1887
Volume 20 Number 4
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Similarity of form between subaerial and submarine landscapes affected by erosion could suggest similarities in the process of erosion, such as by runoff and sedimentary flows, respectively. On the other hand, if aspects of form vary, its characteristics may be used to identify the environmental origin of erosion. Towards these goals, this contribution addresses the morphology of submarine volcanoes (seamounts) with widely differing histories of erosion. One set from the Pacific Ocean never exposed above sea level includes Cretaceous‐age seamounts near Hawai'i (including Apu'upu'u Seamount), two seamounts of <3 Ma in age near a mid‐ocean ridge and the 11–4 Ma Jasper Seamount. These seamounts are all isolated from continents and hence from any erosion associated with mass wasting of unstable terrigenous deposits. In such isolated submarine environments, surfaces erode slowly from weathering, mass wasting and scouring by sedimentary flows initiated by slope failure in pelagic or bedrock materials. The Pacific seamounts are compared with Valencia Seamount in the western Mediterranean, exposed subaerially for 100–400 k.y. during the Messinian Salinity Crisis before 5 Ma. Multibeam and deeply towed sidescan sonar data of Valencia Seamount reveal features typical of subaerial erosion of volcanic islands, such as canyons and relatively uneroded sectors (planezes) between them. Using a simple topographical reconstruction, the apparent erosion depth typically reaches 100 m within canyons and up to 180 m in places. Whereas the younger Pacific seamounts do not show these erosional features, the much older Cretaceous seamounts do have channels, which in one example suggests up to 200 m of incision. Both Valencia and Apu'upu'u seamounts have channel longitudinal profiles that are steep and typically linear to concave upwards. The erosion depth of Apu'upu'u Seamount is significant, despite the seamount's persistent submarine environment, because of its greater age, steeper flanks and greater contributing areas to channels compared with Valencia Seamount. These results illustrate that the channel morphology resulting from submarine erosion can become similar to that produced by subaerial erosion given sufficient time.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2008.00355.x
2008-04-02
2020-04-05
Loading full text...

Full text loading...

References

  1. Atwater, T. & Severinghaus, J. (1989) Tectonic maps of the northeast Pacific. In: The Eastern Pacific Ocean and Hawaii (Ed. by E.L.Winterer , D.M.Hussong & R.W.Decker ), Geol. Soc. Am. Boulder Colorado , Vol. N., 15–20.
    [Google Scholar]
  2. Barone, A.M. & Ryan, W.B.F. (1987) Morphology from subaerial erosion of a Mediterranean seamount. Mar. Geol., 74, 159–172.
    [Google Scholar]
  3. Batiza, R. & Vanko, D. (1983) Volcanic development of small oceanic central volcanoes on the flanks of the East Pacific Rise inferred from narrow‐beam echo‐sounder surveys. Mar. Geol., 54, 53–90.
    [Google Scholar]
  4. Belderson, R.H., Kenyon, N.H., Stride, A.H. & Stubbs, A.R. (1972) Sonographs of the Sea Floor, A Picture Atlas. Elsevier, Amsterdam, 185pp.
    [Google Scholar]
  5. Bertoni, C. & Cartwright, J. (2005) 3D seismic analysis of slope‐confined canyons from the Plio‐Pleistocene of the Ebro continental margin (Western Mediterranean). Basin Res., 17, 43–62.
    [Google Scholar]
  6. Binard, N., Hekinian, R., Cheminee, J.L. & Stoffers, P. (1992) Styles of eruptive activity on intraplate volcanoes in the Society and Austral hot spot regions: bathymetry, petrology, and submersible observations. J. Geophys. Res., 97, 13999–14015.
    [Google Scholar]
  7. Burbank, D.W., Leland, J., Fielding, E., Anderson, P.R., Brozovic, N., Reid, M.R. & Ducan, C. (1996) Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature, 379, 505–510.
    [Google Scholar]
  8. Cann, J.R. & Hsu, K.J. (1973) Trace elements in the Valencia Trough volcanic rocks. In: Initial Reports of the Deep Sea Drilling Project, Vol 13 (Ed. by W.B.F.Ryan & K.J.Ksu , et al.) pp. 772–773. U.S. Govt. Printing Office, Washington, DC.
