1887
Volume 22, Issue 5
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Fluid inclusion homogenization temperatures and three‐dimensional hydro‐thermo‐mechanical modelling were combined to constrain fluid flow, solute and heat transport in the Paris basin, France, focusing on the two main petroleum reservoirs i.e. the Dogger and the Triassic (Keuper) formations. The average homogenization temperatures of two‐phase aqueous inclusions in different samples range from 66 °C to 88 °C in the Dogger calcite cement, from 106 °C to 118 °C in the Keuper dolomite cement and from 89 °C to 126 °C in the Keuper quartz and K‐feldspar cements. The maximum homogenization temperatures for inclusions in the Keuper quartz and K‐feldspar cements were 17–47 °C higher than present‐day temperatures in the boreholes at similar depths. Processes that might explain higher temperatures in the past were examined through numerical simulations and sensitivity tests. A warmer climate in the Late Cretaceous–Early Tertiary resulted in a temperature rise of only 8 °C. Late Cretaceous chalk had a thermal blanketing effect that resulted in simulated temperatures as high as 15–20 °C above the present day ones. An additional 300 m deposition and subsequent erosion of chalk, not taken into account so far, has to be considered to simulate the high palaeo‐temperatures recorded by fluid inclusions in both reservoirs. In view of the simulated thermal history of the basin, in the Keuper, an age of about 85 Ma is consistent with quartz/K‐feldspar temperatures and an age of about 65 Ma is in agreement with the precipitation temperature of the dolomite cement. Our models suggest an age of about 50 Ma for the Dogger calcite cementation.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2009.00428.x
2010-09-03
2024-04-23
Loading full text...

Full text loading...

References

  1. Amir, L., Martinez, L., Disnar, J.R., Vigneresse, J.‐L., Michels, R., Guillocheau, F. & Robin, C. (2005) Effect of the thermal gradient variation through geological time on basin modeling; a case study: the Paris basin. Tectonophysics, 400, 227–240.
    [Google Scholar]
  2. Belmouhoub, R. (1996), Modélisation tridimensionnelle hydro‐thermo‐mécanique d'un bassin sédimentaire au cours de son histoire géologique. PhD Dissertation, Ecole Nationale des Mines de Paris, Fontainebleau, 256pp.
  3. Bourquin, S., Robin, C., Guillocheau, F. & Gaulier, J.M. (2002) Three‐dimensional accommodation analysis of the Keuper of the Paris basin: discrimination between tectonics, eustasy and sediment supply in the stratigraphic record. Mar. Petrol. Geol., 19, 469–498.
    [Google Scholar]
  4. Bril, H., Velde, B., Meunier, A. & Iqdari, A. (1994) Effect of the “Pays de Bray” fault on fluid paleocirculations in the Paris basin Dogger reservoir, France. Geothermics, 23, 305–315.
    [Google Scholar]
  5. Brown, P.E. (1989) FLINCOR, a microcomputer program for the reduction and investigation of fluid‐inclusion data. Am. Mineral., 74, 1390–1393.
    [Google Scholar]
  6. Brunet, M.F. & Le Pichon, X. (1982) Subsidence of the Paris Basin. J. Geophys. Res., 87, 8547–8560.
    [Google Scholar]
  7. Burley, S.D., Mullis, J. & Matter, A. (1989) Timing diagenesis in the Tartan reservoir (UK North Sea): constraints from combined cathodoluminescence microscopy and fluid inclusion studies. Mar. Petrol. Geol., 6, 98–120.
    [Google Scholar]
  8. Burrus, J. (1997), Contribution à l'étude du fonctionnement des systèmes pétroliers: apport d'une modélisation bi‐dimensionnelle. PhD Dissertation Earth Sciences, Ecole des Mines de Paris, Paris, 500pp.
  9. Burrus, J. (1998) Overpressure models for clastic rocks, their relation to hydrocarbon expulsion: a critical reevaluation. In: Abnormal Pressures in Hydrocarbon Environments (Ed. by G.F.Ulmishek , V.I.Slavin & B.E.Law ), AAPG Mem., 70, 35–63.
