1887
Volume 22, Issue 5
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

High‐resolution analysis (2277 samples) of magnetic susceptibility (MS) was performed on ∼700‐m‐thick Early–Middle Oxfordian marine marls of the Terres Noires Formation, SE France. MS variations within these sediments record sub‐Milankovitch to Milankovitch frequencies with long‐term eccentricity (405 kyr and ∼2 Myr) being the most prominent. The 405 kyr cycle was used as a high‐resolution geochronometer for astronomical calibration of this poorly constrained interval of Late Jurassic time. The estimated duration of this Early–Middle Oxfordian interval concurs with the current International Geologic Time Scale GTS2004 (∼4 Myr), but the estimated durations of the corresponding ammonite zones are notably different. The calibration improves the resolution and accuracy of the M‐sequence magnetic anomaly block model that was previously used to establish the Oxfordian time scale. Additionally, the 405 kyr cyclicity is linked to third‐order sea‐level depositional sequences observed for Early–Middle Oxfordian time. Strong ∼2 Myr cycles are consistent with long‐term eccentricity modulation predicted for the Late Jurassic. These cycles do not match second‐order sequences that have been documented for European basins; this raises questions about the definition and hierarchy of depositional sequences in the Mesozoic eustatic chart. Our results require substantial revisions to the chart, which is frequently used as a reference for the correlation of widely separated palaeogeographic domains. Finally, a long‐term trend in the MS data reflects a progressive carbonate enrichment of the marls expressing an Early Oxfordian global cooling followed gradually by a warming in the Middle Oxfordian. This trend also records a major transgressive interval likely peaking at the Transversarium ammonite zone of the Middle Oxfordian.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2009.00429.x
2010-09-03
2024-04-19
Loading full text...

Full text loading...

References

  1. Abbink, O., Targarona, J., Brinkhuis, H. & Visscher, H. (2001) Late Jurassic to earliest Cretaceous palaeoclimatic evolution of the southern North Sea. Global Planet. Change, 30, 231–256.
    [Google Scholar]
  2. Aurell, M., Robles, S., Bádenas, B., Quesada, S., Rosales, I., Meléndez, G. & Garsía‐Ramos, J.C. (2003) Transgressive–regressive cycles and Jurassic palaeogeography of Northeast Iberia. Sed. Geol., 162, 239–271.
    [Google Scholar]
  3. Bartolini, A., Baumgartner, P.O. & Guex, J. (1999) Middle and Late Jurassic radiolarian palaeoecology versus carbon‐isotope stratigraphy. Palaeogeogr. Palaeoclimatol. Palaeoecol., 145, 43–60.
    [Google Scholar]
  4. Beaufort, L. (1994) Climatic importance of the modulation of the 100 kyr cycle inferred from 16 m.y. long Miocene records. Paleoceanography, 9, 821–834.
    [Google Scholar]
  5. Berger, A. & Loutre, M.F. (1997) Intertropical latitudes and precessional and half‐precessional cycles. Science, 278 (5342), 1476–1478.
    [Google Scholar]
  6. Berger, A., Melice, J.L. & Loutre, M.F. (2006) Equatorial insolation: from precessional harmonics to eccentricity frequencies. Clim. Past Discuss., 2, 519–533.
    [Google Scholar]
  7. Boulila, S. (2008) Cyclostratigraphie des séries sédimentaires du Jurassique supérieur (Sud‐Est de la France, Nord de la Tunisie): contrôle astro‐climatique, implications géochronologiques et séquentielles. PhD Thesis, Pierre et Marie Curie University, Paris, France. 313pp.
  8. Boulila, S., Galbrun, B., Hinnov, L.A. & Collin, P.Y. (2008a) Orbital calibration of the Early Kimmeridgian (southeastern France): implications for geochronology and sequence stratigraphy. Terra Nova, 20, 455–462.
    [Google Scholar]
  9. Boulila, S., Hinnov, L.A., Huret, E., Collin, P.Y., Galbrun, B., Fortwengler, D., Marchand, D. & Thierry, J. (2008b) Astronomical calibration of the Early Oxfordian (Vocontian and Paris basins, France): consequences of revising the Late Jurassic time scale. Earth Planet. Sci. Lett., 276, 40–51.
