1887
Volume 19, Issue 1
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Integrated geohistory analysis performed on high‐resolution stratigraphy of Venezia 1 and Lido 1 wells (Quaternary–Pliocene interval) and low‐resolution stratigraphy of a simulated well extending Lido 1 down to the base of Cenozoic (Palaeocene–Miocene interval) is used to reconstruct the interplay between subsidence and sedimentation that occurred in the Venice area (eastern Po Plain) during the last 60 Myr, and to discuss the relationships between calculated subsidence rates and time resolution of stratigraphic data. Both subsidence and sedimentation are mostly related to the tectonic evolution of the belts that surround the Venice basin, influencing the lithosphere vertical motions and the input of clastic sediments through time. In particular, two subsidence phases are recorded between 40–33.5 and 32.5–24 Myr (0.13 and 0.14 mm year−1, respectively), coeval with tectonic phases in the Dinaric belt. Vice versa, during the main South‐Alpine orogenic phase (middle–late Miocene), quiescence or little uplift (−0.03 mm year−1) reflects the location of the Venice area close to the peripheral bulge of the South‐Alpine foreland system. Early Pliocene evolution is characterised by a number of subsidence/uplift events, among which two uplifts occurred between 5–4.5 and 3–2.2 Myr (at −0.4 and −0.2 mm year−1, respectively) and can be correlated with tectonic motions in the Apennines. During the last million years, the Venice area was initially characterised by uplift (−0.6 mm year−1 rising to −1.5 mm year−1 between 0.4 and 0.38 Myr), eventually replaced by subsidence at a rate ranging between 1.6 and 1.0 mm year−1 up to 0.12 Myr and then decreased to 0.4 mm year−1, as an average, up to present. Our results highlight that time resolution of the stratigraphic dataset deeply influences the order of magnitude obtained for the calculated subsidence rate. This is because subsidence seems to have worked through short‐lived peaks (in the order of 105 years), alternating with long relatively quiescent intervals. This suggests caution when components of subsidence are deduced by subtracting long‐term to short‐term subsidence rate.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2007.00314.x
2007-03-09
2020-04-09
Loading full text...

Full text loading...

References

  1. Ammerman, A.J. & McClennen, C.E. (2000) Saving Venice. Sciences, 289, 1301–1302.
    [Google Scholar]
  2. Ammerman, A.J., McClennen, C.E., De Min, M. & Housley, R. (1999) Sea‐level change and archaeology of Early Venice. Antiquity, 73, 303–312.
    [Google Scholar]
  3. Baldwin, B. & Butler, C.O. (1985) Compaction curves. AAPG Bull., 69 (4), 622–626.
    [Google Scholar]
  4. Barbieri, C. (2003) Architecture of the southalpine foreland and modelling of its Venetian sector. Unpublished PhD Thesis, Pavia University, 149pp.
  5. Barbieri, C., Bertotti, G., Catellani, D., Di Giulio, A., Fantoni, R. & Mancin, N. (2002a) Evolution of a complex foreland basin: toward a modelling of the Venetian region (NE Italy). Boll. Geofis., 42 (Spec. Vol.) (1–2), 139–143.
    [Google Scholar]
  6. Barbieri, C., Bertotti, G., Catellani, D., Di Giulio, A., Fantoni, R. & Mancin, N. (2002b) Flexural response of the Venetian foreland to the Southalpine orogeny analysed through 2D crustal modelling. Memor. Sci. Geol., 54 (Spec. Vol.) 135–138.
    [Google Scholar]
  7. Barbieri, C., Bertotti, G., Di Giulio, A., Fantoni, R. & Zoetemeijer, R. (2004) Flexural response of the Venetian foreland to the southalpine tectonics along the Transalp profile. Terra Nova, 16, 273–280.
