1887
Volume 20 Number 4
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

On the western part of the Pacific Plate most seamounts formed during the Cretaceous period in the so‐called West Pacific Seamount Province (WPSP). On the northwestern part of the same plate, the Joban and Japanese Seamount Trail (JJST) are also composed of Early Cretaceous seamounts. However, two new groups of knolls were recently discovered during multibeam surveys on the Pacific Plate along the Japan Trench. One group consists of circular knolls that are flat‐topped in shape and correspond to eruptive ages of approximately 75 Ma. The other group consists of irregularly shaped knolls, also called petit‐spot volcanoes, that are found on the outer‐rise systems of the subducting Pacific Plate. These petit‐spots seem much younger and available age data suggest that they only formed in the last few million years. Acoustic reflective data, which are simultaneously obtained with bathymetrical data, are a most powerful tool to distinguish the petit‐spots from the Cretaceous edifices in the WPSP and JJST. In this paper, we present the results of an exploratory search for these new kind of petit‐spot volcanoes along the trenches in the Pacific Ocean, with an emphasis on the Japan and Tonga trenches. The sizes of these irregularly shaped petit‐spot volcanoes are several orders of magnitude less than the Cretaceous seamounts and circular knolls, yet they appear to be ubiquitous on the ocean floor, in particular, where incipient melts in the asthenosphere can be squeezed out by tectonic forces.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2008.00363.x
2008-06-28
2020-04-05
Loading full text...

Full text loading...

