1887
Volume 22, Issue 2
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

The Eocene Hecho Group turbidite system of the Aínsa‐Jaca foreland Basin (southcentral Pyrenees) provides an excellent opportunity to constrain compositional variations within the context of spatial and temporal distribution of source rocks during tectonostratigraphic evolution of foreland basins. The complex tectonic setting necessitated the use of petrographic, geochemical and multivariate statistical techniques to achieve this goal. The turbidite deposits comprise four unconformity‐bounded tectonostratigraphic units (TSU), consisting of quartz‐rich and feldspar‐poor sandstones, calclithites rich in extrabasinal carbonates and hybrid arenites dominated by intrabasinal carbonates. The sandstones occur exclusively in TSU‐2, whereas calclithites and hybrid arenites occur in the overlying TSU‐3, TSU‐4 and TSU‐5. The calclithites were deposited at the base of each TSU and hybrid arenites in the uppermost parts. Extrabasinal carbonate sources were derived from the fold‐and‐thrust belt (mainly Cretaceous and Palaeocene limestones). Conversely, intrabasinal carbonate grains were sourced from foramol shelf carbonate factories. This compositional trend is attributed to alternating episodes of uplift and thrust propagation (siliciclastic and extrabasinal carbonates supplies) and subsequent episodes of development of carbonate platforms supplying intrabasinal detrital grains. The quartz‐rich and feldspar‐poor composition of the sandstones suggests derivation from intensely weathered cratonic basement rocks during the initial fill of the foreland basin. Successive sediments (calclithites and hybrid arenites) were derived from older uplifted basement rocks (feldspar‐rich and, to some extent, rock fragments‐rich sandstones), thrust‐and‐fold belt deposits and from coeval carbonate platforms developed at the basin margins. This study demonstrates that the integration of tectono‐stratigraphy, petrology and geochemistry of arenites provides a powerful tool to constrain the spatial and temporal variation in provenance during the tectonic evolution of foreland basins.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2009.00405.x
2009-04-06
2024-04-19
Loading full text...

Full text loading...

References

  1. Arbués, P., Mellere, D., Falivene, O., Fernández, O., Muñoz, J.A., Marzo, M. & De Gibert, J.M. (2007a) Context and architecture of the Ainsa‐1‐quarry channel complex, Spain. In: Atlas of Deep‐Water Outcrops (Ed. by T.H.Nilsen , R.D.Shew , G.S.Steffens & J.R.J.Studlick ), AAPG Stud. Geol., 56, 0–20.
    [Google Scholar]
  2. Arbués, P., Mellere, D., Puig, M. & Marzo, M. (2007b) Los Molinos Road, Spain: the effect of slumping on sandstone distribution in the Arro turbidites. In: Atlas of Deep‐Water Outcrops (Ed. by T.H.Nilsen , R.D.Shew , G.S.Steffens & J.R.J.Studlick ), AAPG Stud. Geol. , 56, 0–17.
    [Google Scholar]
  3. Arbués, P., Muñoz, J.A., Poblet, J., Puigdefàfregas, C. & McClay, K. (1998) Significance of submarine truncation surfaces in the sedimentary infill of the Ainsa basin (Eocene of the south‐central Pyrennes, Spain). 15th International Sedimentological Congress, International Association of Sedimentologists, Alicante, 145–146.
  4. Argnani, A., Fontana, D., Stefani, C. & Zuffa, G.G. (2004) Late Cretaceous carbonate turbidites of the Northern Apennines: shaking Adria at the onset of the Alpine Collision. J. Geol., 112, 251–259.
    [Google Scholar]
  5. Bakke, K., Gjelberg, J. & Agerlin, S. (2008) Compound seismic modelling of the Ainsa II turbidite system, Spain: application to deep-water channel systems offshore Angola. Mar. Petrol. Geol., 25, 1058–1073.
    [Google Scholar]
  6. Clark, J.D. & Pickering, K.T. (1996) Architectural elements and growth patterns of submarine channels: application to hydrocarbon exploration. Am. Assoc. Petrol. Geol. Bull., 80, 194–221.