    [Google Scholar]
  8. Bassinot, F.C., Labeyrie, L.D., Vincent, E., Quidelleur, X., Shackleton, N.J. & Lancelot, Y. (1994) The astronomical theory of climate and the age of the Brunhes–Matuyama magnetic reversal. Earth Planet. Sci. Lett., 126, 91–108.
    [Google Scholar]
  9. Bellet, J., Oudin, J.L., Favero, V. & Passega, R. (1982) Analyse optique de la matière organique du Quaternarie: sondage CNR VE‐1, Venise. Rev. Inst. Francais Pétrol., 37, 587–589.
    [Google Scholar]
  10. Benedetti, L., Tapponier, P., King, G., Meyer, B. & Manighetti, I. (2000) Growth folding and active thrusting in the Montello region, Veneto, northern Italy. J. Geophys. Res., 105 (B1), 739–766.
    [Google Scholar]
  11. Bertotti, G., Picotti, V., Chilovi, C., Fantoni, R., Merlini, S. & Mosconi, A. (2001) Neogene to Quaternary sedimentary basins in the South Adriatic (Central Mediterranean): foredeeps and lithospheric buckling. Tectonics, 20 (5), 771–787.
    [Google Scholar]
  12. Bonardi, M. & Tosi, L. (1994a) Climatic and sea level fluctuations evidenced in the mineralogical composition of Late Quaternary sediments from the Venetian littoral (Italy). 14th International Sedimentology Congress, Recife, August 1994, Abstract Volume, E5–E7.
  13. Bonardi, M. & Tosi, L. (1994b) Effects of the Late Quaternary climatic changes on an exposed clay layer in the lagoon of Venice (Italy). 14th International Sedimentology Congress, Recife, August 1994, Abstract Volume, D18–D20.
  14. Bortolami, G.C., Fontes, J.C., Markgraf, V. & Saliere, J.F. (1977) Land, sea and climate in the northern Adriatic region during Late Pleistocene. Palaeogeogr. Palaeoclimatol. Palaeoecol., 21, 139–156.
    [Google Scholar]
  15. Bortolami, G.C., Carbognin, L. & Gatto, P. (1985) The natural subsidence in the lagoon of Venice, Italy. IAHS Publ., 151, 777–784.
    [Google Scholar]
  16. Bossio, A., Ciampo, G. & Dall'antonia, B. (2004) Quaternary environmental evolution of the Venice area based upon ostracod assemblages. Boll. Soc. Ital. Paleontol., 43, 113–122.
    [Google Scholar]
  17. Brambati, A., Carbognin, L., Quaia, T., Teatini, P. & Tosi, L. (2003) The lagoon of Venice: geological setting, evolution and land subsidence. Episodes, 26, 264–268.
    [Google Scholar]
  18. Camuffo, D. & Sturaro, G. (2003) Sixty‐CM submersion of Venice discovered thanks to Canaletto's paintings. Climat. Changes, 58, 333–343.
    [Google Scholar]
  19. Camuffo, D. & Sturaro, G. (2004) Use of proxy‐documentary and instrumental data to assess the risk factors leading to sea flooding in Venice. Global Planet.Change, 40, 93–103.
    [Google Scholar]
  20. Cande, S.C. & Kent, D.V. (1995) Revised calibration of the magnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geophys. Res., 100, 6093–6095.
    [Google Scholar]
  21. Carbognin, L. (1992) Evoluzione naturale e antropica della laguna di Venezia. Mem. Descr. Carta Geol. It., 42, 123–134.
    [Google Scholar]
  22. Carbognin, L., Gatto, P., Mozzi, G., Gambolati, G. & Ricceri, G. (1984) Case history no. 9.3. Venice, Italy. In: Guidebook to Studies of Land Subsidence due to Ground‐Water Withdrawal (Ed by J.F. Poland), International Hydrological Program, Working Group No. 8.4, UNESCO, 161–174.
  23. Carminati, E. & Di Donato, G. (1999) Separating natural and anthropogenic vertical movements in fast subsiding areas: the Po plain (N. Italy) case. Geophys. Res. Lett., 26 (15), 2291–2294.
