1887
Volume 22, Issue 2
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

The Baram Delta System, Brunei, NW Borneo, is a Tertiary delta system located on an active continental margin. Delta top regions in many Tertiary delta systems (e.g. Niger Delta) are thought to exhibit a normal‐fault stress regime and margin‐parallel maximum horizontal stress orientations. However, unlike in passive margin Tertiary delta systems, two present‐day stress provinces have been previously identified across the Baram Delta System: an inner shelf inverted province with a margin‐normal (NW–SE) maximum horizontal stress orientation and an outer shelf extension province with a margin‐parallel (NE–SW) maximum horizontal stress orientation. Before this study, there were few data constraining the inverted province other than in the vicinity of the Champion Fields. New data from 12 petroleum wells in the western inner shelf and onshore west Brunei presented herein confirm the margin‐normal maximum horizontal stress orientations of the inverted province. A total of 117 borehole breakouts, all documented in shale units, and one drilling‐induced tensile fracture (in a sandstone interval) reveal a mean maximum horizontal stress orientation of 117 with a standard deviation of 19°. This orientation is consistent with contemporary margin‐normal maximum horizontal stress orientations of the inverted province described previously in the vicinity of the Champion Fields that have been linked to basement tectonics of the Crocker–Rajang accretionary complex and associated active margin. However, stress magnitudes calculated using data from these 12 petroleum wells indicate a borderline strike–slip fault to normal fault stress regime for the present day; combined with the absence of seismicity, this suggests that the studied part of the NW Borneo continental margin is currently tectonically quiescent.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2009.00407.x
2009-04-14
2024-04-24
Loading full text...

Full text loading...

References

  1. Aleksandroski, P., Inderhaug, O.H. & Knapstad, B. (1992) Tectonic structures and wellbore breakout orientation. Proceedings of the 33rd US Symposium on Rock Mechanics, pp.29–37.
  2. Anderson, E.M. (1951) The Dynamics of Faulting and Dyke Formation with Applications to Britain. Oliver Boyd, Edinburgh.
    [Google Scholar]
  3. Back, S., Strozyk, F., Kukla, P.A. & Lambiase, J.J. (2008) Three‐dimensional restoration of original sedimentary geometries in deformed basin fill, onshore Brunei Darussalam, NW Borneo. Basin Res., 20, 99–117.
    [Google Scholar]
  4. Barton, C.A. (2000) Discrimination of Natural Fractures from Drilling‐Induced Wellbore Failures in Wellbore Image Data – Implications for Reservoir Permeability. Society of Petroleum Engineers International Petroleum Conference and Exhibition, Mexico.
    [Google Scholar]
  5. Barton, C.A., Castillo, D.A., Moos, D., Peska, P. & Zoback, M.D. (1998) Characterising the full stress tensor based on observations of drilling‐induced wellbore failures in vertical and inclined boreholes leading to improved wellbore stability and permeability prediction. Aust. Petrol. Product. Explor. Assoc. J., 38, 467–487.
    [Google Scholar]
  6. Bell, J.S. (1990) The stress regime of the Scotian Shelf offshore eastern Canada to 6 kilometres depth and implications for rock mechanics and hydrocarbon migration. In: Rock at Great Depth (Ed. by V.Maury & D.Fourmaintraux ), pp. 1243–1265. Balkema, Rotterdam.
    [Google Scholar]
  7. Bell, J.S. (1996a) In situ stresses in sedimentary rocks (part 2): applications of stress measurements. Geosci. Can., 23, 135–153.
    [Google Scholar]
  8. Bell, J.S. (1996b) In situ stresses in sedimentary rocks (part 1): measurement techniques. Geosci. Can., 23, 85–100.
    [Google Scholar]
  9. Bell, J.S. & Gough, D.I. (1979) Northeast–southwest compressive stress in Alberta: evidence from oil wells. Earth Planet. Sci. Lett., 45, 475–482.
    [Google Scholar]
  10. Blair, T.C. & Bilodeau, W.L. (1988) Development of tectonics cyclothems in rift, pull‐apart and foreland basins; sedimentary response to episodic tectonism. Geology, 16, 517–520.
    [Google Scholar]
  11. Breckels, I.M. & Van Eckelen, H.A.M. (1982) Relationship between horizontal stress and depth in sedimentary basins. J. Petrol. Technol., 34, 2191–2198.