    [Google Scholar]
  7. Conybeare, D.M., Cannon, S., Karaoguz, O. & Uygur, E. (2004) Reservoir modelling of the Hamitabat Field, Thrace Basin, Turkey: an example of a sand‐rich turbidite system. In: Confined Turbidite Systems (Ed. by S.A.Lomas & P.Joseph ), pp. 307–320. Geological Society Special Publications, London, UK.
    [Google Scholar]
  8. Critelli, S., Le Pera, E., Milli, S., Moscatelli, M., Perrotta, S. & Santantonio, M. (2007) Interpreting siliciclastic‐carbonate detrital modes in foreland basin systems: an example from Upper Miocene arenites of the central Apennines, Italy. In: Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry (Ed. by J.Arribas , S.Critelli & M.J.Johnsson ), Geol. Soc. Am. Spec. Pap. , 420, 107–133.
    [Google Scholar]
  9. Devaney, K.A. & Ingersoll, R.V. (1993) Provenance evolution of upper Paleozoic sandstones of north‐central New Mexico. In: Processes Controlling the Composition of Clastic Sediments (Ed. by M.J.Johnsson & A.Basu ), Geol. Soc. Am. Spec. Pap., 284, 91–108.
    [Google Scholar]
  10. Dickinson, W.R. (1970) Interpreting detrital modes of graywacke and arkose. J. Sediment. Petrol., 40, 695–707.
    [Google Scholar]
  11. Dickinson, W.R. & Suczek, C.A. (1979) Plate tectonics and sandstone compositions. Am. Assoc. Petrol. Geol. Bull., 63, 2164–2182.
    [Google Scholar]
  12. Doyle, L.J. & Roberts, H.H. (1988) Carbonate‐Clastic Transition, Developments in Sedimentology. Elsevier, New York.
    [Google Scholar]
  13. Dreyer, T., Corregidor, J., Arbués, P. & Puigdefábregas, C. (1999) Architecture of the tectonically influenced Sobrarbe deltaic complex in the Ainsa Basin, northern Spain. Sediment. Geol., 127, 127–169.
    [Google Scholar]
  14. Eichenseer, H. & Luterbacher, H. (1992) The marine Paleogene of the Tremp Region (NE Spain). Depositional sequences, facies history, bioestratigraphy and controlling factors. Facies, 27, 119–152.
    [Google Scholar]
  15. Falivene, O., Arbués, P., Howell, J., Muñoz, J.A., Fernández, O. & Marzo, M. (2006) Hierarchical geocellular facies modelling of a turbidite reservoir analogue from the Eocene of the Ainsa basin, NE Spain. Mar. Petrol. Geol., 23, 679–701.
    [Google Scholar]
  16. Fernández, O., Muñoz, J.A., Arbués, P., Falivene, O. & Marzo, M. (2004) Three‐dimensional reconstruction of geological surfaces: an example of growth strata and turbidite systems from the Ainsa basin (Pyrenees, Spain). Am. Assoc. Petrol. Geol. Bull., 88, 1049–1068.
    [Google Scholar]
  17. Fitzgerald, P.G., Muñoz, J.A., Coney, P.J. & Baldwin, S.L. (1999) Asymetric exhumation across the Pyrenean orogen: implications for the tectonic evolution of a collisional orogen. Earth Planet. Sci. Lett., 173, 157–170.
    [Google Scholar]
  18. Folk, R.L. (1980) Petrology of Sedimentary Rocks. Hemphill, Austin, TX.
    [Google Scholar]
  19. Fonnesu, F. (1984) Estratigrafía física y análisis de facies de la secuencia de Figols entre el río Noguera‐Pallaresa e Isscles. Prov de Lérida y Huesca. PhD, Universitat Autònoma de Barcelona.
  20. Fontana, D., Zuffa, G.G. & Garzanti, E. (1989) The interaction of eustacy and tectonism from provenance studies of the Eocene Hecho Group turbidite complex (South‐Central Pyreneees, Spain). Basin Res., 2, 223–237.
    [Google Scholar]
  21. Garzanti, E. & Vezzoli, G. (2003) A classification of metamorphic grains in sands based on their composition and grade. J. Sediment. Res., 73, 830–837.