    [Google Scholar]
  9. Chaytor, J.D., Keller, R.A., Duncan, R.A. & Dziak, R.P. (2007) Seamount morphology in the Bowie and Cobb hot spot trails, Gulf of Alaska. Geochem. Geophys. Geosys, 8. doi: DOI: 10.1029/2007GC001712.
    [Google Scholar]
  10. Clauzon, G., Suc, J.P., Gautier, F., Berger, A. & Loutre, M.F. (1996) Alternate interpretation of the Messinian salinity crisis: controversy resolved? Geology, 24, 363–366.
    [Google Scholar]
  11. Cotton, C.A. (1952) Volcanoes as Landscape Forms. Whitcombe and Tombs Ltd., Christchurch, New Zealand, 416pp.
    [Google Scholar]
  12. De Moustier, C. & Kleinrock, M.C. (1986) Bathymetric artifacts in Sea Beam data: how to recognize them and what causes them. J. Geophys. Res., 91, 3407–3424.
    [Google Scholar]
  13. Doubrovine, P.V. & Tarduno, J.A. (2004) Late Cretaceous paleolatitude of the Hawaiian Hot Spot: new paleomagnetic data from Detroit Seamount (ODP Site 883). Geochem. Geophys. Geosyst., 5, doi: DOI: 10.1029/2004GC000745.
    [Google Scholar]
  14. Druckman, Y., Buchbinder, B., Martinotti, G.M., Tov, R.S. & Aharon, P. (1995) The buried Afiq Canyon (eastern Mediterranean, Israel): a case study of a Tertiary submarine canyon exposed in Late Messinian times. Mar. Geol., 123, 167–185.
    [Google Scholar]
  15. Escutia, C. & Maldonado, A. (1992) Palaeogeographic implications of the Messinian surface in the Valencia through, northwestern Mediterranean Sea. Tectonophys, 203, 263–284.
    [Google Scholar]
  16. Field, M.E. & Gardner, J.V. (1990) Pliocene‐Pleistocene growth of the Rio Ebro margin, northeast Spain: a prograding-slope model. Geol. Soc. Am. Bull., 102, 721–733.
    [Google Scholar]
  17. Field, M.E. & Gardner, J.V. (1991) Valencia gorge: possible Messinian refill channel for the western Mediterranean Sea. Geology, 19, 1129–1132.
    [Google Scholar]
  18. Fornari, D.J., Ryan, W.B.F. & Fox, P.J. (1984) The evolution of craters and calderas on young seamounts: insights from Sea MARC I and Sea Beam sonar surveys of a small seamount group near the axis of the East Pacific Rise at ∼10°N. J. Geophys. Res., 89, 11069–11083.
    [Google Scholar]
  19. Francis, P.R. & Oppenheimer, C. (2004) Volcanoes. Oxford University Press, Oxford, 521pp.
    [Google Scholar]
  20. Frey Martinez, J., Cartwright, J.A., Burgess, P.M. & Vicente Bravo, J. (2004) 3D seismic interpretation of the Messinian Unconformity in the Valencia Basin, Spain. In: 3D seismic Technology: Application to the Exploration of Sedimentary Basins (Ed. by R.J.Davies , J.A.Cartwright , S.A.Stewart , M.Lappin & J.R.Underhill ), Geol. Soc. Lond. Memoir , 29, 91–100.
    [Google Scholar]
  21. Fryer, P., Gill, J.B. & Jackson, M.C. (1997) Volcanologic and tectonic evolution of the Kasuga seamounts, Northern Mariana Trough: Alvin submersible investigations. J. Volcanol. Geotherm. Res., 79, 277–311.
    [Google Scholar]
  22. Gardner, T.W., Jorgensen, D.W., Shuman, C. & Lemieux, C.R. (1987) Geomorphic and tectonic process rates: effects of measured time interval. Geology, 15, 259–261.
    [Google Scholar]
  23. Gargani, J. & Rigollet, C. (2007) Mediterranean Sea level variations during the Messinian salinity crisis. Geophys. Res. Lett., 34: Paper L10405, doi: DOI: 10.1029/207GL029885.
