1887
Volume 21, Issue 1
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

The early Miocene Dumri Formation and middle Miocene–Pliocene Siwalik Group were deposited in the Himalayan foreland basin in response to uplift and erosion in the Himalayan fold‐thrust belt. We report magnetostratigraphic data from four sections of these rocks in Nepal. Three of these sections are in the Siwalik Group in the hanging wall of the Main Frontal thrust, and one section is from the Dumri Formation in the hanging wall of the Main Boundary thrust (MBT). Thermal demagnetization experiments demonstrate that laminated siltstones yield palaeomagnetic data useful for tectonic and magnetostratigraphic studies whereas other lithofacies yield data of questionable reliability. Magnetostratigraphic data have been acquired from 297 sites within a 4200‐m‐thick section of Siwalik deposits at Surai Khola. The observed sequence of polarity zones correlates with the geomagnetic polarity time scale (GPTS) from chron C5Ar.1n to chron C2r.2n, spanning the time frame . 12.5–2.0 Ma. At Muksar Khola (eastern Nepal), 111 palaeomagnetic sites from a 2600‐m‐thick section of the Siwalik Group define a polarity zonation that correlates with the GPTS from chron C4Ar.2n to chron C2Br.1r, indicating an age range of . 10.0–3.5 Ma. At Tinau Khola, 121 sites from a 1824‐m‐thick section of the Siwalik Group are correlated to chrons C5An.1n through C4r.1n, equivalent to the time span . 11.8–8.1 Ma. At Swat Khola, 68 sites within a 1200‐m‐thick section of lower Miocene Dumri Formation are correlated with chrons C6n through C5Bn.2n, covering the time span . 19.9–15.1 Ma. Together with previous results from Khutia Khola and Bakiya Khola, these data provide the first magnetostratigraphic correlation along nearly the entire NW–SE length of Nepal. The correlation demonstrates that major lithostratigraphic boundaries in the Siwalik Group are highly diachronous, with roughly 2 Myr of variability. In turn, this suggests that the major sedimentological changes commonly inferred to reflect strengthening of the Asian monsoon are not isochronous. Sediment accumulation curves exhibit a 30–50% increase in accumulation rate in four of the five sections of the Siwalik Group, but the timing of this increase ranges systematically from ∼11.1 Ma in western Nepal to ∼5.3 Ma in eastern Nepal. If this increase in sediment accumulation rate is interpreted as a result of more rapid subsidence owing to thrust loading in the Himalaya, then the diachroneity of this increase suggests lateral propagation of a major thrust system, perhaps the MBT, at a rate of . 103 mm year−1 across the length of Nepal.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2008.00374.x
2008-07-17
2024-04-25
Loading full text...

Full text loading...

References

  1. Angevine, C.L., Heller, P.L. & Paolo, C. (1990) Quantitative Sedimentary Basin Modeling. AAPG Continuing Ed. Ser., Tulsa, Okhahoma, 133pp.
    [Google Scholar]
  2. Appel, E. & Rösler, W. (1994) Magnetic polarity stratigraphy of the Neogene Surai Khola section (Siwaliks, SW Nepal). Himal. Geol., 15, 63–68.
    [Google Scholar]
  3. Appel, E., Rösler, W. & Corvinus, G. (1991) Magnetostratigraphy of the Mio‐Pliocene sediments, Surai Khola sediments West Nepal. Geophys J. Int., 105, 191–198.
    [Google Scholar]
  4. Argand, E. (1924) La Tectonique de l'Asie. Proc 13th Int. Geol. Cong., 7, 171–372.
    [Google Scholar]
  5. Auden, J.B. (1935) Traverses in the Himalaya. Rec. Geol. Surv India, 69, 123–167.
    [Google Scholar]
  6. Avouac, J.P. (2003) Mountain building, erosion, and the seismic cycle in the Nepal Himalaya. Adv. Geophys., 46 doi: DOI: 10.1016/S0065-2687(03)46001-9.
    [Google Scholar]
  7. Barry, J.C., Lindsey, E.H. & Jacobs, L.L. (1982) A biostratigraphic zonation of the middle and upper Siwaliks of the Potwar Plateau of northern Pakistan. Palaeogeo. Palaeoclim. Palaeoecol., 37, 95–130.
