1887
Volume 22, Issue 2
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

We use three‐dimensional (3D) seismic reflection and magnetic data to interpret and describe the 3D geometry of igneous dykes in the southern North Sea. The dykes were emplaced into Paleozoic and Mesozoic sediments and have a common upper termination in Early Tertiary sediments. We interpret the dykes to be part of the British Tertiary volcanic province and estimate the age of the dykes to be 58 Ma. The dykes are characterized by a narrow 0.5–2 km wide vertical disturbance of seismic reflections that have linear plan view geometry. Negative magnetic anomalies directly align with the vertical seismic disturbance zones and indicate the presence of igneous material. Linear coalesced collapse craters are found above the dykes. The collapse craters have been defined and visualized in 3D. Collapse craters have formed above the dyke due to the release of volatiles at the dyke tip and resulting volume loss. Larger craters have potentially formed due to explosive phreatomagmatic interaction between magma and pore water. The collapse craters are a new Earth analogue to Martian pit chain craters.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2009.00416.x
2009-07-13
2024-04-19
Loading full text...

Full text loading...

References

  1. Bailey, J.B., Arbin, P., Daffinoti, O., Gibson, P. & Ritchie, J.S. (1993) Permo‐Carboniferous plays of the Silver Pit Basin. In: Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference (Ed. by J.R.Parker ), pp. 707–715. The Geological Society, London.
    [Google Scholar]
  2. Brown, A.R. (1999) Interpretation of Three‐Dimensional Seismic Data, 5th edition. AAPG Memoir 42. Tulsa, Oklahoma, pp. 514.
    [Google Scholar]
  3. Brown, G., Platt, N.H. & McGrandle, A. (1994) The geophysical expression of tertiary dykes in the southern North Sea. First Break, 12 (3), 137–146.
    [Google Scholar]
  4. Cameron, T., D, J., Crosby, A., Balson, P.S., Jeffery, D.H., Lott, G.K., Bulat, J. & Harrison, D.J. (1992) United Kingdom Offshore Regional Report: the Geology of the Southern North Sea. HMSO for the British Geological Survey, London.
    [Google Scholar]
  5. Cande, S.C. & Kent, D.V. (1995) Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research, B, Solid Earth and Planets., 100, 6093–6095.
    [Google Scholar]
  6. Cartwright, J.A., Huuse, M. & Aplin, A. (2007) Seal bypass systems. AAPG Bulletin, 91, 1141–1166.
    [Google Scholar]
  7. Chevallier, L. & Woodford, A. (1999) Morpho‐tectonics and mechanism of emplacement of the dolerite rings and sills of the western Karoo, South Africa. S. Afr. J. Geol., 102, 43–54.
    [Google Scholar]
  8. Christensen, P.R., Gorelick, N.S., Mehall, G.L. & Murray, K.C. THEMIS Public Data Releases, Planetary Data System node, Arizona State University. Available at http://themis‐data.asu.edu (accessed 1 October 2006).
  9. Coward, M. & Stewart, S. (1995) Salt‐influenced structures in the Mesozoic‐Tertiary cover of the southern North Sea, U.K. In: Salt Tectonics: A Global Perspective (Ed. by M.P.A.Jackson , D.G.Roberts & S.Snelson ), AAPG Memoir 65, pp. 229–250.
    [Google Scholar]
  10. Coward, M.P. (1993) The effect of late Caledonian and Variscan continental escape tectonics on basement structure, Paleozoic basin kinematics and subsequent Mesozoic basin development in NW Europe. In: Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference (Ed. by J.R.Parker ), pp. 1095–1108. Geological Society, London.
    [Google Scholar]
  11. Davies, R.J., Stewart, S.A., Cartwright, J.A., Lappin, M., Johnston, R., Fraser, S.I. & Brown, A.R. (2004) 3D seismic technology; are we realising its full potential?Mem. Geol. Soc. Lond., 29, 1–9.
    [Google Scholar]
  12. DuToit, A.I. (1920) The Karoo dolerites. Trans. Geol. Soc. South Africa, 33, 1–42.
    [Google Scholar]
  13. Einsele, G., Gieskes, J.M., Curray, J., Moore, D.M., Aguayo, E., Aubry, M.P., Fornari, D., Guerrero, J., Kastner, M., Kelts, K., Lyle, M., Matoba, Y., Molina, C.A., Niemitz, J., Rueda, J., Saunders, A., Schrader, H., Simoneit, B. & Vacquier, V. (1980) Intrusion of basaltic sills into highly porous sediments, and resulting hydrothermal activity. Nature (London), 283, 441–445.
    [Google Scholar]
  14. Emeleus, C.H. (1982) Tertiary igneous activity: the central complexes (British Isles). In: Igneous Rocks of the British Isles (Ed. by D.S.Sutherland ), pp. 269–414. Wiley, Chichester.
    [Google Scholar]
  15. Ferrill, D.A., Wyrick, D.Y., Morris, A.P., Sims, D.W. & Franklin, N.M. (2004) Dilational fault slip and pit chain formation on Mars. GSA Today, 14, 4–12.
