1887
Volume 19, Issue 2
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Swath bathymetry, single‐channel seismic profiling, gravity and box coring, 210Pb down‐core radiochemical analyses and sequence stratigraphic analysis in the Gulf of Alkyonides yielded new data on the evolution of the easternmost part of the Gulf of Corinth. Three fault segments, the South Strava, West Alkyonides and East Alkyonides faults, dipping 45, 30 and 45°, respectively, northwards, form the southern tectonic boundary of the Alkyonides Basin. Two 45° southwards dipping segments, the Domvrena and Germeno Faults, form the northern tectonic margin. The Alkyonides Basin architecture is the result of a complex interaction between fault dynamics and the effects of changes in climate and sea/lake level. Chrono‐stratigraphic interpretation of the seismic stratigraphy through correlation of the successive seismic packages with lowstands and highstands of the Late Quaternary indicates that the evolution of the basin started 0.40–0.45 Ma BP and can be divided in two stages. Subsidence of the basin floor during the early stage was uniform across the basin and the mean sedimentation rate was 1.0 m kyear−1. Vertical slip acceleration on the southern tectonic margin since 0.13 Ma BP resulted in the present asymmetric character of the basin. Subsidence concentrated close to the southern margin and sedimentation rate increased to 1.4 m kyear−1 in the newly formed depocentre of the basin. Actual (last 100 year) sedimentation rates were calculated to >2 mm year−1, but are significantly influenced by the presence of episodic gravity flow deposits. Total vertical displacement of 1.1 km is estimated between the subsiding Alkyonides Basin floor and the uplifting Megara Basin since the onset of basin subsidence at a mean rate of 2.4–2.75 m kyear−1, recorded on the East Alkyonides Fault. Gravity coring in the Strava Graben and in the lower northern margin of Alkyonides Basin proved the presence of whitish to olive grey laminated mud below thin marine sediments. Aragonite crystals and absence of the marine coccolithophora indicate sedimentation in lacustrine environment during the last lowstand glacial interval.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2007.00322.x
2007-04-07
2024-10-10
Loading full text...

Full text loading...

References

  1. Appleby, P.G. & Oldfield, F. (1978) The calculation of lead‐210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena, 5, 1–8.
    [Google Scholar]
  2. Armijo, R., Meyer, B., King, G.C.P., Rigo, A. & Papanastassiou, D. (1996) Quarternary evolution of the Corinth rift and its implications for the late cenozoic evolution of the Aegean. Geophys. J. Int., 126, 11–53.
    [Google Scholar]
  3. Avallone, A., Briole, P., Agatza‐Balodimou, A.‐m., Billiris, H., Charade, O., Mitsakaki, C., Nercessian, A., Papazissi, K., Paradissis, D. & Veis, G. (2004) Analysis of eleven years of deformation measured by GPS in the Corinth Rift Laboratory area. C.R. Geosci., 336, 301–311.
    [Google Scholar]
  4. Bentham, P., Collier, R.E.Ll., Gawthorpe, R.L., Leeder, M.R., Prosser, S. & Stark, C. (1991) Tectono‐sedimentary development of an extensional basin: the Neogene Megara Basin, Greece. J. Geol. Soc. London, 148, 923–934, London.
    [Google Scholar]
  5. Billiris, H., Paradissis, D., Veis, G., England, P., Featherstone, W., Parsons, B., Cross, P., Rands, P., Rayson, M., Sellers, P., Ashkenazi, V., Daavison, M., Jackson, J. & Ambraseys, N. (1991) Geodetic determination of tectonic deformation in Central Greece from 1900 to 1988. Nature, 350, 124–129.
    [Google Scholar]
  6. Bornovas, I., Eleftheriou, A., Gaitanakis, P., Rondogianni, Th., Simaiakis, K., Tsaila‐Monopoli, S. & Mettos, A. (1984a) Geological map of Greece, 1:50.000 scale, Kaparellion Sheet. The Institute of Geological, and Mining Exploration (IGME), Athens.
  7. Bornovas, I., Gaitanakis, P., Spiridopoulos, A., Rondogianni, Th., Simaiakis, K. & Tsaila‐Monopoli, S. (1984b) Geological map of Greece, 1:50.000 scale, Perachora Sheet. The Institute of Geological, and Mining Exploration (IGME), Athens.
