1887
Volume 20 Number 4
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

The size, shape and number of seamounts, once detected and isolated from other features such as oceanic plateaus or trenches, have the potential to provide valuable constraints on important solid Earth processes, e.g. oceanic volcanism. The variability of seamount size and morphology, however, presents problems for computational approaches to seamount isolation. This paper develops a novel and efficient wavelet‐based seamount detection routine ‘Spatial Wavelet Transform (SWT)’; the first use of multiple scales of analysis to directly isolate edifices from bathymetric data. Only weak shape‐related criteria are used and no knowledge of the scale and location of the seamounts is required. For a bathymetric profile collected on cruise v3312 SWT matches, to within 25%, the dimensions of five times the number of the features determined by manual inspection than does the best statistically based (e.g. mean, median or mode) sliding window filter. The size–frequency distribution, a key descriptor of seamount populations, is also much better estimated by the SWT method. As such, the SWT represents a step towards the goal of objective and robust quantification and classification of seamounts.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2008.00382.x
2008-09-18
2020-04-08
Loading full text...

Full text loading...

References

  1. Abers, G.A., Parsons, B. & Weissel, J.K. (1988) Seamount abundances and distributions in the southeast Pacific. Earth Planet. Sci. Lett., 87, 137–151.
    [Google Scholar]
  2. Ali, M.Y., Watts, A.B. & Hill, I. (2003) A seismic reflection profile of lithospheric flexure in the vicinity of the Cape Verde Islands. J. Geophys. Res., 108, art no. 2239. DOI:DOI: 10.1029/2002JBOO2155.
    [Google Scholar]
  3. Allain, V., Kerandel, J., Andrefouet, S., Magron, F., Clark, M., Kirby, D.S. & Muller‐Karger, F.E. (2008) Enhanced seamount location database for the western and central Pacific Ocean: screening and cross-checking of 20 existing datasets. Deep‐Sea Res., doi:DOI: 10.1016/j.dsr.2008.04.004.
    [Google Scholar]
  4. Batiza, R. (1982) Abundances, distribution and sizes of volcanoes in the Pacific Ocean and implications for the origin of non‐hotspot volcanoes. Earth Planet. Sci. Lett., 60, 195–206.
    [Google Scholar]
  5. Behn, M.D., Sinton, J.M. & Detrick, R.S. (2004) Effect of the Galapagos hotspot on seafloor volcanism along the Galapagos Spreading Center (90.9–97.6°W). Earth Planet. Sci. Lett., 217, 331–347.
    [Google Scholar]
  6. Cazenave, A., Dominh, K., All"egre, C.J. & Marsh, J.G. (1986) Global relationship between oceanic geoid and topography. J. Geophys. Res., 91, 11439–11450.
    [Google Scholar]
  7. Cheng, Y.Y., Yu, J. & Zhong, J.Y. (2001) An adaptive filter for processing analytical signal based on fractal dimension. Chin. J. Analyt. Chem., 29 (11), 1246–1250.
    [Google Scholar]
  8. Clouard, V. & Bonneville, A. (2005) Ages of seamounts, islands, and plateaus on the Pacific plate. In: ‘Plates, Plumes and Paradigms’ (Ed. by G.R.Foulger , J.H.Natland , D.C.Presnall & D.L.Anderson ), Geol. Soc. Am. Spec. Pap., 388, 71–92.
    [Google Scholar]
  9. Craig, C.H. & Sandwell, D.T (1988) Global distribution of seamounts from Seasat profiles. J. Geophys. Res., 93, 10408–10420.
    [Google Scholar]
  10. Crough, T.S. (1978) Thermal origin of mid‐plate hot‐spot swells. Geophys. J. R. Astr. Soc., 55, 451–469.
    [Google Scholar]
  11. Cserepes, L., Christensen, U.R. & Ribe, N.M. (2000) Geoid height versus topography for a plume model of the Hawaiian Swell. Earth Planet. Sci. Lett., 178, 29–38.
    [Google Scholar]
  12. Epp, D. (1984) Implications of volcano and swell heights for thinning of the lithosphere by hot spots. J. Geophys. Res., 89 (B12), 9991–9996.
    [Google Scholar]
  13. Gaillot, P., Darrozes, J. & De Saint Blanquat, M. (1997) The normalised optimised anisotropic wavelet coefficient (NOAWC) method: an image-processing tool for multi-scale analysis of rock fabric. Geophys. Res. Lett., 24, 1819–1822.
    [Google Scholar]
  14. Gupta, V.K. & Ramani, N. (1980) Some aspects of regional‐residual separation of gravity anomalies in a Precambrian terrain. Geophysics, 9, 1412–1426.