    [Google Scholar]
  16. George, G.T. & Berry, J.K. (1997) Permian (upper Rotliegend) synsedimentary tectonics, basin development and palaeogeography of the southern North Sea. Geol. Soc. Spec. Publ., 123, 31–61.
    [Google Scholar]
  17. Goulty, N.R. (2005) Emplacement mechanism of the Great Whin and Midland Valley dolerite sills. J. Geol. Soc. Lond., 162, 1047–1056.
    [Google Scholar]
  18. Hansen, D.M. & Cartwright, J. (2006) Saucer‐shaped sill with lobate morphology revealed by 3D seismic data; implications for resolving a shallow‐level sill emplacement mechanism. J. Geol. Soc. Lond., 163 (3), 509–523.
    [Google Scholar]
  19. Hansen, D.M., Cartwright, J.A. & Thomas, D. (2004) 3D seismic analysis of the geometry of igneous sills and sill junction relationships. Mem. Geol. Soc. Lond., 29, 199–208.
    [Google Scholar]
  20. Hitchen, K. & Ritchie, J.D. (1987) Geological review of the West Shetland area. In: Petroleum Geology of North West Europe (Ed. by J.Brooks & K.W.Glennie ), pp 737–749. Graham and Trotman, London.
    [Google Scholar]
  21. Hitchen, K. & Ritchie, J.D. (1993) New K‐Ar ages, and a provisional chronology for the offshore part of the British Tertiary Igneous Province. Scott. J. Geol., 29, 599–624.
    [Google Scholar]
  22. Houghton, B.F., Wilson, C.J.N. & Smith, I.E.M. (1999) Shallow‐seated controls on styles of explosive basaltic volcanism; a case study from New Zealand. J. Volcanol. Geotherm. Res., 91, 97–120.
    [Google Scholar]
  23. Hughes, M. & Davison, I. (1993) Geometry and growth kinematics of salt pillows in the southern North Sea. Tectonophysics, 228, 239–254.
    [Google Scholar]
  24. Huuse, M., Cartwright, J.A., Hurst, A. & Steinsland, N. (2007) Seismic characterisation of large‐scale sandstone intrusions. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.A.Cartwright ), AAPG Memoir 87, 21–35.
    [Google Scholar]
  25. Jamtveit, B., Svensen, H., Podladchikov, Y.Y. & Planke, S. (2004) Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. In: Physical Geology of High‐Level Magmatic Systems, Vol. 234 (Ed. by C.Breitkreuz & N.Petford ), pp. 233–241. Geological Society Special Publications, London.
    [Google Scholar]
  26. Jolly, R.J.H. & Sanderson, D.J. (1995) Variations in the form and distribution of dykes in the Mull swarm, Scotland. Journal of Structural Geology., 17, 1543–1557.
    [Google Scholar]
  27. Kirton, S.R. & Donato, J.A. (1985) Some buried Tertiary dykes of Britain and surrounding waters deduced by magnetic modelling and seismic reflection methods. J. Geol. Soc. Lond., 142, 1047–1057.
    [Google Scholar]
  28. Kokelaar, B.P. (1982) Fluidization of wet sediments during the emplacement and cooling of various igneous bodies. J. Geol. Soc. Lond., 139, 21–33.
    [Google Scholar]
  29. Kokelaar, P. (1986) Magma ‐ water interactions in subaqueous and emergent basaltic volcanism. Bull. Volcanol., 48, 275–289.
    [Google Scholar]
  30. Lorenz, V. (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull. Volcanol., 48, 265–274.
    [Google Scholar]
  31. Løseth, H., Gading, M. & Wensaas,. (2009) Hydrocarbon leakage interpreted on seismic data. Marine and Petroleum Geology, 26, 1304–1319.
    [Google Scholar]
  32. Lott, G.K. & Knox, R.W.O'B. (1994) Post‐Triassic of the southern North Sea. In: Lithostratigraphic Nomenclature of the UK North Sea, Vol. 7 (Ed. by R.W.O'B.Knox & W.G.Cordey ) British Geological Society, Keyworth, Nottingham.
    [Google Scholar]
  33. MacDonald, R., Wilson, L., Thorpe, R.S. & Martin, A. (1988) Emplacement of the Cleveland Dyke; evidence from geochemistry, mineralogy, and physical modelling. J. Petrol., 29, 559–583.
    [Google Scholar]
  34. Mallon, A.J. & Swarbrick, R.E. (2002) A compaction trend for non‐reservoir North Sea Chalk. Mar. Petrol. Geol., 19, 527–539.
    [Google Scholar]
  35. Mastin, L.G. & Pollard, D.D. (1988) Surface deformation and shallow dike intrusion processes at Inyo Craters, Long Valley, California. J. Geophys. Res., B, Solid Earth Planets, 93 (0885–3401), 13,221–13,235.