References

  1. Abe, N., Fujimoto, H., Hirano, N., Kirby, S., Kido, M., Osada, Y., Hino, R., Tsushima, H. & Koike, Y. (2007) A discovery of another petit‐spot volcanic field in the Cretaceous Pacific Plate. EOS Trans. AGU, 88 (52), Fall Meeting Supplement, Abstract T13A‐1127.
    [Google Scholar]
  2. Abers, G., Persons, B. & Weissel, J.K. (1988) Seamount abundances and distributions in the southeast Pacific. Earth Planet. Sci. Lett., 87, 137–151.
    [Google Scholar]
  3. Batiza, R. (1980) Origin and petrology of young oceanic central volcanoes: Are most tholeiitic rather than alkalic? Geology, 8, 477–482.
    [Google Scholar]
  4. Caress, D.W. & Chayes, D.N. (1996) Improved processing of hydrosweep DS multibeam data on the R/V Maurice ewing. Marine Geophys. Res., 18, 631–650.
    [Google Scholar]
  5. Clague, D.A., Holcomb, R.T., Sinton, J.M., Detrick, R.S. & Torresan, M.E. (1990) Pliocene and Pleistocene alkalic flood basalts on the seafloor north of the Hawaiian islands. Earth Planet. Sci. Lett., 98, 175–191.
    [Google Scholar]
  6. Ebisawa, N., Sumino, H., Okazaki, R., Takigami, Y., Hirano, N., Nagao, K. & Kaneoka, I. (2004) Construction of I‐Xe and 40Ar‐39Ar dating system using a modified VG3600 noble gas mass spectrometer and the first I‐Xe data obtained in Japan. J. Mass Spectrometry Soc. Japan, 52, 219–229.
    [Google Scholar]
  7. Fujiwara, T., Hirano, N., Abe, N. & Takizawa, K. (2007) Subsurface structure of the ‘‘petit‐spot’’ volcanoes on the northwestern Pacific Plate. Geophys. Res. Lett., 34, L13305, doi: DOI: 10.1029/2007GL030439.
    [Google Scholar]
  8. Harmon, N., Forsyth, D.W., Lamm, R. & Webb, S.C. (2007) P and S wave delays beneath intraplate volcanic ridges and gravity lineations near the East Pacific rise. J. Geophys. Res., 112, B03309, doi:DOI: 10.1029/2006JB004392.
    [Google Scholar]
  9. Henderson, L.J., Gordon, R.G. & Engebretson, D.C. (1984) Mesozoic aseismic ridges on the Farallon plate and southward migration of shallow subduction during the Laramide orogeny. Tectonics, 3, 121–132.
    [Google Scholar]
  10. Hillier, J.K. (2007) Pacific seamount volcanism in space and time. Geophys. J. Int., 168, 877–889.
    [Google Scholar]
  11. Hirano, N., Kawamura, K., Hattori, M., Saito, K. & Ogawa, Y. (2001) A new type of intra‐plate volcanism; young alkali‐basalts discovered from the subducting Pacific Plate, northern Japan Trench. Geophys. Res. Lett., 28, 2719–2722.
    [Google Scholar]
  12. Hirano, N., Takahashi, E., Yamamoto, J., Abe, N., Ingle, S.P., Kaneoka, K., Kimura, J., Hirata, T., Ishii, T., Ogawa, Y., Machida, S. & Suyehiro, K. (2006) Volcanism in response to plate flexure. Science, 313, 1426–1428.
    [Google Scholar]
  13. Iwata, N. (1998) Geochronological Study of the Deccan Volcanism by the 40Ar‐39Ar Method. Ph.D. thesis, University of Tokyo, Tokyo.
    [Google Scholar]
  14. Kobayashi, K. (1993) Preliminary Report of the Hakuho Maru Cruise KH92‐3. Ocean Research Institute, University of Tokyo, Tokyo.
    [Google Scholar]
  15. Koppers, A.A.P., Morgan, J.P., Morgan, J.W. & Staudigel, H. (2001) Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails. Earth Planet. Sci. Lett., 185, 237–252.
    [Google Scholar]
  16. Koppers, A.A.P., Russell, J.A., Jackson, M., Konter, J., Staudigel, H. & Hart, S.R. (2008) Samoa reinstated as a primary hotspot trail. Geology, 36, 435–438.
    [Google Scholar]
  17. Koppers, A.A.P., Staudigel, H. & Wijbrans, J.R. (2000) Dating crystalline groundmass separates of altered Cretaceous seamount basalts by the 40Ar/39Ar incremental heating technique. Chem. Geol., 166, 139–158.
    [Google Scholar]
  18. Koppers, A.A.P., Staudigel, H., Pringle, M.S. & Wijbrans, J.R. (2003) Short‐lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? Geochem. Geophys. Geosyst., 4, doi: DOI: 10.1029/2003GC000533.
    [Google Scholar]
  19. Larson, R.L. (1991) Latest pulse of earth: evidence for a mid‐Cretaceous super plume. Geology, 19, 547–550.
    [Google Scholar]
  20. Levitt, D.A. & Sandwell, D.T. (1995) Lithospheric bending at subduction zones based on depth soundings and satellite gravity. J. Geophys. Res., 100 (B1), 379–400.
    [Google Scholar]
  21. Mofjeld, H.O., Symons, C.M., Lonsdale, P., Gonzalez, F.I. & Titov, V.V. (2004) Tsunami scattering and earthquake faults in the deep Pacific Ocean. Oceanography, 17, 38–46.
    [Google Scholar]
  22. Nakanishi, M. & Winterer, E.L. (1998) Tectonic history of the Pacific‐Farallon‐Phoenix triple junction from Late Jurassic to Early Cretaceous: an abandoned Mesozoic spreading system in the central Pacific basin. J. Geophys. Res., 103, 12453–12468.
    [Google Scholar]
  23. Natland, J.H. (1980) The progression of volcanism in the Samoan linear volcanic chain. Am. J. Sci., 280‐A, 709–735.
    [Google Scholar]
  24. Parsons, B. & Sclater, J.G. (1977) An analysis of the variation of oceanic floor bathymetry and heat flow with age. J. Geophys. Res., 82, 803–827.
    [Google Scholar]
  25. Ribe, N.M. & Christensen, U.R. (1999) The dynamical origin of Hawaiian volcanism. Earth Planet. Sci. Lett., 171, 517–531.
    [Google Scholar]
  26. SAITO, K. (1994) Excess Ar in some metamorphic and plutonic rocks reduction of thermal neutron‐induced 40Ar by Cd shielding. Sci. Rep. Res. Inst. Tohoku Univ. (RITU), Japan, A40, 185–189.
    [Google Scholar]
  27. Sandwell, D.T., Winterer, E.L., Mammerickx, J., Duncan, R.A., Lynch, M.A., Levitt, D.A. & Johnson, C.L. (1995) Evidence for diffuse extension of the Pacific plate from Pukapuka ridges and cross‐grain gravity lineations. J. Geophys. Res., 100, 15087–15099.
    [Google Scholar]
  28. Smith, W.H.F. & Sandwell, D.T. (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 1957–1962.
    [Google Scholar]
  29. Takigami, Y., Kaneoka, I., Ishii., T. & Nakamura, Y. (1989) 40Ar‐39Ar ages of igneous rocks recovered from Daiichi‐Kashima and Erimo Seamounts during the Kaiko project. Palaeogeogr. Palaeoclimatol. Palaeoecol., 71, 71–81.
    [Google Scholar]
  30. Watts, A.B. & Zhong, S. (2000) Observations of flexure and the rheology of oceanic lithosphere. Geophys. J. Int., 142, 855–875.
    [Google Scholar]
  31. Weeraratne, D.S., Forsyth, D.W., Yang, Y. & Webb, S.C. (2007) Rayleigh wave tomography beneath intraplate volcanic ridges in the South Pacific. J. Geophys. Res., 112, B06303, doi:DOI: 10.1029/2006JB004403.
    [Google Scholar]
  32. Wessel, P. & Smith, W.H.F. (1995) New version of the generic mapping tools released. EOS Trans., AGU, 76, 329.
    [Google Scholar]
  33. White, S.M., Umino, S. & Kumagai, H. (2006) Transition from seamount chain to intraplate volcanic ridge at the East Pacific Rise. Geology, 34, 293–296.
    [Google Scholar]
  34. Worthington, T.J., Hekinian, R., Stoffers, P., Kuhn, T. & Hauff, F. (2006) Osbourn trough: structure, geochemistry and implications of a mid‐Cretaceous paleospreading ridge in the South Pacific. Earth Planet. Sci. Lett., 245, 685–701.
    [Google Scholar]
  35. York, D. (1969) Least squares fitting of a straight line with correlated errors. Earth Planet. Sci. Lett., 5, 320–324.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2008.00363.x
Loading
/content/journals/10.1111/j.1365-2117.2008.00363.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error