    [Google Scholar]
  24. Gautier, F., Clauzon, G., Suc, J.‐P., Cravatte, J. & Violanti, D. (1994) Age et durée de la crise de salinité messinienne. C. R. Acad. Sci. Paris, 318, 1103–1109.
    [Google Scholar]
  25. Gee, J., Staudigel, H. & Natland, J.H. (1991) Geology and petrology of Jasper Seamount. J. Geophys. Res., 96, 4083–4105.
    [Google Scholar]
  26. Gennesseaux, M. & Lefebvre, D. (1980) Le Golfe du Lion et le Paléo‐Rhône messinien. Géol. Méditerran., 7, 71–80.
    [Google Scholar]
  27. Gillet, H., Lericolais, G. & Réhault, J.‐P. (2007) Messinian event in the Black Sea: evidence of a Messinian erosional surface. Mar. Geol., 244, 142–165.
    [Google Scholar]
  28. Guennoc, P., Gorini, C. & Mauffret, A. (2000) Histoire géologique du Golfe du Lion et cartographie du rift oligo‐aquitanien et de la surface messinienne. Géol. France, 3, 67–97.
    [Google Scholar]
  29. Hack, J.T. (1957) Studies of longitudinal stream profiles in Virginia and Maryland, Geological Survey Professional Paper 294‐B, US Govt. Printing Office, Washington.
  30. Hardie, L.A. & Lowenstein, T.K. (2004) Did the Mediterranean Sea dry out during the Miocene? A reassessment of the evaporite evidence from DSDP Legs 13 and 42A cores. J. Sediment. Petrol., 74, 453–461.
    [Google Scholar]
  31. Hildebrand, J.A., Dorman, L.M., Hammer, P.T.C., Schreiner, A.E. & Corneulle, B.D. (1989) Seismic tomography of Jasper Seamount. Geophys. Res. Lett., 16, 1355–1358.
    [Google Scholar]
  32. Honda, M., Bernatowicz, T., Podosek, F.A., Batiza, R. & Taylor, P.T. (1987) Age determinations of eastern Pacific seamounts (Henderson, 6 and 7) – Implications for near‐ridge and intraplate volcanism. Mar. Geol., 74, 79–84.
    [Google Scholar]
  33. Howard, A.D. & Kerby, G. (1983) Channel changes in badlands. Geol. Soc. Am. Bull., 94, 739–752.
    [Google Scholar]
  34. Hsu, K.J., Cita, M.B. & Ryan, W.B.F. (1973) The origin of the Mediterranean evaporites. In: Initial Reports of the Deep Sea Drilling Project, Vol. 13(2) (Ed. by W.B.F.Ryan & K.J.Ksu , et al.) pp. 1203–1231. U.S. Govt. Printing Office, Washington, DC.
    [Google Scholar]
  35. Hsu, K.J. & Honnorez, J. (1973) Petrography of the Valencia Trough volcanic rocks. In: Initial Reports of the Deep Sea Drilling Project, Vol. 13(2) (Ed. by W.B.F.Ryan & K.J.Ksu , et al.) pp. 767–770. U.S. Govt. Printing Office, Washington, DC.
    [Google Scholar]
  36. Hsu, K.J., Montadert, L., Bernoulli, D., Cita, M.B., Erikson, A., Garrison, R.E., Kidd, R.B., Melieres, F., Muller, C. & Wright, R.H. (1977) History of the Mediterranean salinity crisis. Nature, 267, 399–403.
    [Google Scholar]
  37. Karatson, D. (1996) Rates and factors of stratovolcano degradation in a continental climate: a complex morphometric analysis for nineteen Neogene/Quaternary crater remnants in the Carpathians. J. Volcanol. Geotherm. Res., 73, 65–78.
    [Google Scholar]
  38. Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J. & Wilson, D.S. (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature, 400, 652–655.
