources to be extrapolated along strike.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2005.00279.x
2005-11-29
2024-04-25
Loading full text...

Full text loading...

References

  1. Amidon, W.H., Burbank, D.W. & Gehrels, G.E. (2005) U–Pb zircon ages as a sediment mixing tracer in the Nepal Himalaya. Earth Planet. Sci. Lett., 235, 244–260.
    [Google Scholar]
  2. Barros, A., Joshi, M., Putkonen, J. & Burbank, D.W. (2000) A study of the 1999 monsoon rainfall in a mountainous region of central Nepal using TRMM products and rain gauge observations. Geophys. Res. Lett., 27, 3683–3686.
    [Google Scholar]
  3. Behera, P. (2003) Heavy minerals in beach sands of Gopalpur and Paradeep along the Orissa coastline, east coast of India. Indian J. Mar. Sci., 32, 172–174.
    [Google Scholar]
  4. Bernet, M., Brandon, M.T., Garver, J.I. & Moliter, B. (2004) Fundamentals of zircon fission‐track analysis for provenance and exhumation studies with examples from the European Alps. Geol. Soc. Am. Spec. Paper, 378, 25–36.
    [Google Scholar]
  5. Berry, R.F., Jenner, G.A., Meffre, S. & Tubrett, M.N. (2001) A North American provenance for Neoproterozoic to Cambrian sandstones in Tasmania?Earth Planet. Sci. Lett., 56, 336–342.
    [Google Scholar]
  6. Brandon, M.T. (1992) Decomposition of fission‐track grain‐age distributions. Am. J. Sci., 292, 535–564.
    [Google Scholar]
  7. Brewer, I.D., Burbank, D.W. & Hodges, K.V. (2003) Modelling detrital cooling‐age populations; insights from two Himalayan catchments. Basin Res., 15, 305–320.
    [Google Scholar]
  8. Burbank, D.W., Blythe, A.E., Putkonen, J., Pratt‐Sitaula, B., Gabet, E., Oskin, M., Barros, A. & Ojha, T.P. (2003) Decoupling of erosion and precipitation in the Himalaya. Nature, 426, 652–655.
    [Google Scholar]
  9. Colchen, M., Le Fort, P. & Pecher, A. (1986) Geological Researchs in the Nepal Himalaya, Annapurna–Manaslu–Ganesh Himal; Notice of the Geological Map on 1/200 000, 1st edn. Centre National de la Recherche Scientifique, Paris.
    [Google Scholar]
  10. Coleman, M.E. (1996) Orogen‐parallel and orogen‐perpendicular extension in the central Nepalese Himalayas. Geol. Soc. Am. Bull., 108, 1594–1607.
    [Google Scholar]
  11. Copeland, P., Harrison, M. & Le Fort, P. (1990) Age and cooling history of the Manaslu granite: implications for Himalayan tectonics. J. Volcanol. Geotherm. Res., 44, 33–50.
    [Google Scholar]
  12. Cullers, R.L. & Graf, J.L. (1984) Rare earth elements in igneous rocks of the continental crust: Intermediate and silicic rocks. In: Rare Earth Element Geochemistry, 1st edn (Ed. by P.Henderson ), pp. 275–308. Elsevier, Amsterdam.
    [Google Scholar]
  13. Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.L., Willett, S.D., Hu, J.C., Horng, M.J., Chen, M.C., Stark, C.P., Lague, D. & Lin, J.C. (2003) Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426, 648–651.
    [Google Scholar]
  14. Day, S.J. & Fletcher, W.K. (1991) Concentration of magnetite and gold at bar and reach scales in a gravel‐bed stream, British Columbia, Canada. J. Sediment. Petrol., 61, 871–882.
    [Google Scholar]
  15. Decelles, P.G., Gehrels, G.E., Najman, Y., Martin, A.J., Carter, A. & Garzanti, E. (2004) Detrital geochronology and geochemistry of cretaceous‐early miocene strata of Nepal: implications for timing and diachroneity of initial Himalayan orogenesis. Earth Planet. Sci. Lett., 227, 313–330.