    [Google Scholar]
  8. Beck, M.E.Jr. (1980) Paleomagnetic record of plate‐margin tectonic processes along the western edge of North America. J. Geophys. Res., 85, 7115–7131.
    [Google Scholar]
  9. Behrensmeyer, A.K., Quade, J., Cerling, T.E., Kappelman, J., Khan, I., Copeland, P., Roe, L., Hicks, J., Stubblefield, P., Willis, B.J. & Latorre, C. (2007) The structure and rate of late Miocene expansion of C4 plants: evidence from lateral variation in stable isotopes in paleosols of the Siwalik Group, northen Pakistan. Geol. Soc. Amer. Bull., 119, 1486–1505; doi: DOI: 10.1130/B26064.1.
    [Google Scholar]
  10. Bernet, M., Van der Beek, P., Pik, R., Huyghe, P., Mugnier, J.L., Labrin, E. & Szulc, A. (2006) Miocene to recent exhumation of the central Himalaya determined from combined detrital zircon fission‐track and U/Pb analysis of Siwalik sediments, western Nepal. Basin Res., 18, 393–412.
    [Google Scholar]
  11. Besse, J. & Courtillot, V. (2002) Apparent and true polar wander and the geometry of the geomagnetic field over the past 200 Myr. J. Geophys. Res., 107, EPM 6‐1–EPM 6‐31, doi: DOI: 10.1029/2000JB000050.
    [Google Scholar]
  12. Biswas, S.K. (1994) Status of exploration for hydrocarbons in Siwalik basin of India and future trends. In: Siwalik Foreland Basin of Himalaya: Dehra Dun, India (Ed. by R.Kumar , S.K.Ghosh & N.R.Phadtare ), pp. 283–301. IBH, Oxford.
    [Google Scholar]
  13. Burbank, D.W., Beck, R.A. & Mulder, T. (1996) The Himalayan Foreland. In: Asian Tectonics (Ed. by Y.An & M.Harrison ), pp. 149–188. Cambridge Univ. Press, Cambridge, MA.
    [Google Scholar]
  14. Butler, R.F. (1992) Paleomagnetism: Magnetic Domains to Geologic Terranes. Blackwell Scientific Publications, Boston, pp. 83–104.
    [Google Scholar]
  15. Cerling, T.E., Harris, J.M., MacFadden, B.J., Ehleringer, J.R., Leakey, M.G., Quade, J. & Eisenman, V. (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature, 389, 153–157.
    [Google Scholar]
  16. Chalaron, E., Mugnier, J.L. & Mascle, G. (1995) Control of thrust tectonics in the Himalayan foothills: a view from a numerical model. Tectonophysics, 248, 139–163.
    [Google Scholar]
  17. Copeland, P., LeFort, P., Rai, S.M. & Upreti, B.N. (1996) Cooling history of the Kathmandu crystalline nappe: 40Ar/39Ar results. Himalayan‐Karakoram‐Tibet Workshop, 11th, Flagstaff, Arizona, Abstracts, 39.
  18. Corvinus, G. & Rimal, L.N. (2001) Biostratigraphy and geology of the Neogene Siwalik group of Surai Khola and Rato Khola areas in Nepal. Palaeogeo. Palaeoclim. Palaeoecol., 165, 251–279.
    [Google Scholar]
  19. Critelli, S. & Ingersoll, R.V. (1994) Sandstone petrology and provenance of the Siwalik Group (northwestern Pakistan and western‐southeastern Nepal). J. Sed. Res., A64, 815–823.
    [Google Scholar]
  20. DeCelles, P.G. & Cavazza, W. (1999) A comparison of fluvial megafans in the Cordilleran (Late Cretaceous) and modern Himalayan foreland basin systems. Bull. Geol. Soc. Am., 111, 1315–1334.
    [Google Scholar]
  21. DeCelles, P.G. & Currie, B.S. (1996) Long‐term sediment accumulation in the Middle Jurassic–early Eocene cordilleran retroarc foreland basin system. Geology, 24, 591–594.
    [Google Scholar]
  22. DeCelles, P.G., Gehrels, G.E., Quade, J. & Ojha, T.P. (1998a) Eocene–early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal. Tectonics, 17, 741–765.