    [Google Scholar]
  39. Lofi, J., Deverchère, J., Gaullier, V., Gillet, H., Gorini, C., Guennoc, P., Loncke, L., Maillard, A., Sage, F., Thinon, I., Obone Zue Obame, E. & Capron, A. (2007) The Messinian Salinity Crisis in the offshore domain: an overview of our knowledge through seismic profile interpretation and multi‐site approach. 33rd CIESM Workshop on “Messinian Evaporites – from Mega‐deposits to Micro‐biology,” Alméria, Spain.
  40. Lofi, J., Gorini, C., Berne, S., Clauzon, G., Tadeus Dos Reis, A., Rayan, W.B.F. & Steckler, M.S. (2005) Erosional processes and paleo‐environmental changes in the western Gulf of Lion (SW France) during the Messinian Salinity Crisis. Mar. Geol., 217, 1–30.
    [Google Scholar]
  41. MacDonald, G.A., Abbott, A.T. & Peterson, F.L. (1983) Volcanoes in the Sea. The Geology of Hawaii, 2nd edn. University of Hawaii Press, Hololulu, Hawaii, 517pp.
    [Google Scholar]
  42. Maillard, A., Gorini, C., Mauffret, A., Sage, F., Lofi, J. & Gaullier, V. (2006) Offshore evidence of polyphase erosions in the Valencia Basin (northwest Mediterranean): scenario for the Messinian Salinity Crisis. Sediment. Geol., 188–189, 69–91.
    [Google Scholar]
  43. Malinverno, A., Cafiero, M. & Ryan, W.B.F., et al. (1981) Distribution of Messinian sediments and erosional surfaces beneath the Tyrrhenian Sea – geodynamic implications. Oceanol. Acta, 4, 489–495.
    [Google Scholar]
  44. Malinverno, A., Ryan, W.B.F., Auffret, G.A. & Pautot, G. (1988) Sonar images of recent failure events on the continental margin off Nice, France. In: Sedimentological Consequences of Convulsive Geologic Events (Ed. by H.E.Clifton ), Geol. Soc. Am. Spec. Paper , 229, 59–75.
    [Google Scholar]
  45. Manzi, V., Lugli, S., Ricci Lucchi, F. & Roveri, M. (2005) Deep‐water clastic evaporites deposition in the Messinian Adriatic foredeep (northern Appenines, Italy): Did the Mediterranean ever dry out? Sedimentology, 52, 875–902.
    [Google Scholar]
  46. McGregor, B.A., Stubblefield, W.L., Ryan, W.B.F. & Twichell, D.C. (1982) Wilmington submarine canyon: a marine fluvial-like system. Geology, 10, 27–30.
    [Google Scholar]
  47. Menard, H.W. (1986) Islands. Scientific American Books, New York, NY, 230pp.
    [Google Scholar]
  48. Miller, J.R. (1991) The influence of bedrock geology on knickpoint development and channel‐bed degradation along downcutting streams in south‐central Indiana. J. Geol., 99, 591–605.
    [Google Scholar]
  49. Mitchell, N.C. (1993) A model for attenuation of backscatter due to sediment accumulations and its application to determine sediment thickness with GLORIA sidescan sonar. J. Geophys. Res., 98, 22477–22493.
    [Google Scholar]
  50. Mitchell, N.C. (1995) Characterising the extent of volcanism at the galapagos spreading centre using Deep Tow profiler records. Earth Planet. Sci. Lett., 134, 459–472.
    [Google Scholar]
  51. Mitchell, N.C. (2003) Susceptibility of mid‐ocean ridge volcanic islands and seamounts to large‐scale landsliding. J. Geophys. Res., 108, doi: DOI: 10.1029/2002JB001997.
    [Google Scholar]
  52. Mitchell, N.C. (2004) Form of submarine erosion from confluences in Atlantic USA continental slope canyons. Am. J. Sci., 304, 590–611.
    [Google Scholar]
  53. Mitchell, N.C. (2005) Interpreting long‐profiles of canyons in the USA Atlantic continental slope. Mar. Geol., 214, 75–99.
    [Google Scholar]
  54. Mitchell, N.C. (2006) Morphologies of knickpoints in submarine canyons. Geol. Soc. Am. Bull., 118, 589–605.
    [Google Scholar]
  55. Mitchell, N.C., Dade, W.B. & Masson, D.G. (2003) Erosion of the submarine flanks of the Canary Islands. J. Geophys. Res., 108: doi: DOI: 10.1029/2002JF000003.
