1887
Volume 20, Issue 3
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Alpine‐type mountain belts formed by continental collision are characterised by a strong cross‐sectional asymmetry driven by the dominant underthrusting of one plate beneath the other. Such mountain belts are flanked on either side by two peripheral foreland basins, one over the underthrust plate and one over the over‐riding plate; these have been termed pro‐ and retro‐foreland basins, respectively. Numerical modelling that incorporates suitable tectonic boundary conditions, and models orogenesis from growth to a steady‐state form (i.e. where accretionary influx equals erosional outflux), predicts contrasting basin development to these two end‐member basin types. Pro‐foreland basins are characterised by: (1) Accelerating tectonic subsidence driven primarily by the translation of the basin fill towards the mountain belt at the convergence rate. (2) Stratigraphic onlap onto the cratonic margin at a rate at least equal to the plate convergence rate. (3) A basin infill that records the most recent development of the mountain belt with a preserved interval determined by the width of the basin divided by the convergence rate. In contrast, retro‐foreland basins are relatively stable, are not translated into the mountain belt once steady‐state is achieved, and are consequently characterised by: (1) A constant tectonic subsidence rate during growth of the thrust wedge, with zero tectonic subsidence during the steady‐state phase (i.e. ongoing accretion‐erosion, but constant load). (2) Relatively little stratigraphic onlap driven only by the growth of the retro‐wedge. (3) A basin fill that records the entire growth phase of the mountain belt, but only a condensed representation of steady‐state conditions. Examples of pro‐foreland basins include the Appalachian foredeep, the west Taiwan foreland basin, the North Alpine Foreland Basin and the Ebro Basin (southern Pyrenees). Examples of retro‐foreland basins include the South Westland Basin (Southern Alps, New Zealand), the Aquitaine Basin (northern Pyrenees), and the Po Basin (southern European Alps). We discuss how this new insight into the variability of collisional foreland basins can be used to better interpret mountain belt evolution and the hydrocarbon potential of these basins types.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2008.00366.x
2008-07-08
2020-04-08
Loading full text...

Full text loading...

References

  1. Allen, P.A. & Allen, J.R. (2005) Basin Analysis, 2nd edn. Blackwell Publishing, Oxford.
    [Google Scholar]
  2. Allen, P.A.
    , Homewood, P. & Williams, G.D. , eds. (1986) Foreland Basins: An Introduction. Foreland Basins. International Association of Sedimentologists. Blackwell Scientific Publications, Oxford.
    [Google Scholar]
  3. Beaumont, C. (1981) Foreland Basins. Geophys. J. R. Astronom. Soc., 65, 291–329.
    [Google Scholar]
  4. Beaumont, C., Kamp, P.J.J., Hamilton, J. & Fullsack, P. (1996) The continental collision zone, South Island, New Zealand: comparison of geodynamical models and observations. J. Geophys. Res.‐Solid Earth, 101, 3333–3359.
    [Google Scholar]
  5. Beaumont, C., Muñoz, J.A., Hamilton, J. & Fullsack, P. (2000) Factors controlling the alpine evolution of the Central Pyrenees inferred from a comparison of observations and geodynamical models. J. Geophys. Res.-Solid Earth, 105, 8121–8145.
    [Google Scholar]
  6. Bird, K.J.
    & Molenaar, M.C. , eds. (1992) The North Slope Foreland Basin, Alaska. Foreland Basins and Fold Belts. American Association of Petroleum Geologists Memoirs, Tulsa.
    [Google Scholar]
  7. Bourrouilh, R., Richert, J.P. & Zolnai, G. (1995) The North Pyrenean Aquitaine Basin, France – evolution and hydrocarbons. AAPG Bull., 79, 831–853.
    [Google Scholar]
  8. Burbank, D.W.
    , Beck, R.A. & Mulder, T. , eds. (1996) The Himalayan Foreland Basin. The Tectonic Evolution of Asia Cambridge University Press.
    [Google Scholar]
  9. Burgess, P.M., Gurnis, M. & Moresi, L. (1997) Formation of sequences in the cratonic interior of North America by interaction between mantle, eustatic, and stratigraphic processes. Geol. Soc. Am. Bull., 109, 1515–1535.
    [Google Scholar]
  10. Carrapa, B., Bertotti, G. & Krijgsman, W. (2003) Subsidence, stress regime and rotation(s) of a tectonically active sedimentary basin within the Western Alpine Orogen: the tertiary Piedmont Basin (Alpine Domain, NW Italy). In: Tracing Tectonic Deformation Using the Sedimentary Record (Ed. by T.McCann & A.Saintot ). 208, 205–227. The Geological Society of London, London.