    [Google Scholar]
  23. DeCelles, P.G., Gehrels, G.E., Quade, J., Ojha, T.P., Kapp, P.A. & Upreti, B.N. (1998b) Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold‐thrust belt, western Nepal. Bull. Geol. Soc. Am., 110, 2–21.
    [Google Scholar]
  24. Decelles, P.G., Gehrels, G.E., Najman, Y., Martin, A.J., Carter, A. & Garzanti, E. (2004) Detrital geochronology and geochemistry of Cretaceous‐Early Miocene strata of Nepal: Implications for timing and diachroneity of initial Himalayan orogenesis. Earth Plant. Sci. Lett., 227, 313–330, doi: DOI: 10.1016/j.epsl.2004.08.019.
    [Google Scholar]
  25. DeCelles, P.G., Robinson, D.M., Quade, J., Ojha, T.P., Garzione, C.N., Copeland, P. & Upreti, B.N. (2001) Stratigraphy, structure, and tectonic evolution of the Himalayan fold‐thrust belt in western Nepal. Tectonics, 20, 487–509.
    [Google Scholar]
  26. Demarest, H.H. (1983) Error analysis of the determination of tectonic rotation from paleomagnetic data. J. Geophys. Res., 88, 4321–4328.
    [Google Scholar]
  27. Dewey, J.F., Cande, S. & Pitman, W.C.III (1989) Tectonic evolution of the India/Eurasia collision zone. Eclog. Geol. Helv., 82, 717–734.
    [Google Scholar]
  28. Dickinson, W.R., Klute, M.A., Hayes, M.J., Janecke, S.U., Lundin, E.R., McKittrick, M.A. & Olivares, M.D. (1988) Paleogeographic and paleotectonic setting of Laramide sedimentary basins in the central Rocky Mountain region. Bull. Geol. Soc. Am., 100, 1023–1039.
    [Google Scholar]
  29. Dorobek, S.L. (1995) Synorogenic carbonate platforms and reefs in foreland basins: controls on stratigraphic evolution and platform/reef morphology. In: Stratigraphic Evolution of Foreland Basins (Ed. by S.L.Dorobek & G.M.Ross ), SEPM Spec. Pub., 52, 127–147.
    [Google Scholar]
  30. Ellwood, B.B., MacDonald, W.D. & Wolff, J.A. (1993) The slot technique for rock magnetic sampling. Phys. Earth Planet. Inter., 78, 51–56.
    [Google Scholar]
  31. English, N.B., Quade, J., DeCelles, P.G. & Garzione, C.N. (2000) Geologic control of Sr and major element chemistry in Himalayan rivers. Geochim. Cosmochim. Acta, 64, 2549–2566.
    [Google Scholar]
  32. Fisher, R.A. (1953) Dispersion on a sphere. Proc. Roy. Soc. Lond., Ser. A, 217, 295–305.
    [Google Scholar]
  33. France‐Lanord, C. & Derry, L.A. (1994) δ13C of organic carbon in the Bengal Fan; source evolution and transport of C3 and C4 plant carbon to marine sediments. Geochim. Cosmochim. Acta, 58, 4809–4814.
    [Google Scholar]
  34. Gahalaut, V.K. & Chander, R. (1992) On the active tectonics of the Dehra Dun region from observations of ground elevation changes. J. Geol. Soc. India, 39, 61–68.
    [Google Scholar]
  35. Gansser, A. (1964) Geology of the Himalayas. London, Interscience Publishers, 289 pp.
    [Google Scholar]
  36. Gautam, P. & Appel, E. (1994) Magnetic polarity stratigraphy of Siwalik group sediments of Tinau Khola section in west central Nepal, revisited. Geophys. J. Int., 117, 223–234.
    [Google Scholar]
  37. Gautam, P. & Fujiwara, Y. (2000) Magnetic‐polarity stratigraphy of Siwalik group sediments of Karnali River section in western Nepal: Geophys. J. Int., 142, 812–824.
    [Google Scholar]
  38. Gautam, P., Hosoi, A., Regmi, K.R., Khadka, D.R. & Fujiwara, Y. (2000) Magnetic minerals and magnetic properties of the Siwalik group sediments of the Karnali river section in Nepal. Earth Planets Space, 52, 337–345.
