1887
Volume 19, Issue 4
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Constraining the burial history of a sedimentary basin is crucial for accurate prediction of hydrocarbon generation and migration. Although the Ghadames Basin is a prolific hydrocarbon province, with recoverable oil discovered to date in excess of 3.5 billion bbl, exploration on the eastern margin is still limited and the prospectivity of the area depends on the identification of effective source rocks and the timing of hydrocarbon generation. Sonic velocity, apatite fission track (FT) and vitrinite reflectance analysis offer three complementary methods to determine burial history and provide independent analytical techniques to evaluate the timing and amount of exhumation. The results indicate that two phases of tectonic activity had the biggest influence on basin evolution: the Hercynian (Late Carboniferous–Triassic) and Alpine (Late Mesozoic/Cenozoic) tectonic events. Exhumation during the Hercynian tectonic event increases from the SE, where an almost complete Palaeozoic section is preserved, towards the NW. This study quantifies the significant regional Alpine exhumation of the southern and eastern margins of the basin, with important implications for the timing of hydrocarbon maturation and expulsion, particularly for the Silurian source rock interval. Incorporating elevated Alpine exhumation values into burial history models for wells in the eastern (Libyan) part of the basin allows calibration with available maturity (Ro) data using moderate values of Hercynian erosion. The result is preservation of the generation potential of Silurian (Tanezzuft) source rocks until maximum burial during Mesozoic/Cenozoic time, which improves the chance for preservation of hydrocarbon accumulations following entrapment.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2007.00335.x
2007-09-20
2024-04-20
Loading full text...

Full text loading...

References

  1. Acheche, M.H., M'rabet, A., Ghariani, H., Ouahchi, A. & Montgomery, S.L. (2001) Ghadames Basin, southern Tunisia: a reappraisal of Triassic reservoirs and future prospectivity. AAPG Bull., 85, 765–780.
    [Google Scholar]
  2. Arne, D. & Zentilli, M. (1994) Apatite fission track thermochronology integrated with vitrinite reflectance. In: ACS Symposium (Ed. by P.M.Mukhopadhyay & W.G.Dow ), pp. 249–268. America Chemical Society, Chicago, IL.
    [Google Scholar]
  3. Badalini, G., Redfern, J. & Carr, I. (2002) Introduction: a synthesis of current understanding of the structural evolution of North Africa. J. Petrol. Geol., 25, 249–258.
    [Google Scholar]
  4. Barbarand, J., Carter, A., Wood, I. & Hurford, T. (2003) Compositional and structural control of fission‐track annealing in apatite. Chem. Geol., 198, 107–137.
    [Google Scholar]
  5. Belhaj, F. (1996) Palaeozoic and Mesozoic stratigraphy of eastern Ghadamis and western Sirt basins. In: The Geology of Sirt Basin (Ed. by M.J.Salem , A.J.Mouzughi & O.S.Hammuda ), pp. 57–96. Elsevier, Amsterdam.
    [Google Scholar]
  6. Boote, D.R.D., Clark‐Lowes, D.D. & Traut, M.W. (1998) Palaeozoic petroleum systems of North Africa. In: Petroleum Geology of North Africa (Ed. by D.S.MacGregor , R.T.J.Moody & D.D.Clark‐Lowes ), Geol. Soc. Lond., Spec. Publ., 132, 7–68.
    [Google Scholar]
  7. Boote, D.R.D. & Dardour, A.M. (2004) Petroleum systems of the Libyan Ghadames Basin: Proven and possible (extended abstract). HGS & PESGB: Third International Symposium, Africa: Continent of Challenge and Opportunity, London, 7–8 September 2004.
    [Google Scholar]
  8. Brandon, M.T. (1992) Decomposition of fission‐track grain‐age distributions. Am. J. Sci., 292, 535–564.
    [Google Scholar]
  9. Brandon, M.T. & Vance, J.A. (1992) Fission track ages of detrital zircons: implications for the tectonic evolution of the Cenozoic Olympic subduction complex. Am. J. Sci., 292, 565–636.
    [Google Scholar]
  10. Bray, R.J., Green, P.F. & Duddy, I.R. (1992) Thermal history reconstruction using apatite fission track analysis and vitrinite reflectance; a case study from the UK East Midlands and southern North Sea. In: Exploration Britain; Geological Insights for the Next Decade (Ed. by R.F.P.Hardman ), pp. 2–25. Geological Society of London, London.
