1887
Volume 22, Issue 5
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

The Panoche Giant Injection Complex (PGIC; California) constitutes the most complete sandstone intrusion network yet described, and is an excellent analogue for subsurface hydrocarbon reservoirs modified by sand remobilisation. Sandstone dykes and sills were intruded during the Late Palaeocene into slope mudstones of the Great Valley forearc basin, and are exposed for more than 300 km2. The PGIC consists of dykes and sills and represents upwards infilling of natural hydraulic fractures sourced from highly overpressured Cretaceous sand bodies. Over 1300 orientation measurements show that dykes are almost randomly oriented with only a slight orientation bias trending NE–SW, N–S or NW–SE, suggesting either a horizontally isotropic state of stress during intrusion or modification of stress by newly‐formed fractures that override the remote stress. Dykes are segmented in a pattern consistent with radial propagation with fingering towards tips similar to that observed for other mixed mode fractures. Kinematic indicators reveal there was no systematic sense of opening for the intrusions. This is interpreted as the result of short‐range mechanical interactions. Cross‐cutting relationships between injections imply a diachronous timing and a fluid pressure in the source units that was in excess of the lithostatic load. Finally we document a suite of minor structures within the host section that allowed the strain of the forcefully intruded sand to be accommodated.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2009.00439.x
2010-09-03
2024-03-29
Loading full text...

Full text loading...

References

  1. Anderson, E.M. (1951) The Dynamics of Faulting and Dyke Formation with Application to Britain. Oliver and Boyd, Edinburgh, 206pp.
    [Google Scholar]
  2. Anderson, R. & Pack, R.W. (1915) Geology and oil resources of the west border of the San Joaquin Valley north of Coalinga, California. U.S. Geol. Survey Bull, 603, 220pp.
    [Google Scholar]
  3. André‐Mayer, A.S. & Sausse, J. (2007) Thickness and spatial distribution of veins in a porphyry copper deposit, Rosia Poieni, Romania. J. Struct. Geol., 29, 1695–1708.
    [Google Scholar]
  4. Atwater, T. & Molnar, P. (1973) Relative motion of the Pacific and North American plates deduced from sea‐floor spreading in the Atlantic, Indian, and South Pacific Oceans. In: Proceedings of the Conference on Tectonic Problems of the San Andreas Fault System (Ed. by R.L.Kovach & N.Amos ), Stanford University Publications in the Geological Sciences 13, 136–148.
    [Google Scholar]
  5. Baer, G. & Beyth, M. (1990) A mechanism of dyke segmentation in fractured host rock. In: Mafic Dykes and Emplacement Mechanisms (Ed. by A.J.Parker , P.C.Rickwood & D.H.Tucker ), pp. 3–11. Balkema, Rotterdam.
    [Google Scholar]
  6. Baer, G., Beyth, M. & Reches, Z. (1994) Dykes emplacement into fractured basement, Timna igneous complex, Israel. J. Geophys. Res., 99 (B12), 24039–24050.
    [Google Scholar]
  7. Bartow, J.A. (1996) Geological Map of the west border of the San Joaquin valley in the Panoche creek‐cantua creek area, Fresno and San Benito Counties, California – Miscellaneous investigations series – MAP I‐2430. Geological Map Survey MAP I‐2430.
  8. Bartow, J.A. & Nilsen, T.H. (1990) Review of the Great Valley sequence, eastern Diablo Range and northern San Joaquin Valley, Central California. In: Structure, Stratigraphy and Hydrocarbon Occurrences of the San Joaquin Basin (Ed. by J.G.Kuespert & S.A.Reid ), 13pp.
    [Google Scholar]
  9. Boehm, A. & Moore, J.C. (2002) Fluidized sandstone intrusions as an indicator of paleostress orientation, Santa Cruz, California. Geofluids, 2, 147–161.