    [Google Scholar]
  36. Morton, A.C. & Knox, R.W.O.B. (1990) Geochemistry of late Palaeocene and early Eocene tephras from the North Sea Basin. J. Geol. Soc. Lond., 147 (0016–7649), 425–437.
    [Google Scholar]
  37. Nemeth, K., Martin, U. & Harangi, S. (2001) Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary). J. Volcanol. Geothermal Res., 111, 111–135.
    [Google Scholar]
  38. Novikov, L.A. & Slobodskoy, R.M. (1978) Mechanism of formation of diatremes. International Geology Review, 21, 1131–1139.
    [Google Scholar]
  39. Planke, S., Rasmussen, T., Rey, S.S. & Myklebust, R. (2005) Seismic characteristics and distribution of volcanic intrusions and hydrothermal vents complexes in the Vøring and Møre basins. In: Petroleum Geology: North‐West Europe and Global Perspectives‐Proceedings of the 6th Petroleum Geology Conference (Ed. by A.G.Doré & B.Vining ), pp. 833–844. Geological Society, London.
    [Google Scholar]
  40. Price, N.J. (2001) Major Impacts and Plate Tectonics. Routledge, London.
    [Google Scholar]
  41. Scott, E.D. & Wilson, L. (2002) Plinian eruptions and passive collapse events as mechanisms of formation for Martian pit chain craters. J. Geophys. Res., E, Planets, 107, 12.
    [Google Scholar]
  42. Simm, R. & White, R. (2002) Phase, polarity and the interpreter's wavelet. First Break, 20 (5), 277–281.
    [Google Scholar]
  43. Skogseid, J., Planke, S., Faleide, J.L., Pedersen, T., Eldholm, O. & Neverdal, F. (2000) NE Atlantic continental rifting and volcanic margin formation. In: Dynamics of the Nonvegian Margin, Vol. 167 (Ed. by A.Nottvedt ), pp. 295–326. Geological Society Special Publications, London.
    [Google Scholar]
  44. Smythe, D.K. (1994) Geophysical evidence for ultrawide dykes of the Late Carboniferous quartz‐dolerite swarm of northern Britain. Geophys. J. Int., 119, 20–30.
    [Google Scholar]
  45. Stewart, S.A. & Allen, P.J. (2004) Earth science – an alternative origin for the ‘Silverpit crater’– reply. Nature, 428 (6980), U2–U2.
    [Google Scholar]
  46. Stewart, S.A. & Coward, M.P. (1995) Synthesis of Salt Tectonics in the Southern North‐Sea, UK. Mar. Petrol. Geol., 12 (5), 457–475.
    [Google Scholar]
  47. Svensen, H., Jamtveit, B., Planke, S. & Chevallier, L. (2006) Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa. J. Geol. Soc., Lond., 163, 671–682.
    [Google Scholar]
  48. Svensen, H., Planke, S., Jamtveit, B. & Pedersen, T. (2003) Seep carbonate formation controlled by hydrothermal vent complexes: a case study from the Vøring Basin, the Norwegian Sea. Geo‐Mar. Lett., 23, 351–358.
    [Google Scholar]
  49. Svensen, H., Planke, S., Malthe, S.A., Jamtveit, B., Myklebust, R., Rasmussen, E.T. & Rey, S.S. (2004) Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature (London), 429, 542–545.
    [Google Scholar]
  50. Trude, K.J. (2004) Kinematic indicators for shallow level igneous intrusions from 3D seismic data; evidence of flow direction and feeder location. Mem. Geol. Soc. Lond., 29, 209–217.
    [Google Scholar]
  51. Van Hoorn, B. (1987) Structural evolution, timing and tectonic style of the Sole Pit inversion. Tectonophysics., 137, 239–284.
    [Google Scholar]
  52. Wall, M.L.T., Cartwright, J. & Davies, R.J. (2008) An Eocene age for the proposed Silverpit impact crater. J. Geol. Soc., Lond., 165, 781–794.
    [Google Scholar]
  53. Wilson, L. & Head, J.W. (2007) An integrated model of kimberlite ascent and eruption. Nature, 447 (7140), 53–57, doi: DOI: 10.1038/nature05692.
    [Google Scholar]
  54. Wright, T.J., Ebinger, C., Biggs, J., Ayele, A., Yirgu, G., Keir, D. & Stork, A. (2006) Magma‐maintained rift segmentation at continental rupture in the 2005 Afar dyking episode. Nature, 442, 291–294.
    [Google Scholar]
  55. Wyrick, D., Ferrill, D.A., Morris, A.P., Colton, S.L. & Sims, D.W. (2004) Distribution, morphology, and origins of Martian pit crater chains. J. Geophys. Res., E, Planets, 109, 6.
    [Google Scholar]
  56. Ziegler, P.A. (1981) Evolution of sedimentary basins in North‐West Europe. In: Petroleum Geology of the Continental Shelf of N.W. Europe (Ed. by L.V.Illing & G.D.Hobson ), pp. 76–84. Institute of Petroleum, London.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2009.00416.x
Loading
/content/journals/10.1111/j.1365-2117.2009.00416.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error