    [Google Scholar]
  11. Bulat, J. & Stoker, S.J. (1987) Uplift determination from interval velocity studies. In: Petroleum Geology of North West Europe (Ed. by J.Brookes & K.Glennie ), pp. 293–305. Graham & Trotman, London.
    [Google Scholar]
  12. Cope, M.J. (1986) An interpretation of vitrinite reflectance data from the Southern North Sea basin. In: Habitat of Palaeozoic Gas in N.W. Europe (Ed. by J.Brookes , J.C.Goff & B.Van Hoorn ), Geol. Soc. Lond. Spec. Publ., 23, 85–98.
    [Google Scholar]
  13. Corcoran, D.V & Dore, A.G. (2005) A review of the techniques for the estimation of magnitude and timing of exhumation in offshore basins. Earth Sci. Rev., 72, 129–168.
    [Google Scholar]
  14. Creaney, S. & Passey, Q.R. (1993) Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework. AAPG Bull., 77, 386–401.
    [Google Scholar]
  15. Dardour, A.M., Boote, D.R.D. & Baird, A.W. (2003) Palaeozoic petroleum systems in the Ghadamis Basin, Libya. In: 1st North Africa/Mediterranean Petroleum & Geosciences Conference and Exhibition, Tunis, 6–9 October 2003 (extended abstract).
  16. Dardour, A.M., Boote, D.R.D. & Baird, A.W. (2004) Stratigraphic controls on Palaeozoic petroleum systems, Ghadames Basin, Libya. J. Petrol. Geol., 27, 141–162.
    [Google Scholar]
  17. De Corte, F., Van Den Haute, P., Bellemans, F., Ingelbrecht, C. & Nicholl, C. (1998) The uranium doped glass IRMM‐540 distributed by the European Comission: a new tool in fission‐track age calibration. In: 19th International Conference on Nuclear Tracks in Solids, Besancon, France.
  18. Dumitru, T.A. (1993) A new computer‐automated microscope stage system for fission‐track analysis. Nucl. Tracks Radiat Meas., 21, 575–580.
    [Google Scholar]
  19. Dunkl, I. (2002) TRACKKEY: a Windows program for calculation and graphical presentation of fission track data. Comput. Geosci., 28, 3–12.
    [Google Scholar]
  20. Echikh, K. (1998) Geology and hydrocarbon occurrences in the Ghadames Basin, Algeria, Tunisia, Libya. In: Petroleum Geology of North Africa (Ed. by D.S.MacGregor , R.T.J.Moody & D.D.Clark‐Lowes ), Geol. Soc. Lond. Spec. Publ., 132, 109–129.
    [Google Scholar]
  21. El‐Rweimi, W.S. (1991) Geology of the Aouinet Ouenine and Tahara formations, Al Hamadah Al Hamra' area, Ghadamis basin. In: The Geology of Libya: Symposium on the Geology of Libya (3), Vol. VI (Ed. by M.J.Salem ), pp. 2185–2193. Elsevier, Amsterdam.
    [Google Scholar]
  22. Fleischer, R.L., Price, P.B. & Walker, R.M. (1975) Nuclear Tracks in Solids: Principles and Applications. University of California Press, Berkeley, 605 pp.
    [Google Scholar]
  23. Galbraith, R.F. (1981) On statistical models for fission track counts. Math. Geol., 13, 471–478.
    [Google Scholar]
  24. Galbraith, R.F. (1988) Graphical display of estimates having differing standard errors. Technometrics, 30, 271–281.
    [Google Scholar]
  25. Gallagher, K., Brown, R. & Johnson, C. (1998) Fission track analysis and its applications to geological problems. Annu. Rev. Earth Planet. Sci., 26, 519–572.
    [Google Scholar]
  26. Gleadow, A.J.W. (1981) Fission‐track dating methods: what are the real alternatives? Nucl. Tracks, 5, 3–14.
    [Google Scholar]
  27. Gleadow, A.J.W. (1984) Fission track dating methods II – A manual of principles and techniques. In: Workshop on Fission Track Analysis; Principles and Applications. James Cook University, Townsville.
    [Google Scholar]
  28. Gleadow, A.J.W., Belton, D.X., Kohn, B.P. & Brown, R.W. (2002) Fission track dating of phosphate minerals and the thermochronology of apatite. In: Phosphates; Geochemical, Geobiological, and Materials Importance (Ed. by M.J.Kohn , J.Rakovan & J.M.Hughes ), pp. 579–630. Mineralogical Society of America and Geochemical Society, Washington, DC.