    [Google Scholar]
  10. Bradley, J. (1965) Intrusion of major dolerite sills. Trans. R. Soc. New Zealand, 3, 27–55.
    [Google Scholar]
  11. Bussel, M.A. (1989) A simple method for the determination of the dilation direction of intrusive sheets. J. Struct. Geol., 11 (6), 679–687.
    [Google Scholar]
  12. Cadman, A., Tarney, J. & Park, R.G. (1990) Intrusion and crystallisation features in Proterozoic dyke swarms. In: Mafic Dykes Emplacement Mechanisms (Ed. by A.J.Parker , P.G.Rockwood & D.H.Tucker ) Rotterdam, Balkema, pp. 13–24.
    [Google Scholar]
  13. Cartwright, J.A., Huuse, M. & Aplin, A. (2007) Seal bypass systems. Am. Assoc. Petrol. Geol. Bull., 91, 1141–1166.
    [Google Scholar]
  14. Cartwright, J.A., James, D., Huuse, M., Vetel, W. & Hurst, A. (2008) The geometry and emplacement of conical sandstone intrusions. J. Struct. Geol., 30 (7), 854–867.
    [Google Scholar]
  15. Cloos, E. (1968) Experimental analysis of Gulf coast fracture. AAPG Bull., 52 (3), 420–444.
    [Google Scholar]
  16. Currie, K.L. & Ferguson, J. (1970) The mechanism of intrusion of lamprophyre dykes indicated by “offsetting” of dykes. Tectonophysics, 9, 525–535.
    [Google Scholar]
  17. De Boer, W., Rawlinson, P.B. & Hurst, A. (2007) Successful exploration of a sand injectite complex: Hamsum prospect, Norway block 24/9. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.A.Cartwright ), AAPG Memoir87, 65–68.
    [Google Scholar]
  18. Delacourt, C., Allemand, P., Casson, B. & Vadon, H. (2004) Velocity field of the “La Clapière” landslide measured by the correlation of aerial and QuickBird satellite images. Geophys. Res. Lett., 31, L15619, doi: DOI: 10.1029/2004GL020193.
    [Google Scholar]
  19. Delaney, P.T. & Pollard, D.D. (1982) Solidification of basaltic magma during flow in a dyke. Am. J. Sci., 282, 856–885.
    [Google Scholar]
  20. Delaney, P.T., Pollard, D.D., Ziony, J.I. & Mckee, E.H. (1986) Field relations between dykes and joints: emplacement processes and paleostress analysis. J. Geophys. Res., 91 (B5), 4920–4938.
    [Google Scholar]
  21. Dickinson, W.R. & Seely, D.R. (1979) Structure and stratigraphy of Forearc regions. AAPG Bull., 63, 2–31.
    [Google Scholar]
  22. Diller, J.S. (1889) Sandstone dykes. Geol. Soc. Am. Bull., 1, 411–442.
    [Google Scholar]
  23. Einsele, G., Gieskes, J.M., Curray, J., Moore, D.M., Aguayo, E., Aubry, M.P., Fornari, D., Guerrero, J., Kastner, M., Kelts, K., Lyle, M., Matoba, Y., Molina‐Cruz, A., Niemitz, J., Rueda, J., Suanders, A., Schrader, H., Simoneit, B. & Vacquier, V. (1980) Intrusion of basaltic sills into highly porous sediments, and resulting hydrothermal activity. Nature, 283, 441–445.
    [Google Scholar]
  24. Farmin, R. (1941) Host‐rock inflation by veins and dykes at Grass Valley. California. Econ. Geol., 36, 143–174.
    [Google Scholar]
  25. Gillespie, P.A., Howard, C., Walsh, J.J. & Watterson, J. (1993) Measurement and characterisation of spatial distributions of fractures. Tectonophysics, 226, 113–141.