    [Google Scholar]
  56. Mitchell, N.C., Masson, D.G., Watts, A.B., Gee, M.J.R. & Urgeles, R. (2002) The morphology of the flanks of volcanic ocean islands: a comparative study of the Canary and Hawaiian hotspot islands. J. Volcanol. Geotherm. Res., 115, 83–107.
    [Google Scholar]
  57. Moore, J.G. & Chadwick, W.W. (1995) Offshore geology of Mauna Loa and adjacent areas, Hawaii. In: Mauna Loa Revealed: Structure, Composition, History and Hazards (Ed. by J.M.Rhodes & J.P.Lockwood ), pp. 21–44. American Geophysical Union, Washington, DC, USA.
    [Google Scholar]
  58. Ollier, C.D. (1988) Volcanoes. Blackwell, Oxford, UK.
    [Google Scholar]
  59. Ollier, C.D. & Terry, J.P. (1999) Volcanic geomorphology of northern Viti Levu, Fiji. Aust. J. Earth Sc., 46, 515–522.
    [Google Scholar]
  60. Parker, G., Fukushima, Y. & Pantin, H.M. (1986) Self‐accelerating turbidity currents. J. Fluid. Mech., 171, 145–181.
    [Google Scholar]
  61. Pautot, G., Auzende, J.‐M. & Olivet, J.‐L. (1973) Valencia Basin. In: Initial reports of the Deep‐Sea Drilling Project, Vol. 13 (Ed. by W.B.F.Ryan , K.J.Hsü & M.B.Cita , et al..) pp. 1430–1441. US Government Printing Office, Washington, DC.
    [Google Scholar]
  62. Peakall, J., McCaffrey, W. & Kneller, B. (2000) A process model for the evolution, morphology, and architecture of sinuous submarine channels. J. Sediment. Res., 70, 434–448.
    [Google Scholar]
  63. Pittenger, A., Taylor, E. & Bryant, W.R. (1989) The influence of biogenic silica on the geotechnical stratigraphy of the Voring Plateau, Norwegian Sea. In: Proceedings of the ODP, Scientific Results, Vol. 104 (Ed. by O.Eldholm , J.Thiede & E.Taylor , et al.) pp. 923–940. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  64. Pratson, L.F. & Coakley, B.J. (1996) A model for the headward erosion of submarine canyons induced by downslope‐eroding sediment flows. Geol. Soc. Am. Bull., 108, 225–234.
    [Google Scholar]
  65. Pratson, L.F. & Ryan, W.B.F. (1996) Automated drainage extraction for mapping the Monterey submarine drainage system, California margin. Mar. Geophys. Res., 18, 757–777.
    [Google Scholar]
  66. Pringle, M.S., Staudigel, H. & Gee, J. (1991) Jasper Seamount: seven million years of volcanism. Geology, 19, 364–368.
    [Google Scholar]
  67. Ramsey, L.A., Hovius, N., Lague, D. & Liu, C.‐S. (2006) Topographic characteristics of the Taiwan orogen. J. Geophys. Res., 111: Paper F02009, doi: DOI: 10.1029/2005JF000314.
    [Google Scholar]
  68. Renard, V. & Allenou, J.P. (1979) SeaBeam multi‐beam echosounding in “Jean Charcot”, Description, evaluation and first results. Int. Hydrog. Rev., 56, 35–67.
    [Google Scholar]
  69. Riding, R., Braga, J.C., Martin, J.M. & Sanchez‐Almazo, I.M. (1998) Mediterranean Messinian Salinity crisis: constraints from a coeval marginal basin, Sorbas, southeastern Spain. Mar. Geol., 146, 1–20.
    [Google Scholar]
  70. Rizzini, A., Vezzani, F., Cococcetta, V. & Milad, G. (1978) Stratigraphy and sedimentation of a Neogene–Quaternary section in the Nile delta area (A.R.E.). Mar. Geol., 27, 327–348.