    [Google Scholar]
  11. Cederbom, C.E., Sinclair, H.D., Schlunegger, F. & Rahn, M.K. (2004) Climate‐induced rebound and exhumation of the European Alps. Geology, 32 (8), 709–712, doi: DOI: 10.1130/G20491.1.
    [Google Scholar]
  12. Choukroune, P. (1989) The Ecors Pyrenean deep seismic profile reflection data and the overall structure of an Orogenic Belt. Tectonics, 8, 23–39.
    [Google Scholar]
  13. Covey, M. (1986) The evolution of Foreland Basins to steady state: evidence from the Western Taiwan Foreland Basin. In: Foreland Basins (Ed. by P.A.Allen & P.Homewood ), Spec. Publ. Int. Assoc. Sedimentol . 77–90. Blackwell, Oxford.
    [Google Scholar]
  14. Crampton, S.L. & Allen, P.A. (1995) Recognition of forebulge unconformities associated with early‐stage Foreland Basin development – example from the North Alpine Foreland Basin. AAPG Bull., 79, 1495–1514.
    [Google Scholar]
  15. Dahlen, F.A. & Suppe, J. (1988) Mechanics, growth and erosion of Mountain Belts. In: Processes in Continental Lithospheric Deformation (Ed. by S.P.Clark , B.C.Burchfiel & J.Suppe ), Geol. Soc. Amer. Spec. Pap218, 161–178.
    [Google Scholar]
  16. Dahlen, F.A., Suppe, J. & Davis, D. (1984) Mechanics of Fold‐and‐Thrust Belts and Accretionary Wedges – cohesive coulomb theory. J. Geophys. Res., 89, 87–101.
    [Google Scholar]
  17. Davis, D., Suppe, J. & Dahlen, F.A. (1983) Mechanics of Fold‐and‐Thrust Belts and Accretionary Wedges. J. Geophys. Res., 88, 1153–1172.
    [Google Scholar]
  18. DeCelles, P.G. & Giles, K.A. (1996) Foreland Basin systems. Basin Res., 8, 105–123, doi: DOI: 10.1046/j.1365-2117.1996.01491.x.
    [Google Scholar]
  19. Desegaulx, P. & Brunet, M.F. (1990) Tectonic subsidence of the Aquitaine Basin since cretaceous times. Bull. Soc. Geol. France, 6, 295–306.
    [Google Scholar]
  20. Desegaulx, P., Kooi, H. & Cloetingh, S. (1991) Consequences of Foreland Basin development on thinned continental lithosphere – application to the Aquitaine Basin (SW France). Earth Planet. Sci. Lett., 106, 116–132.
    [Google Scholar]
  21. Dickinson, W.R. (1974) Plate tectonics and sedimentation. In: Tectonics and Sedimentation (Ed. by W.R.Dickinson ), Spec. Publ . 22, 1–27. Society of Economic Paleontologists and Mineralogists, Los Angeles.
    [Google Scholar]
  22. Flemings, P.B. & Jordan, T.E. (1989) A synthetic stratigraphic model of Foreland Basin development. J. Geophys. Res.-Solid Earth Planets, 94, 3851–3866.
    [Google Scholar]
  23. Ford, M. (2004) Depositional wedge tops: interaction between low basal friction external Orogenic wedges and flexural foreland basins. Basin Res., 16, 361–375, doi: DOI: 10.1111/j.1365-2117.2004.00236.x.
    [Google Scholar]
  24. Garfunkel, Z. & Greiling, R.O. (2002) The implications of Foreland Basins for the causative tectonic loads. EGU Stephan Mueller Spec. Publ. Ser., 1, 3–16.
    [Google Scholar]
  25. Haddad, D. & Watts, A.B. (1999) Subsidence history, gravity anomalies, and flexure of the Northeast Australian Margin in Papua New Guinea. Tectonics, 18, 827–842.
    [Google Scholar]
  26. Homewood, P., Allen, P.A. & Williams, G.D. (1986) Dynamics of the Molasse Basin of Western Switzerland. In: Foreland Basins (Ed. by P.A.Allen & P.Homewood ). 8, 199–219. International Association of Sedimentologists, Blackwell Scientific Publications, Oxford.
    [Google Scholar]
  27. Johnson, D.D. & Beaumont, C. (1995) Preliminary results from a planform kinematic model of Orogen evolution, surface processes and the development of Clastic Foreland Basin Stratigraphy. In: Stratigraphic Evolution of Foreland Basins (Ed. by S.L.Dorobek & G.M.Ross ), Spec. Publ . 52, 3–24. Society of Economic Paleontologists and Mineralogists, Los Angeles.
    [Google Scholar]
  28. Jordan, T.A. (1995) Retro‐arc foreland and related basins. In: Tectonics of Sedimentary Basins (Ed. by C.J.Busby & R.V.Ingersoll ), 331–363. Blackwell Science, Oxford.