    [Google Scholar]
  26. Gretener, P.E. (1969) On the mechanics of the intrusion of sills. Can. J. Earth Sci., 6, 1415–1419.
    [Google Scholar]
  27. Gudmundsson, A. (1983) Form and dimensions of dykes in eastern Iceland. Tectonophysics, 95, 295–307.
    [Google Scholar]
  28. Gudmundsson, A. (1990) Emplacement of dykes, sills and crustal magma chambers at divergent plate boundaries. Tectonophysics, 176, 257–275.
    [Google Scholar]
  29. Gudmundsson, A. (2002) Emplacement and arrest of sheets and dykes in central volcanoes. J. Volcanol. Geothermal Res., 116, 279–298.
    [Google Scholar]
  30. Hansen, D.M. & Cartwright, J. (2006) The three‐dimensional geometry and growth of forced folds above saucer‐shaped igneous sills. J. Struct. Geol., 28, 1520–1535.
    [Google Scholar]
  31. Hansen, D.M., Cartwright, J.A. & Thomas, D. (2004) 3D seismic analysis of the geometry of igneous sills and sill intersecting relationships. In: 3D Seismic Technology: Application to the Exploration of Sedimentary Basins (Ed. by R.J.Davies , J.A.Cartwright , S.A.Stewart , J.R.Underhill & M.Lappin ), Geol. Soc. Lond. Mem . 29, 199–208.
    [Google Scholar]
  32. Hayashi, T. (1966) Clastic dykes in Japan. Jap. J. Geol. Geogr., 37, 1–20.
    [Google Scholar]
  33. Hoek, J.D.U. (1991) A classification of dyke‐fracture geometry with examples from Precambrian dyke swarms in the Vestfold Hills, Antarctica. Geol. Rund., 80/2, 233–248.
    [Google Scholar]
  34. Howell, D.G., Crouch, J.K., Greene, H.G., Mcculloch, D.S. & Vedder, J.G. (1980) Basin development along the late Mesozoic and Cainozoic California margin: a plate tectonic margin of subduction, oblique subduction and transform tectonics. Int. Assoc. Sedimentol. Spec. Publ., 4, 43–62.
    [Google Scholar]
  35. Hubbert, M.K. & Willis, D.G. (1957) Mechanics of hydraulic fracturing. Trans. Am. Inst. Mining Eng., 210, 153–168.
    [Google Scholar]
  36. Hurst, A. & Cartwright, J.A. (2007) Relevance of sand injectites to hydrocarbon exploration and production. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.A.Cartwright ), AAPG Mem . 87, 1–20.
    [Google Scholar]
  37. Hurst, A., Cartwright, J.A. & Duranti, D. (2003) Fluidization structures produced by upward injection of sand through a sealing lithology. In: Subsurface Sediment Mobilization (Ed. by P.Van Renserbergen , R.R.Hillis , A.J.Maltman & C.K.Morley ), Geol. Soc., Lond., Spec. Publ . 216, 123–137.
    [Google Scholar]
  38. Huuse, M. (2008) Sandstone intrusions: implications for exploration and production. World Oil, June, 87–91.
    [Google Scholar]
  39. Huuse, M., Cartwright, J.A., Gras, R. & Hurst, A. (2005) Km‐scale sandstone intrusions in the Eocene of the Outer Moray Firth (UK North Sea): migration paths, reservoirs, and potential drilling hazards. In: Petroleum Geology of NW Europe: Proceedings of the 6th Conference (Ed. by A.G.Doré & B.Vining ), pp. 1577–1594. Geological Society London.
    [Google Scholar]
  40. Huuse, M., Duranti, D., Steinsland, N., Guargena, C.G., Prat, P., Holm, K., Cartwright, J.A. & Hurst, A. (2004) Seismic characteristics of large‐scale sandstone intrusions in the Paleogene of the South Viking Graben, UK and Norwegian North Sea. In: 3D Seismic Technology: Application to the Exploration of Sedimentary Basins (Ed. by R.J.Davies , J.A.Cartwright , S.A.Stewart , M.Lappin & J.R.Underhill ), Geol. Soc. Lond. Mem . 29, 263–277.