    [Google Scholar]
  12. Brudy, M. & Zoback, M.D. (1999) Drilling‐induced tensile wall‐fractures: implications for determination of in-situ stress orientation and magnitude. Int. J. Rock Mechanics Mining Sci., 36, 191–215.
    [Google Scholar]
  13. Byerlee, J. (1978) Friction of rocks. Pageoph, 116, 616–626.
    [Google Scholar]
  14. Chang, C., Zoback, M.D. & Khaksar, A. (2006) Empirical relations between rock strength and physical properties in sedimentary rocks. Petrol. Sci. Eng., 51, 223–237.
    [Google Scholar]
  15. Collettini, C., De Paola, N., Holdsworth, R.E. & Barchi, M.R. (2006) The development and behaviour of low‐angle normal faults during Cenezoic asymmetric extension in the Northern Apennines, Italy. J. Struct. Geol., 28, 333–352.
    [Google Scholar]
  16. Dickey, P.A. (1986) Petroleum Development Geology, 3rd edn. Pennwell Books, Tulsa.
    [Google Scholar]
  17. Engelder, T. (1993) Stress Regimes in the Lithosphere. Princeton University Press, Princeton.
    [Google Scholar]
  18. Gardner, G.H.F., Gardner, L.W. & Gregory, A.R. (1974) Formation velocity and density – the diagnostic basics for stratigraphic traps. Geophysics, 16, 51–62.
    [Google Scholar]
  19. Good, N. & De Wit, M.J. (1997) The Thabazimbi–Murchison Lineament of the Kaavaal Craton, South Africa: 2700 Ma of episodic deformation. J. Geol. Soc. Lond., 154, 93–97.
    [Google Scholar]
  20. Hall, R. (1996) Reconstructing Cenozoic SE Asia. In: Tectonic Evolution of SE Asia (Ed. by R.Hall & D.J.Blundell ), Geol. Soc. Lond. Spec. Publ., 106, 153–184.
    [Google Scholar]
  21. Hall, R. (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J. Asian Earth Sci., 20, 353–431.
    [Google Scholar]
  22. Healy, D., Jones, R.R. & Holdsworth, R.E. (2006) Three‐dimensional brittle shear fracturing by tensile crack interaction. Nature, 439, 64–67.
    [Google Scholar]
  23. Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., & Müller, B. (in press) Global crustal stress pattern based on the 2008 World Stress Map database release. Tectonophysics
    [Google Scholar]
  24. Heffer, K.J., Fox, R.J., McGill, C.A. & Kautsabeloulis, N.C. (1995) Novel techniques Show, Links between reservoir flow directionality, Earth stress, fault structure and geomechanical changes in mature waterfloods. Soc. Petrol. Eng. J., 2, 2, 91–98.
    [Google Scholar]
  25. Heffer, K.J. & Lean, J.C. (1993) Earth stress orientation – a control on, and guide to, flooding directionality in a majority of reservoirs. In: Reservoir Characterisation III (Ed. by W.Linville ), pp. 799–822. Pennwell Becks, Tulsa.
    [Google Scholar]
  26. Hillis, R.R. & Williams, A.F. (1993) The stress field of the North West Shelf and wellbore stability. Aust. Petrol. Product. Explor. Assoc. J., 33, 373–385.
    [Google Scholar]
  27. Hinz, K., Fritsch, J., Kempter, E.H.K., Mohammad, A.M., Meyer, J., Mohamed, D., Vosberg, H., Weber, J. & Benavidez, J. (1989) Thrust tectonics along the north‐western continental margin of Sabah/Borneo. Geol. Rund., 78 (3), 705–730.
    [Google Scholar]
  28. Hinz, K. & Schlüter, H.U. (1985) Geology of the Dangerous Grounds, South China Sea and the continental margin off Southwest Palawan: results of SONNE cruises SO-23 and SO-27. Energy, 10, 297–315.
    [Google Scholar]
  29. Hiscott, R.N. (2001) Depositional sequences controlled by high rates of sediment supply, sea‐level variations and growth faulting: the Quaternary Baram Delta of northwestern Borneo. Mar. Geol., 175, 67–102.