    [Google Scholar]
  10. Boulila, S., Ogg, J.G., Przybylski, P.A., Galbrun, B. & Hinnov, L.A. (2008c) Pacific spreading rates during Middle Jurassic through Early Cretaceous: astronomical cycle-derived durations of M-sequence polarity chrons. GSA Abstr. Progr., 40 (6), 283.
    [Google Scholar]
  11. Box, G.E.P. & Jenkins, G.M. (1976) Time series analysis. Forecasting and control. Holden‐Day, San Francisco.
    [Google Scholar]
  12. Cecca, F., Martin Garin, B., Marchand, D., Lathuiliere, B. & Bartolini, A. (2005) Paleoclimatic control of biogeographic and sedimentary events in Tethyan and peri‐Tethyan areas during the Oxfordian (Late Jurassic). Palaeogeogr. Palaeoclimatol. Palaeoecol., 222, 10–32.
    [Google Scholar]
  13. Cleveland, W.S. (1979) Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc., 74, 829–836.
    [Google Scholar]
  14. Cogné, J.P. & Humler, E. (2004) Temporal variation of oceanic spreading rate and crustal production rates during the last 180 Myr. Earth Planet. Sci. Lett., 227, 427–439.
    [Google Scholar]
  15. Collin, P.Y., Loreau, J.P. & Courville, P. (2005) Depositional environments and iron ooid formation in condensed sections (Callovian–Oxfordian, south‐eastern Paris basin, France). Sedimentology, 52, 969–985.
    [Google Scholar]
  16. Courville, P. & Collin, P.Y. (2002) Taphonomic sequences: a new tool for sequence stratigraphy. Geology, 30, 511–514.
    [Google Scholar]
  17. D'Argenio, B., Fischer, A.G., Premoli Silva, I., Weissert, H. & Ferreri, V. eds. (2004) Cyclostratigraphy: Approaches and Case Histories, SEPM Spec. Publ., No.81, Tulsa, Oklahoma, U.S.A.
  18. Dardeau, G., Atrops, F., Fortwengler, D., Graciansky, P.C.de. & Marchand, D. (1988) Jeu de blocs et tectonique distensive au Callovien et à l'Oxfordien dans le bassin du Sud‐Est de la France. Bull. Soc. géol. Fr., 8, IV (5), 771–777.
    [Google Scholar]
  19. Debrand‐Passard, S., Courbouleix, S. & Lienhardt, M.J. (1984) Synthèse géologique du Sud‐Est de la France. Mémoire B.R.G.M., 614 p.
  20. Dercourt, J., Ricou, L.E. & Vrielnyck, B. (1993) Atlas Tethys Palaeoenvironmental maps. Gouthier‐Villars, Paris, 307pp., 14 maps, 1 pl.
    [Google Scholar]
  21. Díaz‐Martínez, E., Sanz‐Rubio, E. & Martínez‐Frías, J. (2002) Sedimentary record of impact events in Spain. Geol. Soc. Am. Spec. Paper, 132, 37–68.
    [Google Scholar]
  22. Dromart, G., Allem, P., Garcia, J.P. & Robin, C. (1996) Variation cyclique de la production carbonatée au Jurassique le long d'un transect Bourgogne‐Ardèche, Est France. Bull. Soc. géol. Fr., 167, 423–433.
    [Google Scholar]
  23. Dromart, G., Garcia, J.‐P., Picard, S., Rousseau, M., Atrops, F., Lécuyer, C. & Sheppard, S.M.F. (2003) Perturbation of the carbon cycle at the Middle/Late Jurassic transition: geological and geochemical evidence. Am. J. Sci., 303, 667–707.
    [Google Scholar]
  24. Ellwood, B.B., Crick, R.E., El Hassani, A., Benoist, S.L. & Young, R.H. (2000) Magnetosusceptibility event and cyclostratigraphy method applied to marine rock: detrital input versus carbonate productivity. Geology, 28, 1135–1138.
    [Google Scholar]
  25. Evans, M.E. & Heller, F. (2003) Environmental Magnetism – Principles and Applications of Enviromagnetics. International Geophysics Series 86. Academic Press, London.
    [Google Scholar]
  26. Fischer, A.G., Hilgen, F.J. & Garrison, R. (2009) Mediterranean contributions to cyclostratigraphy and Astrochronology. Sedimentology, 56, 63–94.