  8. Canals, M., Catafau, E. & Serra, J. (1988) Sedimentary structure and seismic facies of the inner shelf north of the Ebro delta (northwestern Mediterranean Sea). Cont. Shelf Res., 8, 961–977.
    [Google Scholar]
  9. Chappell, J. & Shackleton, N.J. (1986) Oxygen isotopes and sea‐level. Nature, 323, 137–140.
    [Google Scholar]
  10. Clarke, P.J., Davies, R.R., England, P.C., Parsons, B.E., Billiris, H., Paradissis, D., Veis, G., Denys, P.H., Cross, P.A., Ashkenazi, V. & Bingley, R. (1997) Geodetic estimate of seismic hazard in the Gulf of Korinthos. Geophys. Res. Lett., 24, 1303–1306.
    [Google Scholar]
  11. Collier, R.E.Ll. (1990) Eustatic and tectonic controls upon Quaternary coastal sedimentation in the Corinth basin, Greece. J. Geol. Soc., 147, 301–314, London.
    [Google Scholar]
  12. Collier, R.E.Ll. & Gawthorpe, R.L. (1995) Neotectonics, drainage and sedimentation in central Greece: insights into coastal reservoir geometries in syn-rift sequences. Geol. Soc. Sp. Publ., 80, 165–181.
    [Google Scholar]
  13. Collier, R.E.Ll., Leeder, M., Rowe, P.J. & Atkinson, T.C. (1992) Rates of tectonic uplift in the Corinth and Megara basins, central Greece. Tectonics, 11, 1159–1167.
    [Google Scholar]
  14. Collier, R.E.Ll., Leeder, M., Trout, M., Ferentinos, G., Lyberis, E. & Papatheodorou, G. (2000) High sediment yields and cool, wet winters: test of last glacial paleoclimates in the northern Mediterranean. Geology, 28/11, 999–1002.
    [Google Scholar]
  15. Collier, R.E.Ll., Pantosti, D., D'Addezio, G., De Martini, P.M., Masana, E. & Sakellariou, D. (1998) Paleoseismicity of the 1981 Corinth earthquake fault: seismic contribution to extensional strain in central Greece and implications for seismic hazard. J. Geophys. Res., 103, 30,001–30,019.
    [Google Scholar]
  16. Cowie, P.A., Gupta, D. & Dawers, N.H. (2000) Implications of fault array evolution for synrift depocenter development: insights from a numerical fault growth model. Basin Res., 12, 241–261.
    [Google Scholar]
  17. De Martini, P.M., Pantosti, D., Palyvos, N., Lemeille, F., McNiel, L. & Collier, R. (2005) Slip rates of the Aigion and Eliki faults from uplifted marine terraces, Corinth Gulf, Greece. C.R. Geosci., 336, 325–334.
    [Google Scholar]
  18. Davies, R.R., England, P.C., Parson, B.E., Billiris, H., Paradissis, D. & Veis, G. (1997) Geodetic strain of Greece in the interval 1892–1992. J. Geophys. Res., 102, 24,571–24,588.
    [Google Scholar]
  19. Dia, A.N., Cohen, A.S., O'Nions, R.K. & Jackson, J.A. (1997) Rates of uplift investigated through 230Th dating in the Gulf of Corinth (Greece). Chem. Geol., 138, 171–184.
    [Google Scholar]
  20. Frey‐Martinez, J., Cartwright, J. & Hall, B. (2005) 3D seismic interpretation of slump complexes: examples from the continental margin of Israel. Basin Res., 17, 83–108.
    [Google Scholar]
  21. Gawthorpe, R.L. & Leeder, M.R. (2000) Tectono‐sedimentary evolution of active extensional basins. Basin Res., 12, 195–218.
    [Google Scholar]
  22. Gupta, S., Cowie, P.A., Dawers, N.H. & Underhill, J.R. (1998) A mechanism to explain rift‐basin subsidence and stratigraphic patterns through fault array evolution. Geology, 26, 595–598.
    [Google Scholar]
  23. Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L. & Shackleton, N.J. (1984) The orbital theory of Pleistocene climate: support from a revised chronology of the marine 18O record. In: Milankovitch and Climate (Ed. by A.Berger , J.Imbrie , J.Hays , G.Kukla & B.Saltzman ), pp. 269–305. Reidel, Dordrecht.