    [Google Scholar]
  10. Coleno, B. (1986), Diagraphies thermiques et distribution du champ de températures dans le bassin de Paris. PhD Dissertation, Brest, 220pp.
  11. Delay, F., Porel, G. & Sardini, P. (2002) Modeling diffusion in a heterogeneous rock matrix with a time‐domain Lagrangian method and an inversion procedure. C.R. Geosci., 334, 1–7.
    [Google Scholar]
  12. Demars, C. (1994) Evolution diagénétique, paléofluides et paléothermicité dans les réservoirs du Keuper et du Dogger du bassin de Paris. PhD Dissertation, Nancy, 250pp.
  13. Demars, C. & Pagel, M. (1994) Paléotempératures et paléosalinités dans les grès du Keuper du bassin de Paris: inclusions fluides dans les minéraux authigènes. Comp. Rend. Acad. Sci. Paris, 319, 427–434.
    [Google Scholar]
  14. Demars, C., Pagel, M., Deloule, E. & Blanc, P. (1996) Cathodoluminescence of quartz from sandstones: interpretation of the UV range by determination of the trace element distribution and of fluid inclusion P,T,X properties in authigenic quartz. Am. Mineral., 81, 891–901.
    [Google Scholar]
  15. Demongodin, L. (1992) Reconnaissance de l'etat thermique des bassins sédimentaires : transferts de chaleur par conduction et convection. PhD Dissertation, Montpellier 2, Montpellier, 218pp.
  16. Demongodin, L., Pinoteau, B., Vasseur, G. & Gable, R. (1991) Thermal conductivity and well logs: a case study in the Paris Basin. Geophys. J. Int., 105, 675–691.
    [Google Scholar]
  17. Espitalié, J., Maxwell, J.R., Chenet, Y. & Marquis, F. (1988) Aspects of hydrocarbon migration in the Mesozoic in the Paris basin as deduced from an organic geochemical survey. Org. Geochem., 13, 467–481.
    [Google Scholar]
  18. Fontes, J.C. & Matray, J.M. (1993) Geochemistry and origin of formation brines from the Paris basin, France, 1 Brines associated with Triassic salts. Chem. Geol., 109, 149–175.
    [Google Scholar]
  19. Gable, R. (1979), Température, gradient et flux de chaleur terrestre, mesures, interprétation, Report 104, BRGM, Orleans.
  20. Gaulier, J.M. & Burrus, J. (1994) Modeling present and past thermal regimes in the Paris basin: petroleum implications. In: Hydrocarbon and Petroleum Geology of France (Ed. by A.Mascle ), 61–74. Springer ‐ Verlag, Berlin.
    [Google Scholar]
  21. Gonçalvès, J., Violette, S., Guillocheau, F., Robin, C., Pagel, M., Marsily, G.D., Bruel, D. & Ledoux, E. (2004) Contribution of a 3D regional scale model to the study of the past diagenetic evolution and present hydrology of the Paris basin, France. Basin Res., 16, 569–586.
    [Google Scholar]
  22. Guilhaumou, N. (1993) Paleotemperatures inferred from fluid inclusions in diagenetic cements: implications for the thermal history of the Paris basin. Eur. J. Mineral., 5, 1217–1226.
    [Google Scholar]
  23. Guilhaumou, N. & Gaulier, J.M. (1991) Détermination de paléotempératures dans les roches mères du bassin de Paris: Etude d'inclusions fluides et implications pour l'histoire thermique du bassin. C.R. Geosci., 313, 773–780.
    [Google Scholar]
  24. Guillocheau, F., Robin, C., Allemand, P., Bourquin, S., Brault, S., Dromart, G., Friedenberg, R., Garcia, J.P., Gaulier, J.M., Gaumet, F., Grosdoy, B., Hanot, F., Le Strat, P., Mettraux, M., Nalpas, T., Prijac, C., Rigollet, C., Serrano, O. & Grandjean, G. (2000) Meso‐Cenozoic geodynamic evolution of the Paris basin: 3D stratigraphic constraints. Geodyn. Acta, 13, 189–246.