    [Google Scholar]
  16. Decelles, P.G., Gehrels, G.E., Quade, J., Lareau, B. & Spurlin, M. (2000) Tectonic implications of U–Pb Zircon ages of the Himalayan orogenic belt in Nepal. Science, 288, 497–499.
    [Google Scholar]
  17. Decelles, P.G., Gehrels, G.E., Quade, J., Ojha, T.P., Kapp, P.A. & Upreti, B.N. (1998) Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold‐thrust belt, western Nepal. Geol. Soc. Am. Bull., 110, 2–21.
    [Google Scholar]
  18. Decelles, P.G., Robinson, D.M., Quade, J., Ojha, T.P., Garzione, C.N., Copeland, P. & Upreti, B.N. (2001) Stratigraphy, structure and tectonic evolution of the Himalayan fold and thrust belt in western Nepal. Tectonics, 20, 487–509.
    [Google Scholar]
  19. Degraaf‐Surpless, K., Mahoney, J.B., Wooden, J.L. & Mcwilliams, M.O. (2003) Lithofacies control in detrital zircon provenance studies: insights from the cretaceous methow basin, southern Canadian Cordillera. Geol. Soc. Am. Bull., 115, 899–915.
    [Google Scholar]
  20. Deniel, C., Vidal, P., Fernandez, A., Le Fort, P. & Peucat, J.J. (1987) Isotopic study of the manaslu granite (Himalaya, Nepal): inferences on the age and source of Himalayan leucogranites. Contrib. Mineral. Petrol., 96, 78–92.
    [Google Scholar]
  21. Dickinson, W.R. & Gehrels, G.E. (2003) U–Pb ages of detrital zircons from Permian and Jurassic eolian sandstones of the Colorado Plateau, USA: paleogeographic implications. Sediment. Geol., 163, 29–66.
    [Google Scholar]
  22. Ehlers, T.A. & Farley, K.A. (2003) Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth Planet. Sci. Lett., 206, 1–14.
    [Google Scholar]
  23. Frey, F.A. (1984) Rare earth elements abundances in upper mantle rocks. In: Rare Earth Element Geochemistry, 1st edn (Ed. by P.Henderson ), pp. 82–106. Elsevier, Amsterdam.
    [Google Scholar]
  24. Frihy, O.E., Lofty, M.F. & Komar, P.D. (1995) Spatial variations in heavy minerals and patterns of sediment sorting along the Nile Delta, Egypt. Sediment. Geol., 97, 33–41.
    [Google Scholar]
  25. Fuchs, G.R. (1980) The Lesser Himalayan Geology of West Nepal and its Regional Importance, 1st edn. Hindustan Publishing Corporation, Delhi.
    [Google Scholar]
  26. Fuller, C.W., Willett, S.D., Hovius, N. & Slingerland, R. (2003) Erosion rates for Taiwan mountain basins; new determinations from suspended sediment records and a stochastic model of their temporal variation. J. Geol., 111, 71–87.
    [Google Scholar]
  27. Gabet, E., Pratt‐Sitaula, B. & Burbank, D.W. (2004) Climatic controls on hillslope angle and relief in the Himalayas. Geology, 32, 629–632.
    [Google Scholar]
  28. Gansser, A. (1964) Geology of the Himalayas. Wiley‐Interscience, New York, 1964.
    [Google Scholar]
  29. Garver, J.I., Brandon, M.T., Roden‐Tice, M. & Kamp, P.J. (1999) Exhumation history of orogenic highlands determined by detrital fission‐track thermochronology. In: Exhumation Processes: Normal Faulting, Ductile Flow and Erosion, 1st edn (Ed. by U.Ring , M.T.Brandon , G.S.Lister & S.D.Willett ), pp. 283–304. Geological Society, London.