    [Google Scholar]
  39. Gautam, P. & Rösler, W. (1999) Depositional chronology and fabric of Siwalik group sediments in Central Nepal from magnetostratigraphy and magnetic anisotropy. J. Asian Earth Sci, 17, 659–682.
    [Google Scholar]
  40. Gupta, S. (1997) Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland basin. Geology, 25, 11–14.
    [Google Scholar]
  41. Harrison, T.M., Copeland, P., Hall, S.A., Quade, J., Burner, S., Ojha, T.P. & Kidd, W.S.F. (1993) Isotopic preservation of Himalayan/Tibet uplift, denudation, and climatic histories of two molasse deposits. J. Geol., 100, 157–173.
    [Google Scholar]
  42. Hauck, M.L., Nelson, K.D., Brown, L.D., Zhao, W.J. & Ross, A.R. (1998) Crustal structure of the Himalayan orogen at 90° east longitude from project INDEPTH deep reflection profiles. Tectonics, 17, 481–500.
    [Google Scholar]
  43. Hodges, K.V., Parrish, R.R. & Searle, M.P. (1996) Tectonic evolution of the central Annapurna range, Nepalese Himalayas. Tectonics, 15, 1264–1291.
    [Google Scholar]
  44. Hoorn, C., Ojha, T. & Quade, J. (2000) Palynological evidence for vegetation development and climatic change in the sub‐Himalayan zone (Neogene, central Nepal). Palaeogeog. Palaeoclimat. Palaeocol., 163, 133–161.
    [Google Scholar]
  45. Huyghe, P., Galy, A., Mugnier, J.‐L. & France‐Lanord, C. (2001) Propagation of the thrust system and erosion in the Lesser Himalaya: geochemical and sedimentological evidence. Geology, 29, 1007–1010.
    [Google Scholar]
  46. Huyghe, P., Mugnier, J.‐L., Gajurel, A.P. & Delcaillau, B (2005) Tectonic and climatic control of the changes in the sedimentary record of the Karnali River section (Siwaliks of western Nepal. The Island Arc, 14, 311–327.
    [Google Scholar]
  47. Johnson, G.D., Opdyke, N.D., Tandon, S.K. & Nanda, A.C. (1983) The magnetic polarity stratigraphy of the Siwalik Group at Haritalyangar (India) and a new last appearance datum for Ramapithecus and Sivapithecus in Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol., 44, 223–249.
    [Google Scholar]
  48. Johnson, N.M., Opdyke, N.D., Johnson, G.D., Lindsay, E.H. & Tahirkheli, R.A.K. (1982) Magnetic polarity stratigraphy and ages of Siwalik Group rocks of the Potwar Plateau, Pakistan. Paleogeogr. Paleoclimatol. Paleoecol., 37, 17–42.
    [Google Scholar]
  49. Johnson, N.M., Stix, J., Tauxe, L., Cerveny, P.F. & Tahirkheli, R.A.K. (1985) Paleomagnetic chronology, fluvial processes and tectonic implications of the Siwalik deposits near Chinji Village, Pakistan. J. Geol., 93, 27–40.
    [Google Scholar]
  50. Jordan, T.E., Flemings, P.B. & Beer, J.A. (1988) Dating thrust‐fault activity by use of foreland‐basin strata. In: New Perspectives in Basin Analysis (Ed. by K.L.Kleinspehn & C.Paola ), pp. 307–330. Springer‐Verlag, New York.
    [Google Scholar]
  51. Kirschvink, J.L. (1980) The least‐squares line and plane and the analysis of palaeomagnetic data. Geophys. J. Roy. Astron. Soc., 62, 699–718.
    [Google Scholar]
  52. Kodama, K.P. (1997) A successful rock magnetic technique for correcting paleomagnetic inclination shallowing: case study of the nacimiento formation, New Mexico. J. Geophys. Res., 102, 5193–5205.
    [Google Scholar]
  53. Kohn, M.J., Wieland, M.S., Parkinson, C.D. & Upreti, B.N. (2004) Miocene faulting at plate tectonic velocity in the Himalaya of central Nepal. Earth Planet. Sci. Lett., 228, 299–310, doi: DOI: 10.1016/j.epsl.2004.10.007.