    [Google Scholar]
  24. Carminati, E., Doglioni, C. & Scrocca, D. (2003) Apennines subduction‐related subsidence of Venice (Italy). Geophys. Res. Lett., 30 (13), 50‐1–50‐4.
    [Google Scholar]
  25. Carminati, E., Doglioni, C. & Scrocca, D. (2005) Magnitude and causes of long‐term subsidence of the Po Plain and Venetian region. In Flooding and Environmental Challenges for Venice and its Lagoon: State of Knowledge (Ed. by C.A.Fletcher & T.Spencer ), pp. 21–28. Cambridge University Press, Cambridge.
    [Google Scholar]
  26. Carminati, E. & Martinelli, G. (2002) Subsidence rates in the Po Plain, northern Italy: the relative impact of natural and anthropogenic causation. Eng. Geol., 66, 241–255.
    [Google Scholar]
  27. Carminati, E. & Martinelli, G. (2003) Influence of glacial cycles and tectonics on natural subsidence of the Po Plain (Northern Italy): insights from 14C ages. G‐cubed, 4, doi:DOI: 10.1029/2002GC000481.
    [Google Scholar]
  28. Castellarin, A., Eva, C., Giglia, G. & Vai, G.B. (1985) Analisi strutturale del fronte Appenninico Padano. Giorn. Geol., 47 (1–2), 47–75.
    [Google Scholar]
  29. Cita, M.B. & Premoli Silva, I. (1966) Sui foraminiferi incontrati in un pozzo perforato nella laguna di Venezia. Mem. Biogeogr. Adriatica, 7, 29–51.
    [Google Scholar]
  30. CNR
    CNR (1971) Sondaggi profondi per lo studio della subsidenza: relazioni sul pozzo Venezia 1. CNR Technical Reports, 14–21, Venezia 1971.
  31. Curzi, P.V., Fabiano, M. & Fava, G. (1977) Gas and organic matter in last glacial and Holocenic sediments of the Venice lagoon. Chem. Ecol., 14, 1–20.
    [Google Scholar]
  32. Di Bella, L., Carboni, G. & Pignatti, J. (2005) Peleoclimatic significance of the Pliocene Amphistegina levels from the Tyrrenian margin of Central Italy. Boll. Soc. Paleontol. Ital., 44 (3), 219–229.
    [Google Scholar]
  33. Di Giulio, A., Fantoni, R., Picotti, V., Toscani, G., Zanferrari, A., Zattin, M. & Albertini, C. (2005a) Anatomy of a multiple thrust belt‐foreland basin system: the Venetian‐Friulian Basin (Cenozoic, NE Italy): Proceedings book of the “Thrust Belts and Foreland Meeting”, Société Géologique de France – Sociedad Geologica de España, Rueil‐Malmaison–France, pp. 128–131.
  34. Di Giulio, A., Zanferrari, A., Zuffa, G.G., Fantoni, R., Barbieri, C., Mancin, N., Picotti, V., Stefani, C., Toscani, G. & Zatti, M. (2005b) The Venetian‐Friulian Basin: overlapping effects of three thrust belt foreland systems on basin geometry, paleotopography and clastic routing systems. J. Ital. Fed. Earth Sci. (FIST), Epitome, 1, 287.
    [Google Scholar]
  35. Doglioni, C. (1993) Some remarks on the orgin of foredeeps. Tectonophysics, 228, 1–20.
    [Google Scholar]
  36. Doglioni, C. & Bosellini, R. (1987) Eoalpine and mesoalpine tectonics in the Southern Alps. Geol. Rundsch., 76 (3), 735–754.
    [Google Scholar]
  37. Dunkl, I., Piccotti, V., Selli, L., Castellarin, A. & Fritsh, W. (1996) Low temperature thermal history of the Dolomites. Preliminary results. 78 Summer Meeting of the Italian Geological Society, 16–18/9.