    [Google Scholar]
  25. Habicht, J.K. (1979) Paleoclimate, paleomagnetism and continental drift. AAPG Stud. Geol., 9, 31 pp.
    [Google Scholar]
  26. Hanor, J.S. (1980) Dissolved methane in sedimentary brines: potential effect on the PVT properties of fluid inclusions. Econ. Geol., 75, 603–617.
    [Google Scholar]
  27. Jenkyns, H.C., Gale, A.S. & Corfield, P.M. (1994) Carbon and oxygen isotope stratigraphy of English chalk and Italian Scaglia and its palaeoclimatic significance. Geol. Mag., 131, 1–34.
    [Google Scholar]
  28. Konnerup‐Madsen, J. & Dypvik, H. (1988) Fluid inclusions and quartz cementation in Jurassic sandstones from Haltenbanken, offshore Mid‐Norway. Bull. Mineral., 111, 401–411.
    [Google Scholar]
  29. Le Solleuz, A., Douin, M.‐P., Robin, C. & Guillocheau, F. (2004) From a mountain belt collapse to a sedimentary basin development: 2-D thermal model based on inversion of stratigraphic data in the Paris Basin. Tectonophysics, 386, 1–27.
    [Google Scholar]
  30. Matray, J.M. & Fontes, J.C. (1990) Origin of oil‐field brines in the Paris basin. Geology, 18, 501–504.
    [Google Scholar]
  31. Matray, J.M., Meunier, A., Thomas, M. & Fontes, J.C. (1989) Les eaux de formation du Trias et du Dogger du bassin parisien: histoire et effets diagénétiques sur les réservoirs. Bull. Cent. rech. explor. prod. Elf‐Aquitaine, 13, 483–504.
    [Google Scholar]
  32. Mégnien, C. & Mégnien, F. (1980) Stratigraphie et paléo‐géographie. In: Synthèse géologique du bassin de Paris (Ed. by BRGM ), Mém. BRGM , 101, 466 pp.
    [Google Scholar]
  33. Ménétrier, C., Elie, M., Martinez, L., Le Solleuz, A., Disnar, J.‐R., Robin, C., Guillocheau, F. & Rigollet, C. (2005) Estimation of the maximum burial palaeotemperature for Toarcian and Callovo‐Oxfordian samples in the central part of the Paris basin using organic markers. C.R. Geosci., 337, 1323–1330.
    [Google Scholar]
  34. Menjoz, A. & Lambert, M. (1991) Hydrodynamique des aquifères profonds et incidence des effets de densité. Hydrogéologie, 4, 311–320.
    [Google Scholar]
  35. Pages, L. (1987) Exploration of the Paris basin. In: Petroleum Geology of the North West Europe (Ed. by J.Brooks & K.Glennie ), pp. 87–93. Grahame & Trotman, London.
    [Google Scholar]
  36. Person, M., Raffensperger, J.P., Ge, S. & Garven, G. (1996) Basin‐scale hydrogeologic modeling. Rev. Geophys., 34, 61–87.
    [Google Scholar]
  37. Prijac, C., Doin, M.P., Gaulier, J.M. & Guillocheau, F. (2000) Subsidence of the Paris basin and its bearing on the late Variscan lithosphere evolution: a comparison between Plate and Chablis models. Tectonophysics, 323, 1–38.
    [Google Scholar]
  38. Riboulleau, A., Baudin, F., Daux, V., Hantzpergue, P., Renard, M. & Zakharov, V. (1998) Sea surface paleotemperature evolution of the Russian Plateform during the Upper Jurassic. C.R. Acad. Sci. Paris, Earth Planet. Sci., 326, 239–246.
    [Google Scholar]
  39. Roedder, E. (1962) Studies of fluid inclusion 1, low temperature application of a dual‐purpose freezing and heating stage. Econ. Geol., 57, 1045–1061.