    [Google Scholar]
  24. Jackson, J. (1999) Fault death: a perspective from actively deforming regions. J. Struct. Geol., 21, 1003–1010.
    [Google Scholar]
  25. Jackson, J.A., Gagnepain, J., Houseman, G., King, G.C.P., Papadimitriou, P., Soufleris, C. & Virieux, J. (1982) Seismicity, normal faulting and the geomorphological development of the Gulf of Corinth (Greece): the Corinth earthuakes of February and March 1981. Earth Planeta. Sci. Lett., 57, 377–397.
    [Google Scholar]
  26. Kershaw, S. & Guo, L. (2001) Marine notches in coastal cliffs: indicators of relative sea-level change, Perachora Peninsula, central Greece. Marine Geol., 179, 213–228.
    [Google Scholar]
  27. King, L.H. (1981) Aspects of regional surficial geology related to site investigation requirements – Eastern Canadian Shelf. In: Offshore Site Investigation (Ed. by D.A.Ardus ), pp. 37–57. Graham and Trodman, London.
    [Google Scholar]
  28. Leeder, M.R., Harris, T. & Kirkby, M.J. (1998) Sediment supply and climate change. Basin Research, 10, 7–18.
    [Google Scholar]
  29. Leeder, M.R., Collier, R.E.Ll., Abdul Aziz, L.H., Trout, M., Ferentinos, G., Papatheodorou, G. & Lyberis, E. (2002) Tectono‐sedimentary processes along an active marine/lacustrine half‐graben margin: Alkyonides Gulf, E. Gulf of Corinth, Greece. Basin Res., 14, 25–41.
    [Google Scholar]
  30. Leeder, M.R., McNeil, L.C., Collier, R.E.Ll., Portman, C., Rowe, P., Andrews, J.E. & Gawthorpe, R.L. (2003) Corinth rift margin uplift: new evidence from Late Quaternary marine shorelines. Geophys. Res. Lett., 30, 1611–1614.
    [Google Scholar]
  31. Leeder, M.R., Portman, C., Andrews, J.E., Collier, R.E.Ll., Finch, E., Gawthorpe, R.L., McNeil, L.C., Perez‐Arlucea, M. & Rowe, P. (2005) Normal faulting and crustal deformation, Alkyonides Gulf and Perachora peninsula, eastern Gulf of Corinth rift, Greece. J. Geol. Soc., London, 162, 549–561.
    [Google Scholar]
  32. Leeder, M.R., Seger, M.J. & Stark, C.P. (1991) Sedimentation and tectonic geomorphology adjacent to major active and inactive normal faults, southern Greece. J. Geol. Soc. London, 148, 331–343.
    [Google Scholar]
  33. Lykousis, V., Sakellariou, D., Moretti, I. & Kaberi, H. (2007) Late Quaternary basin evolution of the Gulf of Corinth: sequence stratigraphy, sedimentation, fault-slip and subsidence rates. Tectonophysics (in press).
    [Google Scholar]
  34. Lykousis, V., Sakellariou, D. & Papanikolaou, D. (1998) Sequence stratigraphy in the northern margin of the Gulf of Corinth: implications to upper Quaternary basin evolution. Bull. Geol. Soc. Greece, 32/2, 157–165.
    [Google Scholar]
  35. Makris, J., Papoulia, I., Karastathis, V. & Ilinsky, D. (2003) Crustal structure of the Saronikos–Eastern Korinthiakos basin from wide apperture seismic data: evidence of thinned continental crust below the Saronikos volcanic area. In: EGS‐AGU‐EUG Joint Assembly, Geophys. Res. Abstracts, Vol. 5, Abstract Nr. EAE03‐A04195
  36. Mariolakos, I., Papanikolaou, D., Symeonidis, N., Lekkas, S., Karotsieris, Z. & Sideris, Ch. (1981) The deformation of the area around the eastern Korinthian Gulf, affected by the eathquakes of February–March 1981. In: Intern. Symp. “Hellenic Arc & Trench”, Proceedings, vol. I, 400–420, Athens
  37. Masqué, P., Fabres, J., Canals, M., Sanchez‐Cabeza, J.A., Sanchez‐Vidal, A., Cacho, I., Calafat, A.M. & Bruach, J.M. (2003) Accumulation rates of major constituents of hemipelagic sediments in the deep Alboran Seaa: a centennial perspective of sedimentary dynamics. Marine Geol., 193, 207–233.