    [Google Scholar]
  30. Hutchison, C.S. (2005) Geology of North‐West Borneo, Sarawak, Brunei and Sabah. Elsevier, London.
    [Google Scholar]
  31. Ingram, G.M., Chisholm, T.J., Grant, C.J., Hedlund, C.A., Stuart‐Smith, P. & Teasdale, J. (2004) Deepwater North West Borneo: hydrocarbon accumulation in an active fold and thrust belt. Mar. Petrol. Geol., 21, 879–887.
    [Google Scholar]
  32. King, R.C., Hillis, R.R. & Reynolds, S.D. (2008) In situ stresses and natural fractures in the Northern Perth Basin, Australia. Aust. J. Earth Sci., 55, 685–701.
    [Google Scholar]
  33. King, R.C., Hillis, R.R., Tingay, M.R.P & Morley, C.K. (2009) Present‐day stress and neotectonic provinces of the Baram Delta and deepwater fold‐thrust belt. J. Geol. Soc. Lond., 166, 197–200.
    [Google Scholar]
  34. Kirsch, V. (1898) Die Theorie der Elastizität und die Beddürfnisse der Festigkeitslehre. VDI Z., 29, 797–807.
    [Google Scholar]
  35. Lambiase, J.J., Rahim, A.A.A. & Peng, C.Y. (2002) Facies distribution and sedimentary processes on the modern Baram Delta: implications for the reservoir sandstones of NW Borneo. Mar. Petrol. Geol., 19, 69–78.
    [Google Scholar]
  36. Mandl, G. & Crans, W. (1981) Gravitational gliding in deltas. In: Nappe and Thrust Tectonics (Ed. by N.J.Price & K.R.McClay ), Geol. Soc. Lond. Spec. Publ., 9, 41–54.
    [Google Scholar]
  37. Mardia, K.V. (1972) Statistics of Directional Data. Academic Press, London.
    [Google Scholar]
  38. Mastin, L. (1988) Effect of borehole deviation on breakout orientations. J. Geophys. Res., 93, 9187–9195.
    [Google Scholar]
  39. McClay, K.R. (1990) Extensional fault systems in sedimentary basins: a review of analogue model studies. Mar. Petrol. Geol., 7, 206–233.
    [Google Scholar]
  40. Means, W.D. (1976) Stress and Strain. Springer‐Verlag, Berlin.
    [Google Scholar]
  41. Milsom, J., Holt, R., Bin Ayub, D. & Smail, R. (1997) Gravity anomalies and deep structural controls at the Sabah‐Palawan margin, South China Sea. In: Petroleum Geology of Southeast Asia (Ed. by A.J.Frazer , S.J.Matthews & R.W.Murphy ), Geol. Soc. Lond. Spec. Publ., 126, 417–427.
    [Google Scholar]
  42. Moore, P.L. & Iverson, N.R. (2002) Slow episodic shear of granular materials regulated by dilatant strengthening. Geology, 30, 843–846.
    [Google Scholar]
  43. Moos, D., Peska, P., Finkbeiner, T. & Zoback, M. (2003) Comprehensive wellbore stability analysis untilising quantitative risk assessment. J. Petrol. Sci. Eng., 38, 97–109.
    [Google Scholar]
  44. Moos, D. & Zoback, M.D. (1990) Utilization of observations of wellbore failure to constrain the orientation and magnitude of crustal stresses: application to continental, deep sea drilling project, and ocean drilling program boreholes. J. Geophys. Res., 95, 9305–9325.
    [Google Scholar]
  45. Morley, C.K., Back, S., Van Rensbergen, P., Crevello, P. & Lambiase, J.J. (2003) Characteristics of repeated, detached, Miocene–Pliocene tectonic inversion events, in a large delta province on an active margin, Brunei Darussalam, Borneo. J. Struct. Geol., 25, 1147–1169.
    [Google Scholar]
  46. Nelson, E.J., Hillis, R.R., Meyer, J.J., Mildren, S.D., Van Nispen, D. & Briner, A. (2005) The reservoir stress path and its implications for water flooding, Champion Southeast Field, Brunei. Proceedings of Alaska Rocks the 40th U.S. Symposium on Rock Mechanics, American Rock Mechanics Association.
  47. Peška, P. & Zoback, M.D. (1995) Compressive and tensile failure of inclined well bores and determination of in situ stress and rock strength. J. Geophys. Res., 100, 12791–12811.
    [Google Scholar]
  48. Plumb, R.A. & Hickman, S.H. (1985) Stress induced borehole elongation: comparison between the four-arm dipmeter and the borehole televiewer in the Auburn geothermal well. J. Geophys. Res., B90, 5513–5521.