    [Google Scholar]
  29. Jordan, T.E. (1981) Thrust loads and Foreland Basin evolution, Cretaceous, Western United‐States. AAPG Bull., 65, 2506–2520.
    [Google Scholar]
  30. Kamp, P.J.J., Green, P.F. & Tippett, J.M. (1992) Tectonic architecture of the Mountain Front‐Foreland Basin transition, South Island, New Zealand, assessed by fission track analysis. Tectonics, 11, 98–113.
    [Google Scholar]
  31. Kamp, P.J.J. & Tippett, J.M. (1993) Dynamics of Pacific Plate Crust in the South Island (New‐Zealand) zone of oblique continent‐continent convergence. J. Geophys. Res.-Solid Earth, 98, 16105–16118.
    [Google Scholar]
  32. Karner, G.D. & Watts, A.B. (1983) Gravity‐anomalies and flexure of the lithosphere at mountain ranges. J. Geophys. Res., 88, 449–477.
    [Google Scholar]
  33. Koop, W.J. & Stoneley, R. (1982) Subsidence history of the Middle‐East Zagros Basin, Permian to recent. Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 305, 149–168.
    [Google Scholar]
  34. Lihou, J.C. & Allen, P.A. (1996) Importance of inherited rift margin structures in the Early North Alpine Foreland Basin, Switzerland. Basin Res., 8, 425–442.
    [Google Scholar]
  35. Lin, A.T., Watts, A.B. & Hesselbo, S.P. (2003) Cenozoic stratigraphy and subsidence history of the South China Sea Margin in the Taiwan region. Basin Res., 15, 453–478, doi: DOI: 10.1046/j.1365-2117.2003.00215.x.
    [Google Scholar]
  36. Miall, A.D. (1995) Collision‐Relate Foreland Basins. Blackwell Science, Oxford.
    [Google Scholar]
  37. Molnar, P., Anderson, H.J., Audoine, E., Eberhart‐Phillips, D., Gledhill, K.R., Klosko, E.R., McEvilly, T.V., Okaya, D., Savage, M.K., Stern, T. & Wu, F.T. (1999) Continous deformation versus faulting through the continental lithosphere of New Zealand. Science, 286, 516–519.
    [Google Scholar]
  38. Muñoz, J.A. (1992) Evolution of a continental collision belt: ECORS‐Pyrenees crustal balanced cross‐section. In: Thrust Tectonics (Ed. by K.McClay ). 17, 235–246. Chapman & Hall, London.
    [Google Scholar]
  39. Najman, Y., Pringle, M., Godin, L. & Oliver, G. (2001) Dating of the oldest continental sediments from the Himalayan Foreland Basin. Nature, 410, 194–197, doi: DOI: 10.1038/35065577.
    [Google Scholar]
  40. Naylor, M. & Sinclair, H.D. (2007) Punctuated thrust deformation in the context of doubly Vergent Thrust Wedges: implications for the localization of uplift and exhumation. Geology, 35, 559–562, doi: DOI: 10.1130/G23448A.1.
    [Google Scholar]
  41. Naylor, M., Sinclair, H.D., Willett, S.D. & Cowie, P.A. (2005) A discrete element model for Orogenesis and Accretionary Wedge growth. J. Geophys. Res., 110, doi: DOI: 10.1029/2003JB002940.
    [Google Scholar]
  42. Pearce, J.A. & Peate, D.W. (1995) Tectonic implications of the composition of volcanic arc magmas. Ann. Rev. Earth Planet. Sci., 23, 251–285, doi: DOI: 10.1146/annurev.ea.23.050195.001343.
    [Google Scholar]
  43. Platt, J.P. (1988) The mechanics of frontal imbrication – a 1st‐order analysis. Geol. Rundschau, 77, 577–589.
    [Google Scholar]
  44. Pous, J., Munoz, J.A., Ledo, J.J. & Liesa, M. (1995) Partial melting of subducted continental lower crust in the Pyrenees. J. Geol. Soc., 152, 217–220.
    [Google Scholar]
  45. Quinlan, G.M. & Beaumont, C. (1984) Appalachian thrusting, lithospheric flexure, and the paleozoic stratigraphy of the eastern interior of North‐America. Can. J. Earth Sci., 21, 973–996.
    [Google Scholar]
  46. Royden, L.H. (1993) Evolution of retreating subduction boundaries formed during continental collision. Tectonics, 12, 629–638.
    [Google Scholar]
  47. Simpson, G.H.D. (2006) Modelling interactions between Fold‐Thrust Belt deformation, Foreland flexure and surface mass transport. Basin Res., 18, 125–143, doi: DOI: 10.1111/j.1365-2117.2006.00287.x.