    [Google Scholar]
  30. Garzanti, E., Vezzoli, G., Ando, S., France‐Lanord, C., Singh, S.K. & Foster, G. (2005) Sand petrology and focused erosion in collision orogens: the Brahmaputra case. Earth Planet. Sci. Lett., 220, 157–174.
    [Google Scholar]
  31. Garzanti, E., Vezzoli, G., Lombardo, B., Ando, S., Mauri, E., Monguzzi, S. & Russo, M. (2004) Collision‐orogen provenance (Western Alps): detrital signatures and unroofing trends. J. Geol., 112, 145–164.
    [Google Scholar]
  32. Gehrels, G.E., Decelles, P.G., Martin, A., Ojha, T.P. & Pinhassi, G. (2003) Initiation of the Himalayan orogen as an early paleozoic thin‐skinned thrust belt. Today, 13, 4–9.
    [Google Scholar]
  33. Grujic, D., Hollister, L.S. & Parrish, R.R. (2002) Himalayan metamorphic sequence as an orogenic channel: insight from Bhutan. Earth Planet. Sci. Lett., 198, 177–191.
    [Google Scholar]
  34. Gromet, L.P. & Silver, L.T. (1983) Rare earth element distributions among minerals in a granodiorite and their petrogenetic implications. Geochim. Cosmochim. Acta, 47, 925–939.
    [Google Scholar]
  35. Hallet, B., Hunter, L. & Bogen, J. (1996) Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Global Planet. Change, 12, 213–235.
    [Google Scholar]
  36. Harrison, M., Grove, M., Mckeegan, K.D., Coath, C.D., Lovera, O.M. & Le Fort, P. (1999) Origin and episodic emplacement of the Manaslu intrusive complex, central Himalaya. J. Petrol., 40, 3–19.
    [Google Scholar]
  37. Hodges, K.V. (2000) Tectonics of the Himalaya and southern Tibet from two perspectives. Geol. Soc. Am. Bull., 112, 324–350.
    [Google Scholar]
  38. Hodges, K.V., Parrish, R.R. & Searle, M.P. (1996) Tectonic evolution of the central Annapurna Range, Nepalese Himalayas. Tectonics, 15, 1264–1291.
    [Google Scholar]
  39. Hodges, K.V., Wobus, C., Ruhl, K., Schildgen, T. & Whipple, K.X. (2004) Quaternary deformation, river steepening and heavy precipitation at the front of the Higher Himalayan ranges. Earth Planet. Sci. Lett., 220, 374–389.
    [Google Scholar]
  40. Holt, D.N. (1965) The Kangankunde Hill rare earth prospect. Bull. Geol. Survey Dept. Malawi, 20, 130.
    [Google Scholar]
  41. Hoskin, P.O. & Ireland, T.R. (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28, 627–630.
    [Google Scholar]
  42. Hubert, J.F. (1971) Analysis of heavy mineral assemblages. In: Procedures in Sedimentary Petrology, 1st edn (Ed. by R.E.Carver ), pp. 453–478. Wiley, New York.
    [Google Scholar]
  43. Jones, H.A. & Davies, P.J. (1979) Preliminary studies of offshore placer deposits, Eastern Australia. Mar. Geol., 30, 243–268.
    [Google Scholar]
  44. Karve, V.M., Madhaven, T.R. & Somnay, J.Y. (1966) Mineral recovery from beach sands. Mineral. Mag., 114, 10–15.
    [Google Scholar]
  45. Lavé, J. & Avouac, J.P. (2000) Active folding of fluvial terraces across the Siwalik Hills, himalayas of central Nepal. J. Geophys. Res., 105, 5735–5770.
    [Google Scholar]
  46. Le Fort, P. (1975) Himalayas; the collided range; present knowledge of the continental arc. Am. J. Sci., 275A, 1–44.
    [Google Scholar]
  47. Lihou, J.C. & Mange‐Rajetz, K.Y. (1996) Provenance of the Sardona Flysch, eastern Swiss Alps: example of high resolution heavy mineral analysis applied to an ultrastable assemblage. Sediment. Geol., 105, 141–157.