    [Google Scholar]
  27. Fortwengler, D. & Marchand, D. (1994) Nouvelles unités biochronologiques de la zone à Mariae (Oxfordien inférieur). Geobios. M.S., 17, 203–209.
    [Google Scholar]
  28. Frakes, L.A., Francis, J.E. & Syktus, J.I. (1992) Climate Modes of the Phanerozoic: the History of the Earth's Climate over the past 600 Million Years. Cambridge University Press, Cambridge, 274pp.
    [Google Scholar]
  29. Gaillard, C., Atrops, F., Marchand, D., Hanzo, M., Lathuillière, B., Bodeur, Y., Ruget, C., Nicollin, J.P. & Werner, W. (1996) Description stratigraphique préliminaire des faisceaux alternants de l'Oxfordien moyen dans le bassin dauphinois (Sud‐Est de la France). Géol. Fr., 1, 17–24.
    [Google Scholar]
  30. Gaillard, C., Emmanuel, L., Hanzo, M., Lathuilière, B., Atrops, F., Bodeur, Y., Bouhamdi, A., Marchand, D., Enay, R., Ruget, C. & Werner, W. (2004) Une séquence disséquée du bassin à la plate‐forme: l'épisode carbonaté de l'Oxfordien moyen dans le Sud Est de la France. Bull. Soc. géol. Fr., 175 (2), 107–119.
    [Google Scholar]
  31. Gaillard, C. & Rolin, Y. (1988) Relation entre tectonique synsédimentaire et pseudobiohermes (Oxfordien de Beauvoisin‐Drôme, France). Un argument supplémentaire pour interpréter les pseudobiohermes comme formés au droit de sources sous‐marines. C. R. Acad. Sci., Paris, II (307), 1265–1270.
    [Google Scholar]
  32. Gale, A.S., Hardenbol, J., Hathway, B., Kennedy, W.J., Young, J.R. & Phansalkar, V. (2002) Global correlation of Cenomanian (Upper Cretaceous) sequences: evidence for Milankovitch control on sea level. Geology, 30 (4), 291–294.
    [Google Scholar]
  33. Ghil, M., Allen, R.M., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M.E., Robertson, A., Saunders, A., Tian, Y., Varadi, F. & Yiou, P. (2002) Advanced spectral methods for climatic time series. Rev. Geophys., 40 (1), 3.1–3.41.
    [Google Scholar]
  34. Gornitz, V., Lebedeff, S. & Hansen, J. (1982) Global sea‐level trend in the past century. Science, 215, 1611–1614.
    [Google Scholar]
  35. Graciansky, P.C.de & Lemoine, M. (1988) Early Cretaceous extentional tectonics in the southern French Alps: a consequence of North-Atlantic rifting during Tethyan spreading. Bull. Soc. géol. Fr., 8, IV (5), 733–737.
    [Google Scholar]
  36. Graciansky, P.C.de., Dardeau, G., Bodeur, Y., Elmi, S., Fortwengler, D., Jacquin, T., Marchand, D. & Thierry, J. (1999) Les Terres Noires du Sud‐Est de la France (Jurassique moyen et supérieur), interprétation en termes de stratigraphie séquentielle. Bull. Centre Rech.-Explor. Prod., Elf Aquitaine, 22 (t.1), 35–69.
    [Google Scholar]
  37. Gradstein, F.M., Ogg, J.G. & Smith, A.G. (2004) A Geologic Time Scale 2004. Cambridge University Press, Cambridge, 589pp.
    [Google Scholar]
  38. Guillocheau, F., Robin, C., Allemand, P., Bourquin, S., Brault, N., Dromard, G., Friedenberg, R., Garcia, J‐P., Gaulier, J‐M., Gaumet, F., Grosdoy, B., Hanot, F., Le Strat, P., Mettraux, M., Nalpas, T., Prijac, C., Rigollet, C., Serrano, O. & Grandjean, G. (2000) Meso‐Cenozoic geodynamic evolution of the Paris Basin: 3D stratigraphic constraints. Geodin. Act., 13, 189–246.
    [Google Scholar]
  39. Hagelberg, T.K., Bond, G. & De Menocal, P. (1994) Milankovitch band forcing of sub‐Milankovitch climate variability during the Pleistocene. Paleoceanography, 9 (4), 545–558.