    [Google Scholar]
  22. Gawenda, P., Winkler, W., Schmitz, B. & Adatte, T. (1999) Climate and bioproductivity control on carbonate turbidite sedimentation (Paleocene to Earliest Eocene, Gulf of Biscay, Zumaia, Spain). J. Sediment. Res., 69, 1253–1261.
    [Google Scholar]
  23. Gazzi, P. (1966) Le arenarie del flysch sopracretaceo dell'Appennino modenese; correlazioni con il flysch di Monghidoro. Mineral. Petrogr. Act., 16, 69–97.
    [Google Scholar]
  24. Graham, S.A., Tolson, R.B., Decelles, P.G., Ingersoll, R.V., Bargan, E., Caldwell, M., Cavazza, W., Edwards, D.P., Follo, M.F., Handschy, J.F., Lemke, L., Moxon, I., Rice, R., Smith, G.A. & White, J. (1986) Provenance modelling as a technique for analysing source terrane evolution and controls on foreland sedimentation. Spec. Publ. Int. Ass. Sediment., 8, 425–436.
    [Google Scholar]
  25. Gupta, K.D. & Pickering, K.T. (2008) Petrography and temporal changes in petrofacies of deep‐marine Ainsa‐Jaca basin sandstones systems, Early and Middle Eocene, Spanish Pyrenees. Sedimentology, 55, 1083–1114.
    [Google Scholar]
  26. Haseldonckx, P. (1972) The presence of Nvpa palms in Europe: a solved problem. Geol. Mijnbouw, 51, 645–650.
    [Google Scholar]
  27. Haseldonckx, P. (1973) The palynology of some Paleogene deposits between the Rfo Esera and the Rio Segre, southern Pyrenees, Spain. Leidse Geol. Mededel., 49, 145–165.
    [Google Scholar]
  28. Helmold, K.P. (1985) Provenance of feldspathic sandstones. The effect of diagenesis on provenance interpretations: a review. In: Provenance of Arenites (Ed. by G.G.Zuffa ), NATO ASI Ser., 148, 139–163.
    [Google Scholar]
  29. Holl, J.E. & Anastasio, D.J. (1993) Paleomagnetically derived folding rates, southern Pyrenees, Spain. Geology, 21, 271–274.
    [Google Scholar]
  30. Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D. & Sares, S.W. (1984) The effect of grain size on detrital modes: a test of the Gazzi–Dickinson point-counting method. J. Sediment. Petrol., 54, 103–116.
    [Google Scholar]
  31. Johnsson, M.J., Stallarrd, RF. & Lundberg, N. (1991) Controls on the composition of fluvial sands from a tropical weathering environment: sands of the Orinoco River drainage basin, Venezuela and Colombia. Geol. Soc. Am. Bull., 103, 1622–1647.
    [Google Scholar]
  32. Kairo, S., Suttner, L.J. & Dutta, P.K. (1993) Variability in sandstone composition as a function of depositional environment in coarse‐grained delta systems. In: Processes Controlling the Composition of Clastic Sediments (Ed. by M.J.Johnsson & A.Basu ), Geol. Soc. Am. Spec. Pap., 284, 263–283.
    [Google Scholar]
  33. Kosir, A. (2004) Microcodium revisited: root calcification products of terrestrial plants on carbonate-rich substrates. J. Sediment. Res., 74, 845–857.
    [Google Scholar]
  34. Kutterolf, S., Diener, R., Schacht, U. & Krawinkel, H. (2008) Provenance of the Carboniferous Hochwipfel Formation (Karawanken Mountains, Austria/Slovenia). Geochemistry versus petrography. Sediment. Geol., 203, 246–266.
    [Google Scholar]
  35. Labaume, P., Seguret, M. & Seyve, C. (1985) Evolution of a turbidtic foreland basin and analogy with an accretionary prism: example of the Eocene south-Pyrenean basin. Tectonics, 4, 661–685.
    [Google Scholar]
  36. López‐Blanco, M. (1996) Estratigrafía secuencial de sistemas deltaicos en cuencas de antepaís: ejemplos de Sant Llorenç del Munt, Montserrat y Roda (Paleógeno, cuenca de antepaís surpirenaica). PhD Thesis, University Barcelona, Spain.