  38. Falvey, D.A. & Middleton, M.F. (1981) Passive continental margins: evidence for a pre-breakup deep crustal metamorphic subsidence mechanism. Oceanol. Acta, 103–114.
    [Google Scholar]
  39. Fantoni, R., Catellani, D., Merlini, S., Rogledi, S. & Venturini, S. (2002) La registrazione degli eventi deformativi cenozoici nell'avampaese Veneto‐Friulano. Mem. Soc. Geol. Ital., 57, 301–313.
    [Google Scholar]
  40. Favero, V., Alberotanza, L. & Serandrei, B. (1973) Aspetti paleoecologici, sedimentologici e geochimica dei sedimenti attraversati dal pozzo Ve 1 bis CNR. CNR Lab. Stud. Dinam. Grandi Masse, Techn. Rep., 63, 1–51.
    [Google Scholar]
  41. Favero, V., Leplat, P., Menning, J.J. & Passega, R. (1979) Example de distribution de la matière organique au Quaternaire: sondage CNR VE-1, Venise. Rev. Inst. Français Petrol., 34, 351–370.
    [Google Scholar]
  42. Favero, V. & Passega, R. (1980) Quaternary turbidites in a neritic environment: well CNR VE 1, Venice, Italy. J. Petrol. Geol., 3, 153–174.
    [Google Scholar]
  43. Fontes, J.C. & Bortolami, G. (1972) Subsidence of the area of Venice during the past 40.000 years. CNR Lab. Grandi Masse, Tech. Rep., 54, 3–11.
    [Google Scholar]
  44. Fontes, J.C. & Bortolami, G. (1973) Subsidence of the Venice area during the past 40.000 years. Nature, 244, 339–341.
    [Google Scholar]
  45. Gambolati, G. & Gatto, P. (1975) Simulazione della subsidenza di Venezia. In Venezia e i problemi dell'ambiente (pp. 299–360). Il Mulino.
    [Google Scholar]
  46. Gambolati, G., Gatto, P. & Freeze, R.A. (1974) Mathematical simulation of the subsidence of Venice. Results. Wat. Resour. Res., 10, 563–577.
    [Google Scholar]
  47. Gatto, P. & Mozzi, G. (1971) Esame delle carote (attività di Laboratorio provvisorio di Padova). CNR Lab. Stud. Dinam. Grandi Masse, Tech. Rep., 20 (8), 1–23.
    [Google Scholar]
  48. Gatto, P. & Previatello, P. (1974) Significato stratigrafico, comportamento meccanico e distribuzione nella laguna di Venezia di una argilla sovraconsolidata nota come Caranto. CNR Lab. Stud. Dinam. Grandi Masse, Tech. Rep., 70, 1–45.
    [Google Scholar]
  49. Gruetzner, J., Giosan, L., Franz, S., Tiedemann, R., Cortijo, E., Chaisson, W.P., Flood, R.G., Hagen, S., Keigwin, Lloyd D., Poli, M.S., Rio, D. & Williams, T. (1999) Astronomical age models for Pleistocene drift sediments from the Western North Atlantic (ODP sites 1055–1063). In Climatic Variability Recorded in Sediment Drifts from the Western North Atlantic Ocean (ODP Leg 172) (Ed. by D.Rio & E.Arnold ), Mar. Geol., 189, (1–2) 5–23.
    [Google Scholar]
  50. De Kaenel, E., Siesser, W.G. & Murat, A. (1999) Pleistocene calcareous nannofossil biostratigraphy and the western Mediterranean sapropels, sites 974 to 977 and 979. In Proceedings of the ODP Scientific results, 161 (Ed. by R.Zahn , M.C.Comas & A.Klaus ), pp. 159–183.