    [Google Scholar]
  41. Huuse, M. & Mickelson, M. (2004) Eocene sandstone intrusions in the Tampen Spur area (Norwegian North Sea Quad 34) imaged by 3D seismic data. Mar. Petrol. Geol., 21, 145–155.
    [Google Scholar]
  42. Ingersoll, R.V. (1979) Evolution of the Late Cretaceous forearc basin, northern and central California. Geol. Soc. Am. Bull., 90 (Part I), 813–826.
    [Google Scholar]
  43. Jenkins, O.P. (1930) Sandstone dykes as conduits for oil migration through shales. AAPG Bull., Tulsa, 14 (1), 411–421.
    [Google Scholar]
  44. Jolly, R.J.H., Cosgrove, J.W. & Dewhurst, D.N. (1998) Thickness and spatial distribution of clastic dykes, northwest Sacramento Valley, California. J. Struct. Geol., 20, 1663–1672.
    [Google Scholar]
  45. Jolly, R.J.H. & Lonergan, L. (2002) Mechanisms and controls on the formation of sand intrusions. J. Geol. Soc., London, 159, 605–617.
    [Google Scholar]
  46. Jolly, R.J.H. & Sanderson, D.J. (1995) Variation in the form and distribution of dykes in the Mull swarm, Scotland. J. Struct. Geol., 17, 1543–1557.
    [Google Scholar]
  47. Kattenhorn, S.A., Aydin, A. & Pollard, D.D. (2000) Joints at high angle to normal fault strike: an explanation using 3-D numerical models of fault-perturbed stress fields. J. Struct. Geol., 22, 1–23.
    [Google Scholar]
  48. Kattenhorn, S.A. & Watkeys, M.K. (1995) Blunt‐ended dyke segments. J. Struct. Geol., 11, 1535–1542.
    [Google Scholar]
  49. Klausen, M.B. (2006) Similar dyke thickness variation across three volcanic rifts in the North Atlantic region: implications for intrusion mechanisms. Lithos, 92, 137–153.
    [Google Scholar]
  50. Le Gall, B., Tshoso, G., Dyment, J., Kampunzu, A.B., Jourdan, F., Féraud, G., Bertrand, H., Aubourg, C. & Vétel, W. (2005) The Okavango giant mafic dyke swarm (NE Botswana): its structural significance within the Karoo Large Igneous Province. J. Struct. Geol., 27, 2234–2255.
    [Google Scholar]
  51. Lister, J. & Kerr, A.C. (1991) Fluid‐mechanical models of crack propagation and their application to magma transport in dykes. J. Geophys. Res., 96, 10,049–10,077.
    [Google Scholar]
  52. Lonergan, L. & Cartwright, J.A. (1999) Polygonal faults and their influence on reservoir geometries, Alba field, United Kingdom central North Sea. AAPG Bull., 83, 410–432.
    [Google Scholar]
  53. Lonergan, L., Borlandelli, C., Taylor, A., Quine, M. & Flanagan, K.P. (2007) The three‐dimensional geometry of sandstone injection complexes in the Gryphon Field, UK North Sea. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.A.Cartwright ), AAPG Mem. 87, 103–112.
    [Google Scholar]
  54. Løseth, H., Wensaas, L., Arntsen, B. & Hovland, M. (2003) Gas and fluid injection trigerring shallow mud mobilization in the Hordaland Group, North Sea. In: Subsurface Sediment Mobilization (Ed. by P.Van Rensbergen , R.R.Van Hilli , A.J.Maltman & C.K.Morley ), Geol. Soc. Lond. Spec. Publ . 216, 139–157.
    [Google Scholar]
  55. Macleod, M.K., Hanson, R.A., Bell, C.R. & Mchugo, S. (1999) The Alba field ocean bottom cable seismic survey: impact on development. The Leadig Edge, 18, 1306–1312.