    [Google Scholar]
  54. Lourens, L.J., Hilgen, F.J., Laskar, J., Shackleton, N.J. & Wilson, D. (2004) The Neogene Period. In: A Geologic Time Scale 2004 (Ed. by F.M.Gradstein , J.G.Ogg & A.G.Smith ) Cambridge Univ. Press, Cambridge (Chapter 20).
    [Google Scholar]
  55. McFadden, P.L. & McElhinny, M.W. (1990) Classification of the reversal test in palaeomagnetism. Geophys. J. Int., 103, 725–729.
    [Google Scholar]
  56. Meigs, A.J., Burbank, D.W. & Beck, R.A. (1995) Middle–late Miocene (>10 Ma) formation of the main boundary thrust in the western Himalaya. Geology, 23, 423–426.
    [Google Scholar]
  57. Mohindra, R., Parkash, B. & Prasad, J. (1992) Historical geomorphology and pedology of the Gandak Megafan, Middle Gangetic Plains, India. Earth Surf. Proc. Landforms, 17, 643–662.
    [Google Scholar]
  58. Mugnier, J.L., Huyghe, P., Leturmy, P. & Jouanne, F. (2004) Episodicity and rates of thrust sheet motion in the Himalaya (Western Nepal). In: Thrust tectonics and hydrocarbon systems. Ed. by Mc Clay ), AAPG Mem., 82, 91–114. SPI Publisher Services, 11147 Air Park road, Suite 4. Ashland, VA 23005.
  59. Mugnier, J.L., Leturmy, P., Huyghe, P. & Chalaron, E. (1999a) The Siwaliks of western Nepal: II- mechanism of the thrust wedge. J. Asian Earth Sci., 17, 643–657.
    [Google Scholar]
  60. Mugnier, J.L., Leturmy, P., Mascle, G., Huyghe, P., Chalaron, E., Vidal, G., Husson, L. & Delcaillau, B. (1999b) The Siwaliks of Western Nepal: I – geometry and kinematics. J. Asian Earth Sci., 17, 629–642.
    [Google Scholar]
  61. Najman, Y. (2006) The sediment record of orogenesis: a review of approaches and techniques used in the Himalaya. Earth Sci. Rev., 74, 1–72.
    [Google Scholar]
  62. Najman, Y. & Garzanti, E. (2000) An integrated approach to provenance studies: reconstructing early Himalayan paleogeography and tectonic evolution from Tertiary foredeep sediments, N. India. Bull. Geol. Soc. Am., 112, 435–449.
    [Google Scholar]
  63. Najman, Y., Johnson, C., White, N.M. & Oliver, G. (2004) Evolution of the Himalayan foreland basin, NW India. Basin Res., 16, 1–24.
    [Google Scholar]
  64. Ojha, T.P., Butler, R.F., Quade, J. & DeCelles, P.G. (2004) Magnetic polarity stratigraphy of Siwalik Group sediments in Nepal; diachronous lithology and isochronous carbon isotope shift. 19th Himalaya—Karakorum–Tibet Workshop, Nisebo, Japan.
  65. Ojha, T.P., Butler, R.F., Quade, J., DeCelles, P.G., Richards, D. & Upreti, B.N. (2000) Magnetic polarity stratigraphy of the Neogene Siwalik Group at Khutia Khola, far‐western Nepal. Bull. Geol. Soc. Am., 112, 424–434.
    [Google Scholar]
  66. Opdyke, N.D., Lindsay, E.H., Johnson, G.D., Johnson, N.M., Tahirkhelli, R.A.K. & Mirza, M.A. (1979) Magnetic polarity stratigrahy and vertebrate paleontology of the Upper Siwalik subgroups of Northern Pakistan. Paleogeogr. Paleoclimatol. Paleoecol., 27, 1–34.
    [Google Scholar]
  67. Pearson, O.N. & DeCelles, P.G. (2005) Structural geology and regional tectonic significance of the Ramgarh thrust, Himalayan fold‐thrust belt of Nepal. Tectonics, 24 TC4008, doi: DOI: 10.1029/2003TC001617.