    [Google Scholar]
  15. Hillier, J.K. (2005). The bathymetry of the Pacific ocean basin and its tectonic implications. Ph.D. thesis, University of Oxford.
  16. Hillier, J.K. (2007) Pacific seamount volcanism in space and time. Geophys. J. Int., 168, 877–889, doi: DOI: 10.1016/j.jas.2006.09.011.
    [Google Scholar]
  17. Hillier, J.K. & Smith, M. (2008) Regional‐Residual Separation; Strengthening the signal and visualizing glacial lineaments. Earth Surface Proc. Landforms, doi: DOI: 10.1002/esp.1659.
    [Google Scholar]
  18. Hillier, J.K. & Watts, A.B. (2004) “Plate‐Like” subsidence of the East Pacific rise ‐ South Pacific superswell system. J. Geophys. Res., 109 (B10102), doi:DOI: 10.1029/2004JB003041.
    [Google Scholar]
  19. Hillier, J.K. & Watts, A.B. (2005) Relationship between depth and age in the North Pacific Ocean. J. Geophys. Res., 110, art. no. B02405, doi:DOI: 10.1029/2004JB003406.
    [Google Scholar]
  20. Hillier, J.K. & Watts, A.B. (2007) Global distribution of seamounts from ship‐track bathymetry data. Geophys. Res. Lett, 34, art. no. L113304, doi:DOI: 10.1029/2007GL029874.
    [Google Scholar]
  21. Jordan, T.H., Menard, H.W. & Smith, D.K. (1983) Density and size distribution of seamounts in the eastern Pacific inferred from wide‐beam sounding data. J. Geophys. Res., 88, 10508–10518.
    [Google Scholar]
  22. Kim, S. & Wessel, P. (2008) Directional median filtering for regional‐residual separation of bathymetry. G3, 9, art. no. Q03005, doi:DOI: 10.1029/2007GC001850.
    [Google Scholar]
  23. Koppers, A.A.P., Staudigel, H., Pringle, A.S. & Wijbrans, J.R. (2003) Short‐lived and discontinuous intraplate volcanism in the South Pacific; hot spots or extensional volcanism?G3, 4, art. no. 1089. DOI:DOI: 10.1029/2003GC000533.
    [Google Scholar]
  24. Lazarewicz, A.R. & Schwank, D.C. (1982) Detection of seamounts using altimetry. Geophys. Res. Lett., 9, 385–388.
    [Google Scholar]
  25. Levitt, D.A. & Sandwell, D.T. (1996) Modal depth anomalies from multibeam bathymetry: is there a South Pacific Superswell? Earth Planet. Sci. Lett., 139, 1–16.
    [Google Scholar]
  26. Lin, R.S. & Hsueh, Y.C. (2000) Multichannel filtering by gradient information. Signal Proc., 80, 279–293.
    [Google Scholar]
  27. Marova, N.A. (2000) Seamounts of the world ocean: features of their distribution by height and space. Mar. Geol., 42 (3), 429–422.
    [Google Scholar]
  28. McKenzie, D.P., Watts, A.B., Parsons, B. & Roufosse, M. (1980) Planform of mantle convection beneath the Pacific Ocean. Nature, 288, 442–446.
    [Google Scholar]
  29. McNutt, M. & Sichoix, L. (1996) Modal depths from shipboard bathymetry: there is a South Pacific Superswell. Geophys. Res. Lett., 23, 3397–4000.
    [Google Scholar]
  30. McNutt, M.K. & Fischer, K.M. (1987) The South Pacific Superswell. In: Seamounts, Islands and Atolls (Ed. by B.H.Keating , P.Fryer , R.Batiza & G.W.Boehlert ), Geophys. Mono. , 43, 25–34.
    [Google Scholar]
  31. Menard, H.W. (1959) Geology of the Pacific seafloor. Experimentia, 15 (6), 205–244.
    [Google Scholar]
  32. Minshull, T.A. & Charvis, P. (2001) Ocean island densities and models of lithospheric flexure. Geophys. J. Int., 145, 731–739.
    [Google Scholar]
  33. Mofjeld, H.O., Symons, C.M., Lonsdale, P., Gonzalez, F.I. & Titov, V.V. (2004) Tsunami scattering and earthquake faults in the deep Pacific Ocean. Oceanography, 17, 38–46.
    [Google Scholar]
  34. Mofjeld, H.O., Titov, V.V., Gonzalez, F.I. & Newman, J.C. (2001) Tsunami scattering provinces in the Pacific Ocean. Geophys. Res. Lett., 28, 335–337.
    [Google Scholar]
  35. Percival, D.B. & Walden, A.T. (2000) Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge, MA.
    [Google Scholar]
  36. Sandwell, D.T. & Renkin, M. (1988) Compensation of swells and plateaus in the North Pacific: no direct evidence for mantle convection. J. Geophys. Res., 93, 2775–2783.
    [Google Scholar]
  37. Scheirer, D.S. & Macdonald, K.C. (1995) Near‐axis seamounts on the flanks of the East Pacific Rise, 8°N to 17°N. J. Geophys. Res., 100, 2239–2259.
    [Google Scholar]