    [Google Scholar]
  38. McNeill, L.C. & Collier, R.E.L. (2004) Footwall uplift rates of the eastern Eliki fault, Gulf of Corinth, Greece, inferred from Holocene and Pleistocene terraces. Geol. Soc. J., London, 161, 81–92.
    [Google Scholar]
  39. McNeill, L.C., Cotterill, C.J., Henstock, T.J., Bull, J.M., Stefatos, A., Collier, R.E.L., Papatheodorou, G., Ferentinos, G. & Hicks, S.E. (2005) Active faulting within the offshore western Gulf of Corinth, Greece: implications for model of continental rift deformation. Geology, 33/4, 241–244.
    [Google Scholar]
  40. Moretti, I., Sakellariou, D., Lykousis, V. & Micarelli, L. (2003) The Gulf of Corinth: an active half graben? J. Geodyn., 36, 323–340.
    [Google Scholar]
  41. Moretti, I., Lykousis, V., Sakellariou, D., Reynaud, J.‐Y., Benziane, B. & Prinzhoffer, A. (2004) Sedimentation and subsidence rate in the Gulf of Corinth: what we learn from the marion Dufresne's long piston coring. C.R. Geosci., 336, 291–299.
    [Google Scholar]
  42. Pantosti, D., Collier, R., D'Addezio, G., Masana, E. & Sakellariou, D. (1996) Direct geological evidence for prior earthquakes on the 1981 Corinth fault (central Greece). Geophys. Res. Lett., 23 (25), 3795–3798.
    [Google Scholar]
  43. Papatheodorou, G. & Ferentinos, G. (1993) Sedimentation processes and basin‐filling depositional architecture in an active asymmetric graben: Strava graben, Gulf of Corinth, Greece. Basin Research, 5, 235–253.
    [Google Scholar]
  44. Perissoratis, C., Mitropoulos, D. & Angelopoulos, I. (1986) Marine geological research at the eastern Corinthiakos Gulf. Geol. Geophys. Res., Spec. Issue, 381–401, I.G.M.E, Athens (in Greek, English summary).
    [Google Scholar]
  45. Perissoratis, C., Piper, D.J.W. & Lykousis, V. (2000) Alternating marine and lacustrine sedimentation during late Quaternary in the Gulf of Corinth rift basin, central Greece. Marine Geol., 167, 391–411.
    [Google Scholar]
  46. Piper, D.J.W. & Fader, G.B. (1990) Acoustic and lithological data. In: Geology of the Continental Margin of Eastern Canada (Ed. by M.J.Keen & G.L.Williams ), pp. 494–497, Geological Survey of Canada, Geology of Canada, No. 2 (also Geol. Soc. America, The Geology of North America, vol. I‐1.. Government of Canada, Ottawa.
    [Google Scholar]
  47. Piper, D.J.W., Hiscott, R.N. & Normark, W.R. (1999) Outcrop‐scale acoustic facies analysis and latest Quaternary development of Hueneme and Dume submarine fans, offshore California. Sedimetology, 46, 47–78.
    [Google Scholar]
  48. Piper, D.J.W. & Perissoratis, C. (1991) Late Quaternary sedimentation on the North Aegean continental margin, Greece. Bull. Am. Assoc. Petrol Geol., 75, 46–61.
    [Google Scholar]
  49. Pirazzoli, P.A., Stiros, S.C., Arnold, M., Laborel, J., Laborel‐Deguen, F. & Papageorgiou, S. (1994) Episodic uplift deduced from Holocene shorelines in the Perachora Peninsula, Corinth area, Greece. Tectonophysics, 229, 201–209.
    [Google Scholar]
  50. Posamentier, H.W., Jervey, M.T. & Vail, P.R. (1988) Eustatic controls on clastic deposition I–conceptual framework. In: Sea Level Changes: An Integrated Approach. (Ed. by C.K.Wilgus , H.Posamentier , C.A.Ross & C.G.St.C.Kendall ), SEPM Special Publication 42, 109–124.