    [Google Scholar]
  40. Hallam, A. (2001) A review of the broad pattern of Jurassic sea‐level changes and their possible causes in the light of current knowledge. Palaeogeogr. Palaeoclimatol. Palaeoecol., 167, 23–37.
    [Google Scholar]
  41. Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., Graciansky, P.C.de & Vail, P.R. (1998) Mezozoic and Cenozoic sequence chronostratigraphic framework of European basins. SEPM, Spec. Publ., Tulsa, OK, 60, 8 charts, 60pp.
  42. Hays, J.D., Imbrie, J. & Schackleton, N.J. (1976) Variations in the Earth's orbit: pacemaker of the ice ages. Science, 194, 1121–1132.
    [Google Scholar]
  43. Hilgen, F.J., Abdul Aziz, H., Krijgsman, W., Raffi, I. & Turco, E. (2003) Integrated stratigraphy and astronomical tuning of the Serravallian and lower Tortonian at Monte dei Corvi (Middle‐Upper Miocene, northern Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol., 199, 229–264.
    [Google Scholar]
  44. Hinnov, L.A. (2000) New perspectives on orbitally forced stratigraphy. Annu. Rev. Earth Planet. Sci., 28, 419–475.
    [Google Scholar]
  45. Hinnov, L.A. & Ogg, J.G. (2007) Cyclostratigraphy and the astronomical time scale. Stratigraphy, 4, 239–251.
    [Google Scholar]
  46. Hinnov, L.A. & Park, J.J. (1999) Strategies for assessing Early–Middle (Pliensbachien‐Aalenian) Jurassic cyclochronologies. Phil. Trans. Roy. Soc. Lond. A., 357, 1831–1860.
    [Google Scholar]
  47. Huang, Z., Ogg, J.G. & Gradstein, F.M. (1993) A quantitative study of Lower Cretaceous cyclic sequences from the Atlantic Ocean and the Vocontian Basin (SE France). Paleoceanography, 8, 275–291.
    [Google Scholar]
  48. Huret, E. (2006) Analyse cyclostratigraphique des variations de la susceptibilité magnétique des argilites callovo‐oxfordiennes de l'Est du Bassin de Paris : application à la recherche de hiatus sédimentaires. PhD Thesis, Pierre et Marie Curie University, Paris, France, 321pp.
  49. Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morely, J.J., Pisias, N.G., Prell, W.L. & Shackleton, N.G. (1984) The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. In: Milankovitch and Climate, Part 1, D (Ed. By A.L.Berger , J.Imbrie , J.D.Hays , G.Kukla & B.Saltzman ), pp. 269–305. Reidel Publishing Co, Dordrecht.
    [Google Scholar]
  50. Jacobs, D.K. & Sahagian, D.L. (1993) Climate‐induced fluctuations in sea level during non‐glacial times. Nature, 361, 710–712.
    [Google Scholar]
  51. Jacquin, T., Dardeau, G., Durlet, C., Graciansky, P.C.de & Hantzpergue, P. (1998) The North Sea cycle: an overview of 2nd order transgressive/regressive facies cycles in Western Europe. SEPM Spec. Publ., 60, 445–446.
    [Google Scholar]
  52. Jenkyns, H.C. (1996) Relative sea‐level change and carbon isotopes: data from the Upper Jurassic (Oxfordian) of central and Southern Europe. Terra Nova, 8, 75–85.
    [Google Scholar]
  53. Jones, C.E. & Jenkyns, H.C. (2001) Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Am. J. Sci., 301, 112–149.
    [Google Scholar]
  54. Laskar, J. (1999) The limits of the Earth orbital calculations for geological time‐scale use. Roy. Soc. Lond. Philos. Trans. Ser. A, 357, 14757, 1735–1759.
    [Google Scholar]
  55. Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M. & Levrard, B. (2004) A long‐term numerical solution for the insolation quantities of the Earth. Astron. Astrophys., 428, 261–285.
    [Google Scholar]
  56. Louis‐Schmid, B., Rais, P., Bernasconi, S.M., Pellenard, P., Collin, P.Y. & Weissert, H. (2007) Detailed record of mid‐Oxfordien (Late Jurassic) positive carbone‐isotope excursion in two hemipelagic sections (France and Switzerland): a plate tectonic trigger? Palaeogeogr. Palaeoclimol. Palaeoecol., 248 (3–4), 459–472.