    [Google Scholar]
  51. Kent, D., Rio, D., Massari, F., Kukla, G. & Lanci, L. (2002) Emergence of Venice during the Pleistocene. Quatern. Sci. Rev., 21 (14–15), 1719–1727.
    [Google Scholar]
  52. Kruse, S. & Royden, L. (1994) Bending and unbending of an elastic lithosphere: the Cenozoic history of the Apennine and Dinaride foredeep basins. Tectonics, 13 (2), 278–302.
    [Google Scholar]
  53. Langereis, C.G., Dekkers, M.J., De Lange, G.J., Paterne, M. & Van Santvoort, P.J.M. (1997) Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes. Geophys. J. Int., 129, 75–94.
    [Google Scholar]
  54. Lourens, L.J., Hilgen, F.J., Raffi, I. & Vergnaud‐Grazzini, C. (1996) Early Pleistocene chronology of the Vrica section (Calabria, Italy). Paleoceanography, 11 (6), 797–812.
    [Google Scholar]
  55. Manzi, V., Lugli, S., Ricci Lucchi, F. & Roveri, M. (2005) Deep‐water clastic evaporites deposition in the Messinian Adriatic foredeep (Northern Apennines, Italy): did the Mediterranean ever dry out? Sedimentology, 52, 875–902.
    [Google Scholar]
  56. Massari, F. (1990) The foredeeps of the northern Adriatic margin: evidence of diachroneity in deformation of the Southern Alps. Riv. Ital. Paleontol. Stratigr., 96 (2–3), 351–380.
    [Google Scholar]
  57. Massari, F., Grandesso, P., Stefani, C. & Jobstraibizer, P.G. (1986) A small polyhistory basin evolving in a context of oblique convergence: the Venetian Basin (Chattian to Recent, Southern Alps, Italy). In Foreland Basins (Ed. by P.A.Allen & P.Homewood IAS Spec. Publ., 8, 141–168.
    [Google Scholar]
  58. Massari, F., Rio, D., Serandrei Barbero, R., Asioli, A., Capraro, L., Fornaciari, E. & Vergerio, P.P. (2004) The environment of Venice area in the past two million years. Palaeogeogr. Palaeoclimatol. Palaeoecol., 202, 273–308.
    [Google Scholar]
  59. Mellere, D., Stefani, C. & Angevine, C. (2000) Polyphase tectonics through subsidence analysis: the Oligo.Miocene Venetian and Friuli Basin, north-east Italy. Basin Res., 12, 159–182.
    [Google Scholar]
  60. Monegatti, P. & Raffi, S. (2001) Taxonomic diversity and stratigraphic distribution of Mediterranean Pliocene bivalves. Palaeogeogr. Palaeoclimatol. Palaeoecol., 165, 171–193.
    [Google Scholar]
  61. Mullenders, W., Favero, V., Coremans, M. & Dirickx, M. (1996) Analyses polliniques de sondage à Venise (VE‐1, VE‐1bis, VE‐II). In Pleistocene Palynostratigraphy (Ed. by F.Gullentops Aardkundige Mededelingen , 7, 87–116.
    [Google Scholar]
  62. Pieri, M. & Groppi, G. (1981) Subsurface geological structure of the Po plain, Italy. Prog. Finalizzato Geodinam. CNR, 414 pp.13.
    [Google Scholar]
  63. Rio, D., Channell, J.E.T., Bertoldi, R., Poli, M.S., Vergerio, P.P., Raffi, I., Sprovieri, R. & Thunell, R.C. (1997) Pliocene sapropels in the Adriatic area: chronology and paleoenvironmental significance. Palaeogeogr. Palaeoclimatol. Palaeoecol., 135, 1–25.
    [Google Scholar]
  64. Rio, D., Raffi, I. & Villa, G. (1990) Pliocene–Pleistocene calcareous nannofossil distribution patterns in the western Mediterranean. In Proc. ODP (Ed. by J.Kasten & JMascles , et al) Sci. Res., 107, 513–533.