    [Google Scholar]
  29. Gleadow, A.J.W., Duddy, I.R. & Lovering, J.F. (1983) Fission track analysis: a new tool for the evaluation of thermal histories and hydrocarbon potential. Austr. Petrol. Expl. Ass., 23, 93–102.
    [Google Scholar]
  30. Glover, R.T. (1999) Aspects of intraplate deformation in Saharan cratonic basins. PhD thesis, University of Wales, Aberystwyth, United Kingdom.
  31. Green, P.F. (1981) A new look at statistics in fission‐track dating. Nucl. Tracks, 5, 77–86.
    [Google Scholar]
  32. Green, P.F., Duddy, I.R. & Bray, R.J. (1995) Applications of thermal history reconstruction in inverted basins. In: Basin Inversion (Ed. by J.G.Buchanan & P.G.Buchanan ), Geol. Soc. Lond. Spec. Publ., 88, 149–165.
    [Google Scholar]
  33. Green, P.F., Duddy, I.R., Gleadow, A.J.W., Tingate, P.R. & Laslett, G.M. (1986) Thermal annealing of fission tracks in apatite 1. A Qualitative Description. Chem. Geol. (Isotope Geosci. Sect.), 59, 237–253.
    [Google Scholar]
  34. Guirard, R., Benkhelil, J. & Moreau, C. (1987) Post‐Hercynian tectonics in northern and western Africa. Geol. J., 22, 433–466.
    [Google Scholar]
  35. Gumati, Y.D., Kanes, W.H. & Schamel, S. (1996) An evaluation of the hydrocarbon potential of the sedimentary basins of Libya. J. Petrol. Geol., 19, 95–112.
    [Google Scholar]
  36. Hallett, D. (2002) Petroleum Geology of Libya. Elsevier, Amsterdam.
    [Google Scholar]
  37. Hammuda, O.S. (1980) Geologic factors controlling fluid trapping and anomalous freshwater occurrence in the Tadrart Sandstone, Al Hamadah al Hamra' area, Ghadamis basin. In: Symposium on the Geology of Libya (Ed. by M.J.Salem ), pp. 501–507.
    [Google Scholar]
  38. Hill, K.C., Hill, K.A., Cooper, G.T., O'sullivan, A.J., O'sullivan, P.B. & Richardson, M.J. (1995) Inversion around the Bass Basin, SE Australia. In: Basin Inversion (Ed. by J.G.Buchanan & P.G.Buchanan ), Geol. Soc. Lond. Spec. Publ., 88, 525–547.
    [Google Scholar]
  39. Hillis, R.R. (1995) Regional Tertiary exhumation in and around the United Kingdom. In: Basin Inversion (Ed. by J.G.Buchanan & P.G.Buchanan ), Geol. Soc. Lond. Spec. Publ., 88, 167–190.
    [Google Scholar]
  40. Hurford, A.J. & Green, P.F. (1983) The zeta age calibration of fission‐track dating. Isotope Geosci., 1, 285–317.
    [Google Scholar]
  41. Kamp, P.J.J. & Green, P.F. (1990) Thermal and tectonic history of selected Taranaki Basin (New Zealand) wells assessed by apatite fission track analysis. AAPG Bull., 74, 1401–1419.
    [Google Scholar]
  42. Klitzsch, E. (1981) Lower Palaeozoic rocks of Libya, Egypt, and Sudan. In: Lower Palaeozoic of the Middle East, Eastern and Southern Africa, and Antarctica. Lower Palaeozoic Rocks of the World (Ed. by C.H.Holland ), pp. 131–163. J. Wiley & Sons, Chichester.
    [Google Scholar]
  43. Lesquer, A., Takherist, D., Dautria, J.M. & Hadiouche, O. (1990) Geophysical and petrological evidence for the presence of an “anomalous” upper mantle beneath the Sahara basins (Algeria). Earth Planet. Sci. Lett., 96, 407–418.
    [Google Scholar]
  44. Logan, P. & Duddy, I.R. (1998) An investigation of the thermal history of the Ahnet and Reggane basins, central Algeria, and the consequences for hydrocarbon generation and accumulation. In: Petroleum Geology of North Africa (Ed. by D.S.MacGregor , R.T.J.Moody & D.D.Clark‐Lowes ), Geol. Soc. Lond., Spec. Publ., 132, 131–155.
    [Google Scholar]
  45. Luning, S., Craig, J., Loydell, D.K., Storch, P. & Fitches, B. (2000) Lower Silurian ‘hot shales’ in North Africa: regional distribution and depositional model. Earth Sci. Rev., 49, 121–200.