    [Google Scholar]
  48. Martin, A., Decelles, P.G., Gehrels, G.E., Patchett, P.J. & Isachsen, C. (2005) Isotopic and structural constraints on the location of the main central thrust in the Annapurna Range, central Nepal Himalaya. Geol. Soc. Am. Bull., 117, 926–944.
    [Google Scholar]
  49. Menke, W. (1989) Geophysical Data Analysis: Discrete Inverse Theory, 2nd edn. Academic Press, San Diego.
    [Google Scholar]
  50. Morton, A.C. (1985) Heavy minerals in provenance studies. In: Provenance of Arenites, 1st edn (Ed. by G.G.Zuffa ), pp. 249–277. Reidel, Dordrecht.
    [Google Scholar]
  51. Morton, A.C. (1991) Geochemical studies of detrital heavy minerals and their application to provenance research. In: Developments in Sedimentary Provenance Studies, edn (Ed. by A.C.Morton , S.P.Todd & P.D.W.Haughton ), pp. 31–45. Royal Geological Society.
    [Google Scholar]
  52. Morton, A.C. & Hallsworth, C.R. (1994) Identifying provenance‐specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol., 90, 241–256.
    [Google Scholar]
  53. Morton, A.C. & Hallsworth, C.R. (1999) Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment. Geol., 124, 3–29.
    [Google Scholar]
  54. Morton, A.C. & Johnsson, M.J. (1993) Factors influencing the composition of detrital heavy mineral suite in Holocene sands of the Apure River drainage basin, Venezuela. Geol. Soc. Am. Spec. Paper, 284, 171–185.
    [Google Scholar]
  55. Morton, A.C. & Smale, D. (1991) The effects of transport and weathering on heavy minerals from the Cascade River, New Zealand. Sediment. Geol., 68, 117–123.
    [Google Scholar]
  56. Myrow, P.M., Hughes, N.C., Paulsen, T.S., Williams, I.S., Parcha, S.K., Thompson, K.R., Bowring, S., Peng, S.C. & Ahluwalia, J. (2003) Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth Planet. Sci. Lett., 212, 433–441.
    [Google Scholar]
  57. Neary, C.R. & Highley, D.E. (1984) The economic importance of the rare earth elements. In: Rare Earth Element Geochemistry, 1st edn (Ed. by P.Henderson ), pp. 247–273. Elsevier, Amsterdam.
    [Google Scholar]
  58. Overstreet, W.C. (1967) The Geologic Occurrence of Monazite, 1st edn. U.S. Geological Survey, Washington.
    [Google Scholar]
  59. Pearson, O.N. & Decelles, P.G. (2005) Structural geology and regional tectonic significance of the Ramgarh thrust, Himalayan fold‐thrust belt of Nepal. Tectonics, 24 (4), TC400810.1029/2003TC001617.
    [Google Scholar]
  60. Poitrasson, F., Hanchar, J.M. & Schaltegger, U. (2002) The current state and future of accessory mineral research. Chem. Geol., 19, 3–24.
    [Google Scholar]
  61. Poldervaart, A. (1956) Zircon in rocks. 2. Igneous rocks. Am. J. Sci., 254, 521–554.
    [Google Scholar]
  62. Powers, P.M., Lillie, R.J. & Yeats, R.S. (1998) Structure and shortening of the Kangra and Dehra Dun reentrant, sub‐Himalaya, India. Geol. Soc. Am. Bull., 110, 1010–1027.
    [Google Scholar]
  63. Pratt, B., Burbank, D.W., Heimsath, A. & Ojha, T.P. (2002) Impulsive alluviation during early Holocene strengthened monsoons, central Nepal Himalaya. Geology, 30, 911–914.
    [Google Scholar]
  64. Press, W.H. (1997) Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge.
    [Google Scholar]
  65. Rahl, J.M., Reiner, S.P.W., Campbell, I.H., Nicolescu, S. & Allen, C.M. (2003) Combined single‐grain (U–Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone, Utah. Geology, 31, 761–764.