    [Google Scholar]
  56. Maerten, L., Gillespie, P. & Pollard, D.D. (2002) Effects of local stress perturbation on secondary fault development. J. Struct. Geol., 24, 145–153.
    [Google Scholar]
  57. Mandl, G. (2000) Faulting in Brittle Rocks. Springer, Berlin.
    [Google Scholar]
  58. Mcguire, D.J. (1988) Depositional framework of the Upper Cretaceous‐Lower Tertiary Moreno Formation, Central San Joaquin Basin, California. In: Studies of the Geology of the San Joaquin Basin: Pacific Section S.E.P.M (Ed. by S.A.Graham & A.Stephan ). 60, 173–188.
    [Google Scholar]
  59. Mege, D. & Korme, T. (2004) Fissure eruption of flood basalts from statistical analysis of dyke fracture length. J. Volcanol. Geothermal Res., 131, 77–92.
    [Google Scholar]
  60. Minisini, D. & Schwartz, H. (2007) An early Paleocene cold seep system in the Panoche and Tumey Hills, Central California (United States). In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.A.Cartwright ), AAPG Mem . 87, 185–197.
    [Google Scholar]
  61. Molyneux, S.J. (2001) Sandstone remobilization in the Eocene to Miocene of the central and northern North Sea. PhD thesis, University of London.
  62. Molyneux, S.J., Cartwright, J.A. & Lonergan, L. (2002) Conical sandstone injection structures imaged by 3D seismic in the central North Sea, UK. First Break, 20, 383–393.
    [Google Scholar]
  63. Moxon, I.W. & Grahma, A. (1987) History and controls of subsidence in the Late Cretaceous‐Tertiary Great Valley forearc basin, California. Geology, 15, 626–629.
    [Google Scholar]
  64. Newsom, J.F. (1903) Clastic dykes. Geol. Soc. Am. Bull., 14, 227–68.
    [Google Scholar]
  65. Paquet, F., Dauteuil, O., Hallot, E. & Moreau, F. (2007) Tectonics and magma dynamics coupling in a dyke swarm Iceland. J. Struct. Geol., 29, 1477–1493.
    [Google Scholar]
  66. Park, H.J. & West, T.R. (2002) Sampling bias of discontinuity orientation caused by linear sampling technique. Eng. Geol., 66, 99–110.
    [Google Scholar]
  67. Payne, M.B. (1951) Type Moreno Formation and overlying Eocene strata on the west side of the San Joaquin Valley, Fresno and Merced counties, California. Special Report 9, Division of Mines, Department of Natural Resources, 29pp.
  68. Peacock, D.C.P., Harris, S.D. & Mauldon, M. (2003) Use of curved scanlines and boreholes to predict fracture frequencies. J. Struct. Geol., 25, 109–119.
    [Google Scholar]
  69. Peterson, G.L. (1966) Structural interpretation of sandstone dykes, northwest Sacramento valley, California. Geol. Soc. Am. Bull., 77, 833–842.
    [Google Scholar]
  70. Pickering, G., Bull, J.M. & Sanderson, D.J. (1995) Sampling power‐law distributions. Tectonophysics, 248, 1–20.
    [Google Scholar]
  71. Pollard, D.D. (1973) Derivation and evaluation of a mechanical model for sheet intrusions. Tectonophysics, 19, 233–269.
    [Google Scholar]
  72. Pollard, D.D. (1987) Elementary fracture mechanics applied to the structural interpretation of dykes. In: Mafic Dyke Swarms (Ed. by H.C.Halls & W.H.Fahrig ), Geol. Assoc. Can. Pap . 34, 5–24.
    [Google Scholar]
  73. Pollard, D.D. & Johnson, A.M. (1973) Mechanisms of growth of some laccolithic intrusions in the Henry Mountains, Utah, II: bending and failure of overburden layers and sill formation. Tectonophysics, 18, 311–354.