    [Google Scholar]
  68. Powers, P.M., Lillie, R.J. & Yeats, R.S. (1998) Structure and shortening of the Kangra and Dehra Dun reentrants, Sub‐Himalaya, India. Bull. Geol. Soc. Am., 110, 1010–1027.
    [Google Scholar]
  69. Quade, J., Cater, J.M.L., Ojha, T.P., Adam, J. & Harrison, T.M. (1995) Late Miocene environmental change in Nepal and the northern Indian subcontinent: stable isotopic evidence from paleosols. Bull. Geol. Soc. Am., 107, 1381–1397.
    [Google Scholar]
  70. Quade, J. & Cerling, T.E. (1995) Expansion of C4 grasses in the late Miocene of northern Pakistan: evidence from stable isotopes in paleosols. Palaeogeog. Palaeoclim. Palaeoecol., 115, 91–116.
    [Google Scholar]
  71. Quade, J., Cerling, T.E. & Bowman, J.R. (1989) Development of the Asian Monsoon revealed by marked ecological shift in the latest Miocene in northern Pakistan. Nature, 342, 163–166.
    [Google Scholar]
  72. Quade, J., English, N. & DeCelles, P.G. (2003) Silicate versus carbonate weathering in the Himalaya: a comparison of the Arun and the Seti River watersheds. Chem. Geol., 202, 275–296.
    [Google Scholar]
  73. Quade, J. & Roe, L. (1999) The stable isotopic composition of early diagenetic cements from sandstone in paleoecological reconstruction. J. Sed. Res., 69, 667–674.
    [Google Scholar]
  74. Quade, J., Roe, L., DeCelles, P.G. & Ojha, T.P. (1997) The late neogene 87Sr/86Sr record of lowland Himalayan rivers. Science, 276, 1828–1831.
    [Google Scholar]
  75. Raiverman, V., Kunte, S.V. & Mukherjee, A. (1983) Basin geometry, Cenozoic sedimentation and hydrocarbon prospects in northwestern Himalaya and Indo‐Gangetic plains. Petrol. J. Asia, 6, 67–92.
    [Google Scholar]
  76. Raynolds, R.G.H. & Johnson, G.D. (1985) Rates of Neogene depositional and deformational processes, north‐west Himalayan fordeep margin Pakistan. In: The Chronology of the Geological Record (Ed. by N.J.Snelling ), Geol. Soc. Lond. Mem., 10, 297–311.
    [Google Scholar]
  77. Robinson, D.M., DeCelles, P.G. & Copeland, P. (2006) Tectonic evolution of the Himalayan thrust belt in western Nepal: implications for channel flow models. Bull. Geol. Soc. Am., 118, 865–885.
    [Google Scholar]
  78. Robinson, D.M., Decelles, P.G., Patchett, P.J. & Garzione, C.N. (2001) The kinematic history of the Nepalese Himalaya interpreted from Nd isotopes. Earth Planet. Sci. Lett., 192, 507–521.
    [Google Scholar]
  79. Rösler, W. & Appel, E. (1998) Fidelity and time resolution of the magnetostratigraphic record in Siwalik sediments: high-resolution study of a complete polarity transition and evidence for cryptochrons in Miocene fluviatile section. Geophys. J. Int., 135, 861–875.
    [Google Scholar]
  80. Rösler, W., Metzler, W. & Appel, E. (1997) Neogene magnetic polarity stratigraphy of some fluviatile Siwalik sections, Nepal. Geophys. J. Int., 130 (1), 89–111.
    [Google Scholar]
  81. Sakai, H. (1983) Geology of the tansen group of the lesser Himalaya in Nepal. Mem. Fac. Sci., Kyushu Univ. [D], 25, 27–74.
    [Google Scholar]
  82. Sangode, S.J., Kumar, R. & Ghosh, S.K. (1996) Magnetic polarity stratigraphy of the Siwalik sequence of Haripur area (H.P.), NW Himalaya. J. Geol. Soc. India, 47, 683–704.
    [Google Scholar]
  83. Schelling, D., Cater, J., Seago, R. & Ojha, T.P. (1991) A balanced cross‐section across the central Nepal Siwalik Hills: Hetauda to Amlekhganj. J. Fac. Sci., Hokkaido University, Ser. IV, 23, 1–9.