  37. López‐Blanco, M., Marzo, M. & Muñoz, J.A. (2003) Low‐amplitude, synsedimentary folding of a deltaic complex: Roda Sandstone (lower Eocene), South-Pyrenean Foreland Basin. Basin Res., 15, 73–96.
    [Google Scholar]
  38. Marfil, R. (1970) Estudio petrogenético del Keuper en el sector meridional de la Cordillera Ibérica. Estudios Geol., 26, 113–161.
    [Google Scholar]
  39. Maynard, B. (1984) Composition of plagioclase feldspar in modern deep‐sea sands: relationship to tectonic setting. Sedimentology, 31, 493–501.
    [Google Scholar]
  40. Meigs, A.J. (1997) Sequential development of selected Pyrenean thrust faults. J. Struct. Geol., 19, 481–502.
    [Google Scholar]
  41. Meigs, A.J. & Burbank, D.W. (1997) Growth of the South Pyrenean orogenic wedge. Tectonics, 16, 239–258.
    [Google Scholar]
  42. Millington, J.J. & Clark, J.D. (1995) The Charro/Arro canyon‐mouth sheet system, south‐central Pyrenees, Spain: a structurally influenced zone of sediment dispersal. J. Sediment. Res., 65, 443–454.
    [Google Scholar]
  43. Mochales, T., Pueyo, E.L., Casas, A.M., Barnolas, A., Villalain, J.J., Rodriguez‐Pinto, A. & Gil‐Peña, I. (2007) Magnetostratigraphic constraints on the kinematics of the Boltaña anticline (Southern Pyrenees). Geophys. Res. Abstr., 9, 00346.
    [Google Scholar]
  44. Molinaroli, E., Blom, M. & Basu, A. (1991) Methods of provenance determination tested with discriminant function analysis. J. Sediment. Petrol., 61, 900–908.
    [Google Scholar]
  45. Muñoz, J.A. (1992) Evolution of a continental collision belt: ECORS‐Pyrenees crustal balanced cross‐section. In: Thrust Tectonics (Ed. by K.McClay ), pp. 235–246. Chapman & Hall, London.
    [Google Scholar]
  46. Muñoz, J.A. (2004) The Ainsa Basin. In: Western Pyrenees Fold‐and‐Thrust‐Belt: Geodynamics, Sedimentation and Plate Boundary Reconstruction from Rifting to Inversion., 32nd International Geological Congress, Italy, Field trip guide book B‐16 (Ed. by R.Bourrouilh , L.Moen‐Maurel , J.A.Muñoz & A.Teixell ), 51–56. APAT, Roma.
    [Google Scholar]
  47. Muñoz, J.A., Arbués, P. & Serra‐Kiel, J. (1998) The Ainsa Basin and the Sobrarbe oblique thrust system: sedimentological and tectonic processes controlling slope and platform sequences deposited synchronously with a submarine emergent thrust system. In: Field Trip Guidebook of the 15th International Sedimentological Congress, Alicante (Ed. by A.M.Hevia & A.R.Soria ), pp. 213–223. Sadler, Palm de Mallorca, Spain.
    [Google Scholar]
  48. Mutti, E. (1985) Turbidite systems and their relations to depositional sequences. In: Provenance of Arenites (Ed. by G.G.Zuffa ), NATO ASI Ser., 148, 65–93.
    [Google Scholar]
  49. Mutti, E., Luterbacher, H.P., Ferrer, J. & Rosell, J. (1972) Schema estratigrafico e lineamenti di facies del Paleogene marino della zona centrale sudpirenaica tra Tremp (Catalogna) e Pamplona (Navarra). Soc. Geol. Ital., 11, 391–416.
    [Google Scholar]
  50. Mutti, E., Remacha, E., Sgavetti, M., Rosell, J., Valloni, R. & Zamorano, M. (1985) Stratigraphy and facies characteristics of the Eocene Hecho Group turbidite systems, South Central Pyrenees. In: Excursion Guidebook. 6th European Regional Meeting of the International Association of Sedimentologists, Lérida (Ed. by M.D.Mila & J.Rosell ), 521–576.