    [Google Scholar]
  57. Lourens, L.J. & Hilgen, F.J. (1997) Long‐periodic variations in the earth's obliquity and their relation to third‐order eustatic cycles and Late Neogene glaciations. Quat. Int., 40, 43–52.
    [Google Scholar]
  58. Malder, D., Cleaveland, L., Bice, D.M., Montanari, A. & Koeberl, C. (2004) High‐resolution cyclostratigraphic analysis of multiple climate proxies from a short Langhian pelagic succession in the Conero Riviera, Ancona (Italy). Paleogeogr. Paleoclimatol. Paleoecol., 211, 325–344.
    [Google Scholar]
  59. Mann, M.E. & Lees, J.M. (1996) Robust estimation of background noise and signal detection in climatic time series. Climate Change, 33, 409–445.
    [Google Scholar]
  60. Matthews, R.K. & Frohlich, C. (2002) Maximum flooding surfaces and sequence boundaries: comparisons between observations and orbital forcing in the Cretaceous and Jurassic (65–190 Ma). GeoArabia, 7, 503–538.
    [Google Scholar]
  61. Mayer, H. & Appel, E. (1999) Milankovitch cyclicity and rock‐magnetic signatures of paleoclimatic changes in the early Cretaceous Biancone Formation of the Southern Alps, Italy. Cretac. Res., 20, 189–214.
    [Google Scholar]
  62. McIntyre, A. & Molfino, B. (1996) Forcing of Atlantic equatorial and subpolar millennial cycles by precession. Science, 274, 1867–1870.
    [Google Scholar]
  63. Mélice, J., Coron, A. & Berger, A. (2001) Amplitude and frequency modulation of the Earth's obliquity for the last million years. J. Climate, 14, 1043–1054.
    [Google Scholar]
  64. Meyers, S.R., Sageman, B.B. & Hinnov, L.A. (2001) Integrated quantitative stratigraphy of the Cenomanian–Turonian bridge creek limestone member using evolutive harmonic analysis and stratigraphic modeling. J. Sediment. Res., 71, 628–644.
    [Google Scholar]
  65. Mitchell, R.N., Bice, D.M., Montanari, A., Cleavel, L.C., Christianson, K.T., Coccioni, R. & Hinnov, L.A. (2008) Oceanic anoxic cycles? Orbital prelude to the Bonarelli Level (OAE 2). Earth Planet. Sci. Lett., 267, 1–16.
    [Google Scholar]
  66. Ogg, J.G. & Coe, A. (1997) Oxfordian magnetic polarity time scale. EOS Trans. AGU, 78, F186.
    [Google Scholar]
  67. Ogg, J.G. & Gutowski, J. (1996) Oxfordian and Lower Kimmeridgian magnetic polarity time scale. GeoRes. Forum, 1–2, 406–414.
    [Google Scholar]
  68. Ogg, J.G. & Smith, A.G. (2004) The geomagnetic polarity time scale. In: A Geologic Time Scale 2004 (Ed. By F.Gradstein , J.G.Ogg & A.G.Smith ), pp. 63–86. Cambridge University Press, Cambridge.
    [Google Scholar]
  69. Olsen, P.E. (2008) Implications of the geological determination of “Grand Cycles” of the Milankovitch Band for behavior of the solar system. GSA Abstr. Progr., 40 (6), 282.
    [Google Scholar]
  70. Olsen, P.E. & Kent, D.V. (1999) Long‐term Milankovitch cycles from the Late Triassic and Early Jurassic of eastern North America and their implications for the calibration of the Early Mesozoic timescale and the long term behavior of the planets. Royal Soc. (London), Phil. Trans. Ser. A, 357, 1761–1788.
    [Google Scholar]
  71. Ortiz, J., Mix, A., Harris, S. & O'Connell, S. (1999) Diffuse spectral reflectance as a proxy for percent carbonate content in North Atlantic sediments. Paleoceanography, 14 (2), 171–186.
    [Google Scholar]
  72. Pälike, H., Norris, R.D., Herrle, J.O., Wilson, P.A., Coxall, H.K., Lear, C.H., Shackleton, N.J., Tripati, A.K. & Wade, B.S. (2006) The Heartbeat of the Oligocene Climate System. Science, 314 (5807), 1894–1898.
    [Google Scholar]
  73. Park, J., D'Hondt, L.D., King, J.W. & Gibson, C. (1993) Late Cretaceous precessional cycles in double time: a warm-Earth Milankovitch response. Science, 261, 1431–1434.