    [Google Scholar]
  46. Magara, K. (1976) Thickness of removed sedimentary rocks, paleopore pressure, and paleotemperature, southwestern part of Western Canada Basin. AAPG Bull., 60, 554–565.
    [Google Scholar]
  47. Makhous, M. & Galushkin, Y.I. (2003) Burial history and thermal evolution of the northern and eastern Saharan basins. AAPG Bull., 87, 1623–1651.
    [Google Scholar]
  48. Makhous, M. & Galushkin, Y.I. (2005) Basin Analysis and Modelling of the Burial, Thermal and Maturation Histories in Sedimentary Basins. Editions TECHNIP, Paris.
    [Google Scholar]
  49. Malla, M.S., Khatir, B. & Yahi, N. (1998). Review of the structural evolution and hydrocarbon generation in Ghadames and lllizi basins. Proceedings of the World Petroleum Congress, Actes et Documents – Congres Mondial de Petrole, 15, 23–33.
    [Google Scholar]
  50. Menpes, R.J. & Hillis, R.R. (1995) Quantification of Tertiary exhumation from sonic velocity data, Celtic Sea/South‐Western Approaches. In: Basin Inversion (Ed. by J.G.Buchanan & P.G.Buchanan ), Geol. Soc. Lond., Spec. Publ., 88, 191–207.
    [Google Scholar]
  51. Miles, J.A. & Harriman, G. (2000) A geochemical evaluation of the Carboniferous to Devonian section of EME‐1, Algeria. Internal report for Anadarko Algeria Corporation (unpublished).
  52. O'sullivan, P.B. & Parrish, R.R. (1995) The importance of apatite composition and single‐grain ages when interpreting fission track data from plutonic rocks, a case study from the Coast Ranges, British Columbia. Earth Planet. Sci. Lett., 132, 213–224.
    [Google Scholar]
  53. ROBERTSON REPORT NO. 8270/Ic.
    ROBERTSON REPORT NO. 8270/Ic. (1999) Palynological analysis of the interval 3200–3985 m in the LL&E Algeria Limited ONE‐1 well. Internal report for Burlington Resources Inc. (unpublished).
  54. Rusk, D.C. (2001) Libya; Petroleum potential of the underexplored basin centers; a twenty‐first‐century challenge. In: Petroleum Geology of the Twenty First Century (Ed. By M.J.Downey , J.C.Threet & W.A.Morgan ), AAPG Mem., 74, 429–452.
    [Google Scholar]
  55. Sahagian, R. (1988) Epeirogenic motion of Africa as inferred from Cretaceous shoreline deposits. Tectonics, 123, 1–35.
    [Google Scholar]
  56. Sambridge, M.S. & Compston, W. (1994) Mixture modelling of multi‐component data sets with application to ion‐probe zircon ages. Earth Planet. Sci. Lett., 128, 373–390.
    [Google Scholar]
  57. Stocks, A.E. & Lawrence, S.R. (1990) Identification of source rocks from wireline logs. In: Geological Applications of Wireline Logs (Ed. By A.Hurst , M.A.Lovell & A.C.Morton ), Geol. Soc. Lond. Spec. Publ., 48, 241–252.
    [Google Scholar]
  58. Sweeney, J.J. & Burnham, A.K. (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull., 74, 1559–1570.
    [Google Scholar]
  59. Tricker, P.M., Marshall, J.E.A. & Badman, T.D. (1992) Chitinozoan reflectance: a lower Palaeozoic thermal maturity indicator. Mar. Petrol. Geol., 9, 302–307.
    [Google Scholar]
  60. Turner, P., Pilling, D., Walker, D., Exton, J., Binnie, J. & Sabaou, N. (2001) Sequence stratigraphy and sedimentology of the late Triassic TAG‐I (Blocks 401/402, Berkine Basin, Algeria). Mar. Petrol. Geol., 18, 959–981.
    [Google Scholar]
  61. Van De Weerd, A.A. & Ware, P.L.G. (1994) A review of the East Algerian Sahara oil and gas province (Triassic, Ghadames and Illizi basins). First Break, 12, 363–373.
    [Google Scholar]
  62. Wagner, G.A. & Van Den Haute, P. (1992) Fission‐Track Dating. Ferdinand Enke Verlag, Stuttgart.
    [Google Scholar]
  63. Yahi, N., Schaefer, R.J. & Littke, R. (2001) Petroleum generation and accumulation in the Berkine Basin, eastern Algeria. AAPG Bull., 85, 1439–1467.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2007.00335.x
Loading
/content/journals/10.1111/j.1365-2117.2007.00335.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error