    [Google Scholar]
  51. Mutti, E., Seguret, M. & Sgavetti, M. (1988) Sedimentation and deformation in the Tertiary sequences of the Southern Pyrenees. Field Trip 7 guidebook. AAPG Mediterranean Basins Conference, Nice, France, Special Publication of the Institute of Geology of the University of Parma, 157pp.
  52. Nagtegaal, P.J.C. & De Weerd, J.TH. (1985) Provenance of Cambro‐Ordovician to Oligocene sandstones in the southern Pyrenees, Spain. Geol. Mijnb., 64, 25–40.
    [Google Scholar]
  53. Nielsen, P., Muchez, P., Heijlen, W., Fallick, A.E., Keppens, E., Weis, D. & Swennen, R. (2005) Columnar calcites as testimony of diagenetic overprinting at the boundary between Upper Tournaisian dolomites and limestones (Belgium): multiple origins for apparently similar features. Sedimentology, 52, 945–967.
    [Google Scholar]
  54. Nijman, W. (1989) Thrust sheet rotation? The South Pyrenean Tertiary basin configuration reconsidered. Geodin. Acta, 3, 17–42.
    [Google Scholar]
  55. Nijman, W. (1998) Cyclicity and basin axis shift in a piggyback basin: towards modelling ot the Eocene Tremp‐Ager Basin, South Pyrenees, Spain. In: Cenozoic Foreland Basins of Western Europe (Ed. by A.Mascle , C.Puigdefàbregas , H.P.Luterbacher & M.Fernández ), Geol. Soc. Spec. Publ., 134, 135–162.
    [Google Scholar]
  56. Nijman, W. & Nio, S.D. (1975) The Eocene Montañana Delta (Tremp‐Graus Basin, provinces of Lérida and Huesca, Southern Pyrenees, N Spain), Field trip B guidebook (The sedimentary evolution of the Paleogene south Pyrenean Basin), XI International Sedimentological Congress, International Association of Sedimentologists, Nice, Excursion Guidebook, 19, part B, 1–20.
  57. Nijman, W. & Puigdefàbregas, C. (1989) The second stage of the foreland Basin. In: Allluvial Deposits of the Successive Foreland Basin Stages and their Relation to the Pyrenean Thrust Sequences. Guidebook Series of the 4th International Conference on Fluvial Sedimentology (Ed. by M.Marzo & C.Puigdefàbregas ), pp. 30–62. Publicacions del Servei Geològic de Catalunya, Barcelona‐Sitges, Spain.
    [Google Scholar]
  58. Oms, O., Dinarès‐Turell, J. & Remacha, E. (2003) Magnetic stratigraphy from deep clastic Turbidites: an example from the Eocene Hecho Group (Southern Pyrenees). Stud. Geophys. Geodaet., 47, 275–288.
    [Google Scholar]
  59. Parsons, I., Thompson, P., Lee, M.R. & Cayzer, N. (2005) Alkali feldspar microtextures as provenance indicators in siliciclastic rocks and their role in feldspar dissolution during transport and diagenesis. J. Sediment. Res., 75, 921–942.
    [Google Scholar]
  60. Pettijohn, F.J., Potter, P.E. & Siever, R. (1972) Sand and Sandstones. Springer‐Verlag, Berlin.
    [Google Scholar]
  61. Pickering, K.T. & Corregidor, J. (2005) Mass‐transport complexes (MTCs) and tectonic control on basin‐floor submarine fans, middle Eocene, south Spanish Pyrenees. J. Sediment. Res., 75, 761–783.
    [Google Scholar]
  62. Pittman, E.D. (1970) Plagioclase feldspar as an indicator of provenance in sedimentary rocks. J. Sediment. Res., 40, 591–598.
    [Google Scholar]
  63. Plaziat, J.C. (1984) Le domaine pyrénéen de la fin du Crétacéà la fin de l'Éocene. Stratigraphie paléoenvirnoments et évolution paléogéographique. Thése Doct. Sci. Nat.Université Paris‐Sud, 1362pp., Paris.