    [Google Scholar]
  71. Roberts, J.A., Rutledge, A.K. & Kotilainen, A.T. (1995) Submarine slope stability analysis on the Detroit Seamount, Site 883. In: Proceedings of the ODP, Scientific Results, Vol. 145 (Ed. by D.K.Rea , I.A.Basov , D.W.Stow & J.F.Allan ), pp. 547–556. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  72. Rouchy, J.M., Suc, J.P., Ferrandini, J. & Ferrandini, M. (2006) The Messinian salinity crisis revisited. Sediment. Geol., 188, 1–8.
    [Google Scholar]
  73. Rouchy, J.M. & Caruso, A. (2006) The Messinian salinity crisis in the Mediterranean basin: a reassessment of the data and an integrated scenario. Sediment. Geol., 188, 35–67.
    [Google Scholar]
  74. Roveri, M., Bassetti, M.A. & Ricci Lucchi, F. (2001) The Mediterranean Messinian salinity crisis: an Apennine foredeep perspective. Sediment. Geol., 140, 201–214.
    [Google Scholar]
  75. Ryan, W.B.F. (1978) Messinian badlands on the southeastern margin of the Mediterranean in the Miocene. Mar. Geol., 27, 349–363.
    [Google Scholar]
  76. Ryan, W.B.F. & Cita, M.B. (1978) The nature and distribution of Messinian erosional surfaces; indicators of a several‐kilometer‐deep Mediterranean in the Miocene. Mar. Geol., 27, 193–230.
    [Google Scholar]
  77. Ryan, W.B.F., Hsü, K.J., Cita, M.B., Dumitrica, P., Lort, J., Mayne, W., Nesteroff, W.D., Pautot, G., Stradner, H. & Wezel, F.C. (1973a) Valencia Trough – Site 122. Initial Reports of the Deep‐Sea Drilling Project, Vol. 13, pp. 91–109. US Government Printing Office, Washington, DC.
    [Google Scholar]
  78. Ryan, W.B.F., Hsü, K.J., Cita, M.B., Dumitrica, P., Lort, J., Mayne, W., Nesteroff, W.D., Pautot, G., Stradner, H. & Wezel, F.C. (1973b) Initial Reports of the Deep Sea Drilling Project Leg 13. US Government Printing Office, Washington, DC.
    [Google Scholar]
  79. Ryan, W.B.F. (1976) Quantitative‐evaluation of depth of Western Mediterranean before, during and after late Miocene salinity crisis. Sedimentology, 23, 791–813.
    [Google Scholar]
  80. Ryan, W.B.F., Pitman, W.C., Major, C.O., Shimkus, K., Moskalenko, V., Jones, G.A., Dimitrov, P., Gorur, N., Sakinc, M. & Yuce, H. (1997) An abrupt drowning of the Black Sea shelf. Mar. Geol., 138, 119–126.
    [Google Scholar]
  81. Sage, F., et al. (2005) Seismic evidence for Messinian detrital deposits at the western Sardinia margin, northwestern Mediterranean. Mar. Petrol. Geol., 22, 757–773.
    [Google Scholar]
  82. Savoye, B. & Piper, D.J.W. (1991) The Messinian event on the margin of the Mediterranean Sea in the Nice area, southern France. Mar. Geol., 97, 279–304.
    [Google Scholar]
  83. Seidl, M. & Dietrich, W.E. (1992) The problem of channel erosion into bedrock. In: Functional Geomorphology: Landform Analysis and Models (Ed. by K.H.Schmidt & J.De Ploey ), pp. 101–124. Catena Suppl. 23.
    [Google Scholar]
  84. Seidl, M.A., Dietrich, W.E. & Kirchner, J.W. (1994) Longitudinal profile development into bedrock: an analysis of Hawaiian channels. J. Geol., 102, 457–474.
    [Google Scholar]
  85. Shipboard Science Party
    Shipboard Science Party (1973) Site 171. In: Initial Reports of the Deep Sea Drilling Project, Vol. 17 (Ed. by E.L.Winterer , et al..) pp. 283–296. U.S. Government Printing Office, Washington, DC.