    [Google Scholar]
  49. Reynolds, S.D. & Hillis, R.R. (2000) The in situ stress field of the Perth Basin, Australia. Geophys. Res. Lett., 27, 3421–3424.
    [Google Scholar]
  50. Sandal, S.T. (1996) The Geology and Hydrocarbon Resources of Negara Brunei Darussalam. Brunei Shell Petroleum Company Sendirian Berhad and Brunei Museum, Syabas, Brunei.
    [Google Scholar]
  51. Sibson, R.H. (1974) Frictional constraints on thrust, wrench and normal faults. Nature, 249, 542–544.
    [Google Scholar]
  52. Simons, W.J.F., Socquet, A., Vigny, C., Ambrosius, B.A.C., Haji Abu, S., Promthong, C., Subarya, C., Sarsito, D.A., Matheussen, S., Morgan, P. & Spakman, W. (2007) A decade of GPS in Southeast Asia: resolving Sundaland motion and boundaries. J. Geophys. Res., 112, B06420. doi: DOI: 10.1029/2005JB003868.
    [Google Scholar]
  53. Tan, D.N.K. & Lamy, J.M. (1990) Tectonic evolution of the NW Sabah continental margin since the Late Eocene. Geol. Soc. Malaysia Bull., 27, 241–260.
    [Google Scholar]
  54. Tingay, M.R.P. (2003) In situ stress and overpressures of Brunei Darussalam. Unpublished PhD Thesis, Adelaide University, Australia.
  55. Tingay, M.R.P., Hillis, R.R., Morley, C.K., King, R.C., Swarbrick, R.E. & Damit, A.R. (2009) Present‐day stress and neotectonics of Brunei: implications for petroleum exploration and production. Am. Assoc. Petrol. Geol. Bull., 93, 75–100.
    [Google Scholar]
  56. Tingay, M.R.P., Hillis, R.R., Morley, C.K., Swarbrick, R.E. & Drake, S.J. (2005a) Present‐day stress orientation in Brunei: a snapshot of prograding tectonics in a Tertiary delta. J. Geol. Soc. Lond., 162, 39–49.
    [Google Scholar]
  57. Tingay, M.R.P., Hillis, R.R., Morley, C.K., Swarbrick, R.E. & Drake, S.J. (2005b) ‘Prograding’ Tectonics in Brunei: regional implications for fault sealing. Proceedings of Alaska Rocks the 40th US Symposium on Rock Mechanics, American Rock Mechanics Association.
  58. Tingay, M.R.P., Hillis, R.R., Morley, C.K., Swarbrick, R.E. & Okper, E.C. (2003) Variation in vertical stress in the Baram Basin, Brunei: tectonic and geomechanical implications. Mar. Petrol. Geol., 20, 1201–1212.
    [Google Scholar]
  59. Watters, D.G., Maskall, R.C., Warrilow, I.M. & Liew, V. (1999) A sleeping giant awakened: further development of the Seria Field, Brunei Darussalam, after almost 70 years of production. Petrol. Geosci., 5, 147–159.
    [Google Scholar]
  60. Wiprut, D. & Zoback, M. (2000) Constraining the stress tensor in the Visund field, Norwegian North Sea: application to wellbore stability and sand production. Int. J. Rock Mech. Mining Sci., 37, 317–336.
    [Google Scholar]
  61. Yassir, N.A. & Zerwer, A. (1997) Stress regimes in the Gulf Coast, offshore Louisiana: data from well-bore breakout analysis. Am. Assoc. Petrol. Geol. Bull., 81, 293–307.
    [Google Scholar]
  62. Zhou, S., Hillis, R.R. & Sandiford, M. (1994) A study of the design of inclined wellbores with regard to both mechanical stability and fracture intersection, and its application to the Australian North West Shelf. J. Appl. Geophys., 32, 293–304.
    [Google Scholar]
  63. Zoback, M.D. & Healy, J.H. (1984) Friction, faulting and in situ stress. Annal. Geophys., 2, 689–698.
    [Google Scholar]
  64. Zoback, M.L. (1992) First‐ and second‐order patterns of stress in the Lithosphere: the World stress map project. J. Geophys. Res., 97, 11703–11728.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2009.00407.x
Loading
/content/journals/10.1111/j.1365-2117.2009.00407.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error