    [Google Scholar]
  74. Pollard, D.D., Muller, O.H. & Dockstader, D.R. (1975) The form and growth of fingered sheet intrusions. Geol. Soc. Am. Bull., 86, 351–363.
    [Google Scholar]
  75. Rickwood, P.C. (1990) The anatomy of a dyke and the determination of propagation and magma flow directions. In: Mafic Dykes and Emplacement Mechanisms (Ed. by A.J.Parker , P.C.Rickwood & D.H.Tucker ), pp. 81–100. Balkema, Rotterdam.
    [Google Scholar]
  76. Rubin, A.M. (1995) Propagation of magma‐filled cracks. Ann. Rev. Earth Planet. Sci., 23, 287–336.
    [Google Scholar]
  77. Schwartz, H., Sample, J., Weberling, K.D., Minisini, D. & Moore, J.C. (2003) An 270 ancient linked fluid migration system: cold-seep deposits and sandstone intrusions in 271 the Panoche Hills, California, USA. Geo‐Mar. Lett., 23, 340–350.
    [Google Scholar]
  78. Shoulders, S. (2005) Mechanics of Sandstone Intrusions. PhD Thesis, Cardiff University, Cardiff, UK, 287pp.
  79. Shoulders, S. & Cartwright, J.A. (2004) Constraining the depth and timing of large‐scale conical sandstone intrusions. Geology, 32 (8), 661–664.
    [Google Scholar]
  80. Shoulders, S., Cartwright, J.A. & Huuse, M. (2007) Sandstone intrusions and polygonal faults in the Faeroe‐Shetland basin. Mar. Petrol. Geol., 24, 173–188.
    [Google Scholar]
  81. Smith, R.P. (1990) Dyke emplacement at Spanish Peaks, Colorado. In: Mafic Dyke Swarms (Ed. by H.C.Halls & W.F.Fahrig ), Geol. Assoc. Can. Spec. Pap . 34, 47–54.
    [Google Scholar]
  82. Smyers, N.B. & Peterson, G.L. (1971) Sandstone dykes and sills in the Moreno shale, Panoche Hills, California. Geol. Soc. Am. Bull., 82, 3201–3208.
    [Google Scholar]
  83. Surlyk, F., Gjelberg, J. & Noe‐Nygaard, N. (2007) The Upper Jurassic Hareelv Formation of east Greenland: a giant sedimentary injection complex. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.A.Cartwright ), AAPG Mem . 87, 141–149.
    [Google Scholar]
  84. Susilohadi, S., Gaedicke, C. & Ehrhardt, A. (2005) Neogene structures and sedimentation history along the Sunda forearc basins off southwest Sumatra and southwest Java. Mar. Geol., 219, 133–154.
    [Google Scholar]
  85. Taylor, B. (1982) Sedimentary dykes, Pipes and related structures in the Mesozoic sediments of south‐eastern Alexander Island. Br. Antarct. Sur. Bull., 51, 1–42.
    [Google Scholar]
  86. Vigorito, M., Hurst, A., Cartwright, J. & Scott, A. (2008) Regional‐scale subsurface crustal sediment remobilization: geometry and architecture. J. Geol. Soc. Lond., Spec. Publ., 165 (3), 609–612.
    [Google Scholar]
  87. Weberling, K.D. (2002) Clastic intrusions and cold seeps in the late Cretaceous‐early Tertiary Great Valley forearc basin, Panoche Hills, CA: Structural context of a linked fluid system. Master's thesis: University of California, Santa Cruz, 48 pp.
  88. Weinberger, R., Lyakhovsky, V., Baer, G. & Agnon, A. (2000) Damage zones around en echelon dyke segments in porous sandstone. J. Geophys. Res., 105 (B2), 3115–3133.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2009.00439.x
Loading
/content/journals/10.1111/j.1365-2117.2009.00439.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error