  38. Scheirer, D.S., MacDonald, K.C. & Forsyth, D.W. (1996) Abundant seamounts of the rano rahi seamount field near the southern east pacific rise, 15 degreess to 19 degrees S. Mar. Geophys. Res., 18, 13–52.
    [Google Scholar]
  39. Sichoix, L., Bonneville, A. & McNutt, M.K. (1998) The seafloor swells and superswell in French Polynesia. J. Geophys. Res., 103, 27123–27133.
    [Google Scholar]
  40. Smith, D.K. (1988) Shape analysis of Pacific seamounts. Earth Planet. Sci. Lett., 90, 457–466.
    [Google Scholar]
  41. Smith, W.H.F. (1990) Marine geophysical studies of seamounts in the Pacific Ocean basin. PhD thesis, Columbia University, 216pp.
  42. Smith, D.K. (1996) Comparison of the shapes and sizes of seafloor volcanoes on Earth and ‘pancake’ domes on Venus. J. Volcanol. Geotherm. Res., 73, 47–64.
    [Google Scholar]
  43. Smith, D.K. & Cann, J. (1992) The role of seamount volcanism in crustal construction at the Mid‐Atlantic Ridge (24–30°N). J. Geophys. Res., 97, 1645–1658.
    [Google Scholar]
  44. Smith, D.K. & Jordan, T.H. (1987) The size distribution of Pacific seamounts. Geophys. Res. Lett., 14 (11), 1119–1122.
    [Google Scholar]
  45. Smith, D.K. & Jordan, T.H. (1988) Seamount statistics in the Pacific Ocean. J. Geophys. Res., 93, 2899–2918.
    [Google Scholar]
  46. Smith, W.H.F. & Sandwell, D. (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 1956–1962.
    [Google Scholar]
  47. Starck, J.L. & Bijaoui, A. (1994) Filtering and deconvolution by the wavelet transfrom. Signal Proc., 35, 195–211.
    [Google Scholar]
  48. Starck, J.L., Bijaoui, A., Valtchanov, I. & Murtagh, F. (2000) A combined approach for object detection and deconvolution. Astronom. Astrophys. Suppl. Ser., 147, 139–149.
    [Google Scholar]
  49. Vogt, P.R. (1974) Volcano height and plate thickness. Earth Planet. Sci. Lett., 23, 337–348.
    [Google Scholar]
  50. Watts, A.B. (1976) Gravity and bathymetry in the central Pacific ocean. J. Geophys. Res., 81, 1533–1548.
    [Google Scholar]
  51. Watts, A.B. & Daly, S.F. (1981) Long wavelength gravity and topography anomalies. Ann. Rev. Earth Planet. Sci., 9, 415–448.
    [Google Scholar]
  52. Watts, A.B., McKenzie, D.P., Parsons, B.E. & Roufosse, M. (1985) The relationship between gravity and bathymetry in the Pacific Ocean. Geophys. J. R. Astr. Soc., 83, 263–298.
    [Google Scholar]
  53. Wessel, P. (1993) Observational constraints on models of the Hawaiian hot spot swell. J. Geophys. Res., 98, 16095–16104.
    [Google Scholar]
  54. Wessel, P. (1998) An empirical method for optimal robust regional‐residual separation of geophysical data. Math. Geol., 30, 391–408.
    [Google Scholar]
  55. Wessel, P. (2001) Global distribution of seamounts inferred from gridded Geosat/ERS‐1 altimetry. J. Geophys. Res., 106, 19431–19441.
    [Google Scholar]
  56. Wessel, P. & Lyons, S. (1997) Distribution of large Pacific seamounts from Geosat/ERS‐1: implications for the history of intraplate volcanism. J. Geophys. Res., 102, 22459–22475.
    [Google Scholar]
  57. Wessel, P. & Smith, W.H.F. (1998) New, improved version of Generic Mapping Tools released. Eos Trans. Am. Geophys. Union, 79, 579.
    [Google Scholar]
  58. White, J.V., Sailor, R.V., Lazarewicz, A.R. & LeShack, A.R. (1983) Detection of seamount signatures in SEASAT altimeter data using matched filters. J. Geophys. Res., 88, 1541–1551.
    [Google Scholar]
  59. Yatawara, N., Abraham, B. & MacGregor, J.F. (1991) A Kalman filter in the presence of outliers. Communications in Statistics – Theory and Methods, 20, 1803–1820.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2008.00382.x
Loading
/content/journals/10.1111/j.1365-2117.2008.00382.x
Loading

Data & Media loading...

Supplements

Source code for the SWT method. Written in ‘C’.Example shell script to run code on the Hawaii profile to verify compilation.Data, manual interpretation and SWT interpretation for the v3312 profile used in this study.Please note: Wiley‐Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Supporting info item

Supporting info item

Supporting info item

Supporting info item

Supporting info item

Supporting info item

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error