  64. Poblet, J., Munoz, J.A., Travé, A. & Serra‐Kiel, J. (1998) Quantifying the kinematics of detachment folds using three‐dimensional geometry; application to the Mediano Anticline (Pyrenees, Spain). GSA Bull., 110, 111–125.
    [Google Scholar]
  65. Puigdefàbregas, C., Muñoz, J.A. & Vergés, J. (1992) Thrusting and foreland basin evolution in the Southern Pyrenees. In: Thrust Tectonics (Ed. by K.R.McClay ), pp. 247–254. Chapman & Hall, London.
    [Google Scholar]
  66. Remacha, E. (1983) “Sand tongues” de la unidad de Broto (Grupo de Hecho) entre el anticlinal de Boltaña y el Río Osia (Prov. De Huesca). PhD, Universitat Autònoma de Barcelona.
  67. Remacha, E. & Fernández, L.P. (2003) High‐resolution correlation patterns in the turbidite systems of the Hecho Group (South‐Central Pyrenees, Spain). Mar. Petrol. Geol., 20, 711–726.
    [Google Scholar]
  68. Remacha, E., Fernández, L.P. & Maestro, E. (2005) The transition between sheet‐like lobes and basin plain turbidites in the Hecho Group (South‐central Pyrenees, Spain). J. Sediment. Res., 75, 798–819.
    [Google Scholar]
  69. Remacha, E., Gual, G., Bolaño, F., Arcuri, M., Oms, O., Climent, F., Crumeyrolle, P., Fernandez, L.P., Vicente, J.C. & Suarez, J. (2003) Sand‐rich turbidite systems of the Hecho Group from slope to the basin plain. Facies, Stacking patterns, controlling factors and diagnostic features. Geological Field Trip n. 12, South‐Central Pyrenees. AAPG International Conference and Exhibition. Barcelona, Spain.
  70. Remacha, E., Oms, O. & Coello, J. (1995) The Rapitan turbidite channel and its related eastern levee‐overbank deposits, Eocene Hecho Group, south‐central Pyrenees. In: Atlas of Deep Water Environments: Architectural Style in Turbidite Systems (Ed. by K.T.Pickering , R.N.Hiscott , N.H.Kenyon , F.Ricci Lucchi & R.D.A.Smith ), pp. 145–149. Chapman & Hall, London.
    [Google Scholar]
  71. Remacha, E., Raïmat, C., Oms, O., Cardona, D. & Mutti, E. (1997) Presencia del Alogrupo de Figols en las turbiditas de la base del Grupo de Hecho (Barranco del Sorrosal, Prov. De Huesca). Geogaceta, 21, 179–182.
    [Google Scholar]
  72. Rossi, C. & Cañaveras, J.C. (1999) Pseudospherulitic fibrous calcite in paleo‐groundwater, unconformity‐related diagenetic carbonates (Paleocene of the Ager Basin and Miocene of the Madrid Basin, Spain). J. Sediment. Res., 69, 224–238.
    [Google Scholar]
  73. Schwab, F.L. (1986) “Sedimentary “signatures” of foreland basin assemblages: real or counterfeit? Spec. Publ. Int. Ass. Sediment., 8, 395–410.
    [Google Scholar]
  74. Séguret, M., Labaume, P. & Madariaga, E. (1984) Eocene seismicity in the Pyrenees from megaturbidites of the south Pyrenean basin (Spain). Mar. Geol., 55, 117–131.
    [Google Scholar]
  75. Stefani, C., Zattin, M. & Grandesso, P. (2007) Petrography of Paleogene turbiditic sedimentation in northeastern Italy. In: Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry (Ed. by J.Arribas , S.Critelli & M.J.Johnsson ), Geol. Soc. Am. Spec. Pap. , 420, 37–55.
    [Google Scholar]
  76. Sullivan, M., Coombes, T., Imbert, P. & Ahamdach‐Demars, C. (1999) Reservoir quality and petrophysical evaluation of Paleocene sandstones in the West of Shetland area. In: Petroleum Geology of Northwest Europe (Ed. by A.J.Fleet & S.A.R.Boldy ), pp. 627–633. Geological Society, London.