    [Google Scholar]
  74. Pellenard, P. (2003) Message terrigène et influences volcaniques au Callovien–Oxfordien dans les bassins de Paris et du Sud‐Est de la France. Publ. Soc. Géol. Nord, 31, 362pp.
  75. Pellenard, P., Deconinck, J‐F., Huff, W.D., Thierry, J., Marchand, D., Fortwengler, D. & Trouiller, A. (2003) Characterization and correlation of Upper Jurassic (Oxfordian) bentonite deposits in the Paris Basin and the Subalpine Basin, France. Sedimentology, 50, 1035–1060.
    [Google Scholar]
  76. Picard, S., Garcia, J.P., Lèguyer, C., Sheppard, S., Capetta, H. & Emig, C. (1998) δ18O values of co‐existing brachiopods and fish, temperature differences and estimates of paleodepths. Geology, 26, 975–978.
    [Google Scholar]
  77. Podlaha, O.G., Mutterlose, J. & Veizer, J. (1998) Preservation of δ18O and δ13C in belemnite rostra from the Jurassic/early Cretaceous successions. Am. J. Sci., 298, 324–347.
    [Google Scholar]
  78. Price, G. (1999) The evidence and implications of polar ice during the Mesozoic. Earth Sci. Rev., 48, 183–210.
    [Google Scholar]
  79. Przybylski, P.A. & Ogg, J.G. (2008) Calibration of pre‐M25 marine magnetic anomalies: Magnetic polarity composite of Late Callovian through Kimmeridgian. AAPG Annual Convention, April 20–23, 2008, San Antonio, TX.
  80. Rais, P., Louis‐Schmid, B., Bernasconi, S.M. & Weissert, H. (2007) Palaeoceanographic and palaeoclimatic reorganization around the Middle–Late Jurassic transition. Palaeogeogr. Palaeoclimatol. Palaeoecol., 251, 527–546.
    [Google Scholar]
  81. Ramajo, J. (2006) Evolución sedimentaria del Calloviense y Oxfordiense en el sector central de la Cordillera Ibérica (Rama Aragonesa). Tesis Doctoral, Universidad de Zaragoza, 405pp.
  82. Ramajo, J. & Aurell, M. (2008) Long‐term Callovian–Oxfordian sea‐level changes and sedimentation in the Iberian carbonate platform (Jurassic, Spain): possible eustatic implications. Basin Res., 20, 163–184.
    [Google Scholar]
  83. Reuning, L., Reijmer, J.J.G., Betzler, C. & Timmermann, A. (2006) Sub‐Milankovitch cycles in periplatform carbonates from the early Pliocene Great Bahama Bank. Paleoceanography, 21, PA1017, 1–11.
  84. Riboulleau, A., Baudin, F., Daux, V., Hantzpergue, P., Renard, M. & Zakharov, V. (1998) Evolution de la paléotempérature des eaux de la plate‐forme russe au cours du Jurassique supérieur. C. R. Acad. Sci. Paris, II, 326, 239–246.
    [Google Scholar]
  85. Schulz, M. & Schäfer‐Neth, C. (1998) Translating Milankovitch climate forcing into eustatic fluctuations via thermal deep water expansion: a conceptual link. Terra Nova, 9, 228–231.
    [Google Scholar]
  86. Shackleton, N.J., Crowhurst, S., Hagelberg, T., Pisias, N.G. & Schneider, D.A. (1995) A late Neogene time scale: application to leg 138 sites. In: Proc. Ocean Drilling Program (Ed. by N.G.Pisias , T.R.Janacek , A.Palmer Julson & T.H.Van Andel . Sci. Res., 138, 73–101.
    [Google Scholar]
  87. Short, D.A., Mengel, J.G., Crowley, T.J., Hyde, W.T. & North, G.R. (1991) Filtering of Milankovitch cycles by Earth's geography. Quat. Res., 35, 157–173.
    [Google Scholar]
  88. Strasser, A., Hillgärtner, H., Hug, W. & Pittet, B. (2000) Third‐order depositional sequences reflecting Milankovitch cyclicity. Terra Nova, 12, 303–311.
    [Google Scholar]
  89. Sun, J. & Huang, X.2006Half‐precession cycles recorded in Chinese loess: response to low-latitude insolation forcing during the Last Interglaciation. Quat. Sci. Rev., 25 (9–10), 1065–1072.