    [Google Scholar]
  66. Reiners, P.W., Ehlers, T.A., Mitchell, S.G. & Montgomery, D.R. (2003) Coupled spatial variations in precipitation and long‐term erosion rates across the Washington Cascades. Nature, 426, 645–647.
    [Google Scholar]
  67. Rittenhouse, G. (1943) The transportation and deposition of heavy minerals. Geol. Soc. Am. Bull., 54, 1725–1780.
    [Google Scholar]
  68. Rubey, W.W. (1933) The size distribution of heavy minerals in a water‐lain sandstone. J. Sediment. Petrol., 3, 3–29.
    [Google Scholar]
  69. Sambridge, M.S. & Compston, W. (1994) Mixture modeling of multi component data sets with application to ion‐probe zircon ages. Earth Planet. Sci. Lett., 128, 373–390.
    [Google Scholar]
  70. Searle, M.P. & Godin, L. (2003) The South Tibetan detachment and the Manaslu Leucogranite; a structural reinterpretation and restoration of the Annapurna‐Manaslu Himalaya, Nepal. J. Geol., 111, 505–523.
    [Google Scholar]
  71. Sheskin, D. (2003) Handbook of Parametric and Nonparametric Statistical Procedures, 3rd edn. Chapman & Hall/CRC, Boca Raton, FL.
    [Google Scholar]
  72. Shideler, G.L. & Flores, R.M. (1980) Heavy‐mineral variability in fluvial sediments of the lower Rio Grande, southwestern Texas. Texas J. Sci., 32, 73–91.
    [Google Scholar]
  73. Slingerland, R. (1977) The effect of entrainment on the hydraulic equivalence relationships of light and heavy minerals in sands. J. Sediment. Petrol., 47, 753–770.
    [Google Scholar]
  74. Slingerland, R.L. (1984) The role of hydraulic sorting in the origin of fluvial placers. J. Sediment. Petrol., 54, 137–150.
    [Google Scholar]
  75. Smale, D. (1990) Distribution and provenance of heavy minerals in the South Island: a review. N. Zeal. J. Geol. Geophys., 33, 557–571.
    [Google Scholar]
  76. Spiegel, C., Siebel, W., Kuhelmann, J. & Frisch, W. (2004) Toward a comprehensive provenance analysis: a multi‐method approach and its implications for the evolution of the Central Alps. In: Detrital Thermochronology – Provenance Analysis, Exhumation and Landscape Evolution of Mountain Belts (Ed. by M.Bernet & C.Spiegel ) Geological Society of America Special Publication, Boulder, CO, 378, 37–50.
    [Google Scholar]
  77. Surour, A.A., El‐Kammar, A.A., Arafa, E.H. & Korany, H.M. (2003) Dahab stream sediments, southeastern Sinai, Egypt: a potential source of gold, magnetite and zircon. J. Geochem. Expl., 77, 25–43.
    [Google Scholar]
  78. Turnau‐Morawska, M. (1984) Importance of heavy mineral analysis in solving geological problems. In: Stability of Heavy Minerals in Sediments, 1st edn (Ed. by G.Luepke ), pp. 280–287. Van Nostrand Reinhold, New York.
    [Google Scholar]
  79. Upreti, B.N. (1999) An overview of the stratigraphy and tectonics of the Nepal Himalaya. J. Asian Earth Sci., 17, 577–606.
    [Google Scholar]
  80. Vance, D., Bickle, M., Ivy‐Ochs, S. & Kubik, P.W. (2003) Erosion and exhumation in the Himalaya from cosmogenic isotope inventories of river sediments. Earth Planet. Sci. Lett., 206, 273–288.
    [Google Scholar]
  81. Wobus, C., Hodges, K.V. & Whipple, K.X. (2003) Has focused denudation sustained active thrusting at the Himalayan topographic front. Geology, 31, 861–864.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2005.00279.x
Loading
/content/journals/10.1111/j.1365-2117.2005.00279.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error