    [Google Scholar]
  65. Rizzini, A. & Dondi, L. (1978) Erosional surface of Messinian age in the subsurface of the Lombardian Plain (Italy). Mar. Geol., 27, 303–325.
    [Google Scholar]
  66. Roveri, M., Bassetti, M.A. & Ricci Lucchi, F. (2001) The Mediterranean Messinian salinity crisis: an Apennine foredeep perspective. Sediment. Geol., 140, 201–214.
    [Google Scholar]
  67. Roveri, M. & Taviani, M (2003) Calcarenite and sapropel deposition in the Mediterranean Pliocene: shallow- and deep-water record of astronomically driven climatic events. Terra Nova, 15, 279–286.
    [Google Scholar]
  68. Royden, L. (1988) Flexural behaviour of the continental lithosphere in Italy: constraints imposed by gravity and deflection data. J. Geophys. Res., 93 (B7), 7747–7766.
    [Google Scholar]
  69. Ryan, W. & Cita, M.B. (1978) The nature and distribution of Messinian erosion surfaces – Indicators of several kilometre‐deep Mediterranean in the Miocene. Mar. Geol., 27, 193–230.
    [Google Scholar]
  70. Sclater, J.G. & Christie, P.A.F. (1980) Continental stretching: an explanation of the best Mid-Cretaceous subsidence of the Central North Sea Basin. J. Geophys. Res., 85, 3711–3739.
    [Google Scholar]
  71. Sprovieri, R. (1992) Mediterranean Pliocene biochronology: an high resolution record based on quantitative planktonic foraminifera distribution. Riv. Ital. Paleontol. Stratigr., 98 (1), 61–100.
    [Google Scholar]
  72. Stefani, C. (2002) Variation in terrigenous supplies in the upper Pliocene to Recent deposits of the Venice area. Sediment. Geol., 153, 43–55.
    [Google Scholar]
  73. Thierstein, H.R., Geitzenauer, K., Molfino, M. & Shackleton, N.J. (1977) Global synchroneity of late Quaternary coccolith datum levels, validation by oxygen isotopes. Geology, 5 (7), 400–404.
    [Google Scholar]
  74. Tosi, L., Carbognin, L., Teatin, P., Strozzi, T. & Wengmuller, U. (2002) Evidence of the present relative land stability of Venice, Italy, from land, sea, and space observations. Geophys. Res. Lett., 29/12, doi:DOI: 10.1029/2001GL013211.
    [Google Scholar]
  75. Tunis, G. & Venturini, S. (1992) Evolution of the southern margin of the Julian Basin with emphasis on the megabeds and turbidite sequence of the Southern Julian Prealps (NE Italy). Geol. Croat., 45, 127–150.
    [Google Scholar]
  76. Vai, G.B. (1987) Migrazione complessa del sistema fronte deformativo‐avanfossa‐cercine periferico: il caso dell'Appennino settentrionale. Memor. Sci. Geol., 38, 95–105.
    [Google Scholar]
  77. Van Hinte, J.E. (1978) Geohistory analysis – Application of micropaleontology in exploration geology. AAPG Bull., 62 (2), 201–222.
    [Google Scholar]
  78. Zanferrari, A., Bollettinari, G., Carobene, L., Carton, A., Carulli, G.B., Castaldini, D., Cavallin, A., Panizza, M., Pellegrini, G., Pianetti, F. & Sauro, U. (1982) Evoluzione neotettonica dell'Italia nord‐orientale. Memor. Sci. Geol., 35, 355–376.
    [Google Scholar]
  79. Zattin, M., Cuman, A., Fantoni, R., Martin, S., Scotti, P. & Stefani, C. (2002) Thermochronological evolution of the Southern Alps along the TRANSALP profile. Memor. Sci. Geol., (Spec. Vol.), 127–130.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2007.00314.x
Loading
/content/journals/10.1111/j.1365-2117.2007.00314.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error