    [Google Scholar]
  51. Radakovitch, O. (1995) Étude du transfert et du dépôt du matériel particulaire par le 210Po et le 210Pb. Application aux marges continentales du Golfe de Gascogne (NE Atlantique) et du Golfe du Lion (NW Méditerranée). PhD Thesis, University of Perpignan.
  52. Rigo, A., Lyon‐Caen, H., Armijo, R., Deschamps, A., Hatzfeld, D., Makropoulos, K., Papadimitriou, P. & Kassaras, I. (1996) A microseismic study in the western part of the Gulf of Corinth (Greece): implications for large scale normal faulting mechanism. Geophys. J. Int., 126, 663–688.
    [Google Scholar]
  53. Roberts, S. & Jackson, J. (1991) Active normal faults in central Greece: an overview. Geol. Soc. Sp. Publ., 56, 125–142.
    [Google Scholar]
  54. Roberts, G. & Stewart, I. (1994) Uplift, deformation and fluid involvement within an active normal fault zone in the Gulf of Corinth, Greece. J. Geol. Soc. London, 151, 531–541.
    [Google Scholar]
  55. Sakellariou, D., Lykousis, V. & Papanikolaou, D. (1998) Neotectonic structure and evolution of the Gulf of Alkyonides, Central Greece. Bull. Geol. Soc. Greece, 32/1, 241–250.
    [Google Scholar]
  56. Sakellariou, D., Kaberi, H. & Lykousis, V. (2004) Influence of active tectonics on the recent sedimentation of the Gulf of Corinth basin. In: 10th International Congress of Greek Geological Society, Abstracts 15–17 April (pp. 232–233, 2004). GEOT.E.E., Thessaloniki.
    [Google Scholar]
  57. Sakellariou, D., Lykousis, V. & Papanikolaou, D. (2001) Active faulting in the Gulf of Corinth, Greece. In: 36th CIESM Congress Proceedings (Ed. by F.Briand ), 36 pp. 43.
  58. Sanchez‐Cabeza, J.A., Masqué, P. & Ani‐Ragolta, I. (1998) 210Pb and 210Po analysis in sediments and soils by microwave acid digestion. J. Radioactivity Nucl. Chem., 2271–2, 19–22.
    [Google Scholar]
  59. Schroeder, B. & Kellet, D. (1976) Geodynamical conclusions from vertical displacement of Quaternary shorelines in the Peloponnesos, Greece. Neues Jahrb, Geol. Palaeontol., H3, 174–186.
    [Google Scholar]
  60. Shackleton, N.J. (1987) Oxygen isotopes, ice volume and sea level. Quat. Sci. Rev., 6, 183–190.
    [Google Scholar]
  61. Steckler, M.S., Berthelot, F., Lyberis, N. & Le Pichon, X. (1988) Subsidence in the Gulf of Suez: implications for rifting and plate kinematics. Tectonophysics, 153, 491–527.
    [Google Scholar]
  62. Stefatos, A., Papatheodorou, G., Ferentinos, G., Leeder, M. & Collier, R. (2002) Seismic reflection imaging of active offshore faults in the Gulf of Corinth: their seismotectonic significance. Basin Res., 14, 487–502.
    [Google Scholar]
  63. Stow, D.A.A. (1986) Deep clastic seas. In: Sedimentary Environment and Facies, 2nd edn, Ed. by H.G.Reading ), pp. 399–444. Blackwell Scientific Publications, Oxford.
    [Google Scholar]
  64. Wallace, R.E. (1987) Grouping and migration of surface faulting and variations in slip rates on faults in the Great Basin province. Bull. Seismol. Soc. Am., 77, 868–876.
    [Google Scholar]
  65. Zelt, B.C., Taylor, B., Weiss, J.R., Goodliffe, A.M., Sachpazi, M. & Hirn, A. (2004) Streamer tomography velocity models for the Gulf of Corinth and Gulf of Itea, Greece. Geophys. J. Int., 159, 333–346.
    [Google Scholar]
/content/journals/10.1111/j.1365-2117.2007.00322.x
Loading
/content/journals/10.1111/j.1365-2117.2007.00322.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error