    [Google Scholar]
  86. Shipboard Science Party
    Shipboard Science Party (1975) Site 313: mid‐pacific mountains. In: Initial Reports of the Deep Sea Drilling Project, Vol. 32 (Ed. by R.L.Larson , et al..) pp. 313–326. U.S. Government Printing Office, Washington, DC.
    [Google Scholar]
  87. Shipboard Science Party
    Shipboard Science Party (1993) Site 865. Proceedings of the Ocean Drilling Program, Initial Reports (Ed. by S.K.Stewart ), Vol. 143, pp. 111–180. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  88. Smith, J.R., Satake, K. & Suyehiro, K. (2002) Deepwater multibeam sonar surveys along the Southeastern Hawaiian Ridge: guide to the CD‐ROM. In: Hawaiian Volcanoes, Deep Underwater Perspectives (Ed. by E.Takahashi , P.W.Lipman , M.J.Garcia , J.Naka & S.Aramaki ), pp. 3–9. American Geophysical Union, Washington, DC.
    [Google Scholar]
  89. Smith, W.H.F. & Sandwell, D.T. (1997) Global sea floor topography from satellite altimetry and ship soundings. Science, 277, 1956–1962.
    [Google Scholar]
  90. Smith, W.H.F. & Wessel, P. (1990) Gridding with continuous curvature splines in tension. Geophysics, 55 (3), 293–305.
    [Google Scholar]
  91. Stampfli, J. & Höcker, C.F.W. (1989) Messinian paleorelief from a 3D seismic survey in the Tarrasco concession area (Spanish Mediterranean Sea). Geol. Mijnbouw, 68, 201–210.
    [Google Scholar]
  92. Staudigel, H. & Schmincke, H.‐U. (1984) The Pliocene seamount series of La Palma/Canary Islands. J. Geophys. Res., 89, 11, 195–11, 215.
    [Google Scholar]
  93. Suarez, G. & Molnar, P. (1980) Paleomagnetic data and pelagic sediment facies and the motion of the Pacific plate relative to the spin axis since the Late Cretaceous. J. Geophys. Res., 85, 5257–5280.
    [Google Scholar]
  94. Tucholke, B.E., Stewart, W.K. & Kleinrock, M.C. (1997) Long‐term denudation of ocean crust in the central North Atlantic Ocean. Geology, 25, 171–174.
    [Google Scholar]
  95. Van Andel, T.J., Heath, G.R. & Moore, T.C. (1975) Cenozoic tectonics, sedimentation, and paleoceanography of the central equatorial Pacific. Geol. Soc. Am. Memoir, 143, 134pp.
    [Google Scholar]
  96. Vogt, P.R. & Smoot, N.C. (1984) The Geisha Guyots: multi-beam bathymetry and morphometric interpretation. J. Geophys. Res., 89, 11085–11107.
    [Google Scholar]
  97. Waggoner, D.G. (1993) The Age and Alteration of Central Pacific Oceanic Crust Near Hawaii, Proceedings of the Ocean Drilling Program Scientific Results, Vol. 136 (pp. 119–132. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  98. Wessel, P. & Smith, W.H.F. (1991) Free software helps map and display data. Eos, Trans. Am. Geophys. Union, 72, 441.
    [Google Scholar]
  99. Whipple, K.X., Hancock, G.S. & Anderson, R.S. (2000) River incision into bedrock: mechanics and relative efficacy of plucking, abrasion, and cavitation. Geol. Soc. Am. Bull., 112, 490–503.
    [Google Scholar]
  100. Wright, I.C. (1996) Volcaniclastic processes on modern submarine arc stratovolcanoes: sidescan and photographic evidence from the Rumble IV and V volcanoes, southern Karmadec Arc (SW Pacific). Mar. Geol., 136, 21–39.
    [Google Scholar]
  101. Wright, I.C., Worthington, J. & Gamble, J.A. (2006) New multibeam mapping and geochemistry of the 30°–35°S sector, and overview, of southern Karmadec arc volcanism. J. Volcanol. Geotherm. Res., 149, 263–296.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2008.00355.x
Loading
/content/journals/10.1111/j.1365-2117.2008.00355.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error