    [Google Scholar]
  90. Taner, M.T. (2000) Attributes revisited, Technical Publication, Rock Solid Images, Inc., Houston, TX, URL: http://www.rocksolidimages.com/pdf/attrib_revisited.htm.
  91. Thomson, D.J. (1982) Spectrum estimation and harmonic analysis. Proc. IEEE, 70, 1055–1096.
    [Google Scholar]
  92. Tremolada, F., Erba, E., Van De Schootbrugge, B. & Mattioli, E. (2006) Calcareous nannofossil changes during the late Callovian–early Oxfordian cooling phase. Mar. Micropal., 59, 197–209.
    [Google Scholar]
  93. Tribovillard, N. (1986) Géochimie organique et minérale dans les Terres Noires calloviennes et oxfordiennes du bassin dauphinois (France SE): mise en évidence de cycles climatiques. Bull. Soc. géol. France, 8, IV (1), 141–150.
    [Google Scholar]
  94. Tribovillard, N. (1988) Contrôles de la sédimentation marneuse en milieu pélagique semi‐anoxique. Exemples dans le Mésozoïque du Sud‐Est de la France et de l'Atlantique. PhD Thesis, Claude Bernard University, Lyon I, France. 116pp.
  95. Turney, C.S.M., Kershaw, A.P., Clemens, S.C., Branch, N., Moss, P.T. & Fifield, L.K. (2004) Millennial and orbital variations of El Niňo/Southern oscillation and high‐latitude climate in the last glacial period. Nature, 428 (6980), 306–310.
    [Google Scholar]
  96. Von Dobeneck, T. & Schmieder, F. (1999) Using rock magnetic proxy records for orbital tuning and extended time series analyses into the super‐ and sub‐Milankovitch Bands. In: Use of Proxies in Paleoceanography: Examples from the South Atlantic (Ed. By A.G.Fischer & G.Wefer ), pp. 601–633. Springer‐Verlag, Berlin, Heidelberg.
    [Google Scholar]
  97. Walden, J., Oldfield, F. & Smith, J.P. (1999) Environmental magnetism: a pratical guide. Quat. Res. Assoc., Techn. Guide 6. London.
  98. Weedon, G.P., Jenkyns, H.C, Coe, A.L. & Hesselbo, S.P. (1999) Astronomical of the Jurassic time scale from cyclostratigraphy in British mudrock formations. Phil. Trans. Roy. Soc., 357, 1787–1813.
    [Google Scholar]
  99. Weissert, H. & Mohr, H. (1996) Late Jurassic climate and its impact on carbon cycling. Palaeogeogr. Palaeoclimatol. Palaeoecol., 122, 27–43.
    [Google Scholar]
  100. Werzbowski, H. (2002) Detailed oxygen and carbon isotope stratigraphy of the Oxfordian in Central Poland. Int. J. Earth Sci. (Geol. Rundsch), 91, 304–314.
    [Google Scholar]
  101. Werzbowski, H. (2004) Carbon and oxygen isotope composition of Oxfordian–Early Kimmeridgian belemnite rosta: palaeoenvironmental implications for Late Jurassic seas. Palaeogeogr. Palaeoclimatol. Palaeoecol., 203, 153–168.
    [Google Scholar]
  102. Yiou, P., Genthon, C., Jouzel, J., Ghil, M., Letreut, H., Barnola, J.M., Lorius, C. & Korotkevitch, Y.N. (1991) High‐frequency paleovariability in climate and in CO2 levels from Vostok ice‐core records. J. Geophys. Res., 96, 365–378.
    [Google Scholar]
  103. Zachos, J.C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. (2001a) Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292, 686–693.
    [Google Scholar]
  104. Zachos, J.C., Shackleton, N.J., Revenaugh, J.S., Pälike, H. & Flower, B.P. (2001b) Climate response to orbital forcing across the Oligocene–Miocene boundary. Science, 292 (5515), 274–278.
    [Google Scholar]
  105. Ziegler, P.A. (1988) Evolution of the Arctic–North Atlantic and the Western Tethys. Am. Assoc. Pet. Geol., Mem., 43, 198pp.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2009.00429.x
Loading
/content/journals/10.1111/j.1365-2117.2009.00429.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error