    [Google Scholar]
  77. Taylor, S.R. & McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.
    [Google Scholar]
  78. Teixell, A. (1998) Crustal structure and orogenic material budget in the west central Pyrenees. Tectonics, 17, 395–406.
    [Google Scholar]
  79. Trevena, A.S. & Nash, W.P. (1979) Chemistry and provenance of detrital plagioclase. Geology, 7, 475–478.
    [Google Scholar]
  80. Trevena, A.S. & Nash, W.P. (1981) An electron micropobe study of detrital feldspar. J. Sediment. Petrol., 51, 137–150.
    [Google Scholar]
  81. Tucker, M.E. & Wright, V.P. (1990) Carbonate Sedimentology. Blackwell, Oxford.
    [Google Scholar]
  82. Van Lunsen, H.A. (1970) Geology of the Ara‐Cinca region, Spanish Pyrenees, Province of Huesca. Geol. Ultraect., 16, 1–119.
    [Google Scholar]
  83. Vincent, S.J. (2001) The Sis palaeovalley: a record of proximal fluvial sedimentation and drainage basin development in response to Pyrenean mountain building. Sedimentology, 48, 1235–1276.
    [Google Scholar]
  84. Von Eynatten, H., Barceló‐Vidal, C. & Pawlowsky‐Glahn, V. (2003) Composition and discrimination of sandstones: a statistical evaluation of different analytical methods. J. Sediment. Res., 73, 47–57.
    [Google Scholar]
  85. Weltje, G.J. (2002) Quantitative analysis of detrital modes: statistically rigorous confidence regions in ternary diagrams and their use in sedimentary petrology. Earth‐Sci. Rev., 57, 211–253.
    [Google Scholar]
  86. Weltje, G.J. (2006) Ternary sandstone composition and provenance: an evaluation of the ‘Dickinson model’. In: Compositional Data Analysis in the Geosciences: From Theory to Practice (Ed. by A.Buccianti , G.Mateu‐Figueras & V.Pawlowsky‐Glahn ), Geol. Soc. London Spec. Publ., 264, 79–99.
    [Google Scholar]
  87. Weltje, G.J., Van Ansenwoude, S.O.K.J. & De Boer, E.L. (1996) High‐frequency detrital signals in Eocene fan‐delta sandstones of mixed parentage (South‐Central Pyrenees, Spain): a reconstruction of chemical weathering in transit. J. Sediment. Res., 66, 119–131.
    [Google Scholar]
  88. Weltje, G.J. & Von Eynatten, H. (2004) Quantitative provenance analysis of sediments: review and outlook. Sediment. Geol., 171, 1–11.
    [Google Scholar]
  89. Zuffa, G.G. (1980) Hybrid arenites: their composition and classification. J. Sediment. Petrol., 50, 21–29.
    [Google Scholar]
  90. Zuffa, G.G. (1985) Optical analyses of arenites: influence of methodology on compositional results. In: Provenance of Arenites (Ed. by G.G.Zuffa ), NATO ASI Ser., 148, 165–190.
    [Google Scholar]
  91. Zuffa, G.G. (1987) Unravelling hinterland and offshore palaeogeography from deep‐water arenites. In: Marine Clastic Sedimentology (Ed. by J.K.Leggett & G.G.Zuffa ), pp. 39–61. Graham and Trotman, London.
    [Google Scholar]
  92. Zuffa, G.G. (1991) On the use of turbidite arenites in provenance studies: critical remarks. In: Developments in Sedimentary Provenance Studies (Ed. by A.C.Morton , S.P.Todd & P.D.W.Haughton ), Geol. Soc. Spec. Publ., 57, 23–29.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2009.00405.x
Loading
/content/journals/10.1111/j.1365-2117.2009.00405.x
Loading

Data & Media loading...

Supplements

Detailed modal analyses of the lower Hecho Group siliciclastic and hybrid turbiditic arenites. Bulk‐rock geochemistry data of the lower Hecho Group siliciclastic and hybrid turbiditic arenites. Modal analyses of the lower Hecho Group siliciclastic and hybrid turbiditic arenites of the Eocene Hecho GroupPlease note: Wiley‐Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Supporting info item

Supporting info item

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error