    [Google Scholar]
  84. Sinclair, H.D. & Allen, P.A. (1992) Vertical vs. horizontal depositional response in the Alpine orogenic wedge: stratigraphic response in the foreland basin. Basin Res., 4, 215–232.
    [Google Scholar]
  85. Sinha, R. & Friend, P.F. (1994) River systems and their sediment flux, Indo‐Gangetic plains, northern Bihar, India. Sedimentology, 41, 825–845.
    [Google Scholar]
  86. Szulc, A.G., Najman, Y., Sinclair, H., Pringle, M., Bickle, M., Chapman, H., Garzanti, E., Ando, S., Huyghe, P., Mugnier, J.L., Ojha, T.P. & DeCelles, P.G. (2006) Tectonic evolution of the Himalaya constrained by a detrital investigation of three Siwalik foreland basin successions, SW Nepal. Basin Res., 18, 375–392.
    [Google Scholar]
  87. Tauxe, L. & Badgely, C. (1988) Stratigraphy and remanence acquisition of a paleomagnetic reversal in alluvial Siwalik rocks of Pakistan. Sedimentology, 35, 697–715.
    [Google Scholar]
  88. Tauxe, L., Constable, C.G., Stokking, L. & Badgely, C. (1990) Use of anisotropy to determine the origin of characteristic remanence in the Siwalik red beds of northern Pakistan. J. Geophys. Res., 95, 4391–4404.
    [Google Scholar]
  89. Tauxe, L. & Kent, V.D. (1984) Properties of a detrital remanence carried by haematite from study of modern river deposits and laboratory redeposition experiments. Geophys. J. Roy. Astron. Soc., 76, 543–561.
    [Google Scholar]
  90. Tauxe, L. & Opdyke, N.D. (1982) A time framework based on magnetostratigraphy for the Siwalik sediments of the Khaur area, northern Pakistan. Paleogeog. Paleoclim. Paleoecol., 37, 43–61.
    [Google Scholar]
  91. Tensi, J., Mouthereau, F. & Lacombe, O. (2006) Lithospheric bulge in the west Taiwan basin. Basin Res., 18, 277–299, doi: DOI: 10.1111/j.1365-2117.2006.00296.x.
    [Google Scholar]
  92. Van Der Beek, P., Champel, B. & Mugnier, J.‐L. (2002) Control of detachment dip on drainage development in regions of active fault propagation folding. Geology, 30, 471–474.
    [Google Scholar]
  93. Van Der Beek, P., Robert, X., Mugnier, J.‐L., Bernet, M., Huyghe, P. & Labrin, E. (2006) Late miocene – recent exhumation of the central Himalaya and recycling in the foreland basin assessed by apatite fission‐track thermochronology of Siwalik sediments, Nepal. Basin Res., 18, 413–434.
    [Google Scholar]
  94. Van Hinte, J.E. (1978) Geohistory analysis‐application of micropaleontology in exploration geology. AAPG Bull., 62, 201–222.
    [Google Scholar]
  95. Watson, G.S. (1956) A test for randomness of directions. Month. Notices Geophys. J. Roy. Astronom. Soc., 7, 160–161.
    [Google Scholar]
  96. Watson, G.S. & Enkin, R.J. (1993) The fold test in paleomagnetism as a parameter estimation problem. Geophys. Res. Lett., 20, 2135–2137.
    [Google Scholar]
  97. White, N.M., Pringle, M., Garzanti, E., Bickle, M., Najman, Y., Chapman, H. & Friend, P. (2002) Constraints on the exhumation and erosion of the High Himalayan Slab, NW India, from foreland basin deposits. Earth Planet. Sci. Lett., 195, 29–44.
    [Google Scholar]
  98. Zijderveld, J.D.A. (1967) Demagnetization of rocks: analysis of results. In: Methods in Paleomagnetism (Ed. by D.W.Collinson , K.M.Creer & S.K.Runcorn ), pp. 254–286. Elsevier, Amsterdam.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2008.00374.x
Loading
/content/journals/10.1111/j.1365-2117.2008.00374.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error