    [Google Scholar]
  40. Rojas, J., Giot, D., Le Nindre, Y.M., Criaud, A., Fouillac, C., Brach, M., Menjoz, A., Martin, J.C. & Lambert, M. (1990), Caractérisation et modélisation du réservoir géothermique du Dogger, bassin parisien, France. Mémoires BRGM, 104, BRGM, 240pp.
  41. Rowan, E.L. & Goldhaber, M.B. (1996) Fluid inclusion and biomarkers in the Upper Mississipi Valley Zinc–Lead District‐Implications for the fluid flow and Thermal history of the Illinois Basin. US Geol. Surv. Bull., 2094, F1‐F34.
    [Google Scholar]
  42. Rowan, E.L. & Marsily, G. de (2001) Infiltration of Late Palaeozoic evaporative brines in the Reelfoot rift: a possible salt source for Illinois basin formation waters and MVT mineralizing fluids. Petrol. Geosci., 7, 269–279.
    [Google Scholar]
  43. Rowan, L.R., Goldhaber, M.B. & Hatch, J.R. (2002) The role of regional fluid flow in the Illinois basin's thermal history: constraints from fluid inclusions and the maturity of pennsylvanian coals. AAPG Bull., 86, 257–278.
    [Google Scholar]
  44. Schootbrugge, B.V.D., Föllmi, K.B., Bulot, L.G. & Burns, S.J. (2000) Paleoceanographic changes during the early Cretaceous (Valanginian–Hauterivian): evidence from oxygen and carbon stable isotope. Earth Planet. Lett., 181, 15–31.
    [Google Scholar]
  45. Sclater, J.G. & Christie, P. (1980) Continental stretching: an explanation of the post-mid-cretaceous subsidence in the central north sea basin. J. Geophys. Res., 85, 3711–3739.
    [Google Scholar]
  46. Sellwood, B.W., Price, G.D. & Valdes, P.J. (1994) Cooler estimates of Cretaceous temperatures. Nature, 370, 453–455.
    [Google Scholar]
  47. Spötl, C., Matter, A. & Brévart, O. (1993) Diagenesis and pore water evolution in the Keuper reservoir, Paris basin (France). J. Sediment. Petrol., 63, 909–928.
    [Google Scholar]
  48. Voigt, S. (2000) Stable oxygen and carbon isotopes from brachiopods of southern England and northern Germany: estimation of Upper Turonian palaeotemperatures. Geol. Mag., 137, 687–703.
    [Google Scholar]
  49. Walderhaug, O. (1990) A fluid inclusion study of quartz‐cemented sandstones from offshore mid‐Norway – Possible evidence for continued quartz cementation during oil emplacement. J. Sediment. Petrol., 60, 203–210.
    [Google Scholar]
  50. Walderhaug, O. (1994) Temperature of quartz cementation in Jurassic sandstones from Norvegian continental shelf – evidence from fluid inclusions. J. Sediment. Petrol., A64, 311–323.
    [Google Scholar]
  51. Wei, H.F., Ledoux, E. & De Marsily, G. (1990) Regional modelling of groundwater flow and salt and environmental tracer transport in deep aquifers in the Paris basin. J. Hydrol., 120, 341–358.
    [Google Scholar]
  52. Worden, R.H. (2002) Basin scale fluid flow: does it occur and does it matter? A case study of the Paris basin, France: AAPG Annual Meeting, Houston, USA. Available at http://aapg.confex.com/aapg/hu2002/techprogram/meeting_hu2002.htm
  53. Worden, R.H., Coleman, M.L. & Matray, J.M. (1999) Basin scale evolution of formation waters: A diagenetic and formation water study of the Triassic Chaunoy Formation, Paris Basin. Geochim. Cosmochim. Act., 63, 2513–2528.
    [Google Scholar]
  54. Worden, R.H. & Matray, J.M. (1995) Cross formational flow in the Paris basin. Basin Res., 7, 53–66.
    [Google Scholar]
  55. Zachos, J.C., Stott, L.D. & Lohmann, K.C. (1994) Evolution of early Cenozoic marine temperatures. Paleoceanography, 9, 353–387.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2009.00428.x
Loading
/content/journals/10.1111/j.1365-2117.2009.00428.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error