    [Google Scholar]
  48. Sinclair, H.D. (1997) Tectonostratigraphic model for underfilled peripheral Foreland Basins: an Alpine perspective. Geol. Soc. Am. Bull., 109, 324–346.
    [Google Scholar]
  49. Sinclair, H.D. & Allen, P.A. (1992) Vertical versus horizontal motions in the Alpine Orogenic Wedge: stratigraphic response in the Foreland Basin. Basin Res., 4, 215–232.
    [Google Scholar]
  50. Sinclair, H.D., Coakley, B.J., Allen, P.A. & Watts, A.B. (1991) Simulation of Foreland Basin stratigraphy using a diffusion‐model of Mountain Belt uplift and erosion – an example from the Central Alps, Switzerland. Tectonics, 10, 599–620.
    [Google Scholar]
  51. Sinclair, H.D., Gibson, M., Naylor, M. & Morris, R.G. (2005) Asymmetric growth of the Pyrenees revealed through measurement and modeling of Orogenic fluxes. Am. J. Sci., 305, 369–406.
    [Google Scholar]
  52. Sircombe, K.N. & Kamp, P.J.J. (1998) The South Westland Basin: seismic stratigraphy, basin geometry and evolution of a Foreland Basin within the Southern Alps Collision Zone, New Zealand. Tectonophysics, 300, 359–387.
    [Google Scholar]
  53. Stockmal, G.S., Beaumont, C. & Boutilier, R. (1986) Geodynamic models of convergent margin tectonics – transition from rifted margin to Overthrust Belt and consequences for Foreland‐Basin development. AAPG Bull., 70, 181–190.
    [Google Scholar]
  54. Tankard, A.J. (1986) On the depositional response to thrusting and lithospheric flexure: examples from the Appalachian and Rocky Mountain Basins. In: Foreland Basins (Ed. by P.A.Allen & P.Homewood ). 8, 369–392. International Association of Sedimentologists, Blackwell Scientific Publications, Oxford.
    [Google Scholar]
  55. Turcotte, D.L. & Schubert, G. (2001) Section 3–17. In: Geodynamics Ed. by 127. Cambridge, Cambridge University Press.
    [Google Scholar]
  56. Van der Voo, R., Spakman, W. & Bijwaard, H. (1999) Tethyan subducted slabs under India. Earth Planet. Sci. Lett., 171, 7–20.
    [Google Scholar]
  57. Vergés, J. (1999) Estudi Geologic Del Vessant Sud Del Pirineu Oriental I Central. In: Evolucio Cinematica En 3d (Ed. by Col‐Leccio Monografies Tecniques , 7, 194. Institut Cartografic de Catalunya, Barcelona.
    [Google Scholar]
  58. Vergés, J., Marzo, M., Santaeulària, T., Serra‐Kiel, J., Burbank, D.W., Muñoz, J.A. & Giménez‐Montsant, J. (1998) Quantified vertical motions and tectonic evolution of the SE Pyrenean Foreland Basin. In: Cenozoic Foreland Basins of Western Europe (Ed. by A.Mascle , C.Puigdefàbregas , H.P.Luterbacher & M.Fernàndez ), Spec. Publ . 134, 107–134. Geological Society of London.
    [Google Scholar]
  59. Wheeler, H.E. (1964) Baselevel, lithosphere surface, and time‐stratigraphy. Geol. Soc. Am. Bull., 75, 599–610.
    [Google Scholar]
  60. Whipple, K.X. & Meade, B.J. (2006) Orogen response to changes in climatic and tectonic forcing. Earth Planet. Sci. Lett., 243, 218–228, doi: DOI: 10.1016/j.epsl.2005.12.022.
    [Google Scholar]
  61. Willett, S.D. (1992) Kinematics and dynamic growth and change of a Coulomb Wedge. In: Thrust Tectonics (Ed. by K.McClay ), pp. 19–31. Chapman & Hall, London.
    [Google Scholar]
  62. Willett, S.D., Beaumont, C. & Fullsack, P. (1993) Mechanical model for the tectonics of doubly Vergent Compressional Orogens. Geology, 21, 371–374.
    [Google Scholar]
  63. Willett, S.D. & Brandon, M.T. (2002) On steady states in Mountain Belts. Geology, 30, 175–178, doi: DOI: 10.1130/0091-7613(2002)030〈0175:OSSIMB〉2.0.CO;2.
    [Google Scholar]
  64. Willett, S.D., Fisher, D., Fuller, C., En‐Chao, Y. & Lu, C.Y. (2003) Erosion rates and orogenic‐wedge kinematics in Taiwan inferred from fission‐track thermochronometry. Geology, 31, 945–948, doi: DOI: 10.1130/G19702.1.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2008.00366.x
Loading
/content/journals/10.1111/j.1365-2117.2008.00366.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error