1887
Volume 22 Number 4
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

We report the first structural field mapping of exhumed mud volcano feeder complexes. Three mud volcanoes outcropping onshore in Azerbaijan were selected on the basis of outcrop quality and scale. These examples are all located within 1 km of the axes of NW–SE‐trending folds associated with the southern margin of the Greater Caucasus mountain belt. The mapping shows that the intrusive complexes are 200–800 m wide and roughly circular. These feeder complexes consist of a megabreccia of country rock blocks at a scale of tens of metres, enclosed in a matrix of intrusive mud. Minor structures include grid like fractures sets, sinuous fractures, mud plugs and breccia pipes. The country rock blocks are deformed and rotated relative to surrounding sedimentary strata. Alternative mechanisms to explain the strain history of these large blocks in the feeder complexes are: a. stoping, b. flow rotation and c. caldera collapse. Our mapping indicates that the most likely mechanism involves stoping processes, similar to those identified in igneous systems. This study provides a basis for reservoir distribution in commercial geological models that contain the feeder complexes of mud volcano systems, and also constrains conduit geometry for modelling studies of evolution and flow dynamics.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2009.00441.x
2009-10-28
2024-04-20
Loading full text...

Full text loading...

References

  1. Abdullayev, N.R. (1998) Seismic stratigraphy of the upper pliocene and quaternary deposits in the South Caspian Basin. J. Petrol. Sci. Eng., 28 (4), 207–226.
    [Google Scholar]
  2. Abidin, H.Z., Davies, R.J., Kusuma, M.A., Andreas, H. & Deguchi, T. (2008) Subsidence and uplift of Sidoarjo (East Java) due to the eruption of the LUSI mud volcano (2006‐present). Environment. Geol., 57 (4), 833–844.
    [Google Scholar]
  3. Aliyev, A., Guliyev, I.S. & Belov, I.S. (2002) Catalogue of Recorded Eruptions of Mud Volcanoes of Azerbaijan. Nafta Press, Baku.
    [Google Scholar]
  4. Allen, M.B., Jones, S., Ismail‐Zadeh, A., Simmons, M.D. & Anderson, L. (2002) Onset of subduction as the cause of rapid pliocene–quaternary subsidence in the South Caspian Basin. Geology, 30 (9), 775–778.
    [Google Scholar]
  5. Allen, M.B., Vincent, S.J., Alsop, G.I., Ismail‐Zadeh, A. & Flecker, R. (2003) Late Cenozoic deformation in the South Caspian Region: effects of a rigid basement block within a collision zone. Tectonophysics, 366, 223–239.
    [Google Scholar]
  6. Barber, A.J., Tjokrosapoetro, S. & Charlton, T.R. (1986) Mud volcanoes, shale diapirs, wrench faults, and mélanges in accretionary complexes, Eastern Indonesia. Am. Assoc. Petrol. Geol. Bull., 20 (11), 1729–1741.
    [Google Scholar]
  7. Brown, K.M. (1990) The nature and hydrogeological significance of mud diapirs and diatremes for accretionary prisms. J. Geophys. Res., 95, 8969–8982.
    [Google Scholar]
  8. Cole, J.W., Milner, D.M. & Spinks, K.D. (2005) Calderas and caldera structures: a review. Earth‐Sci. Rev., 69 (1–2), 1–26.
    [Google Scholar]
  9. Cooper, C. (2001) Mud volcanoes of Azerbaijan visualized using 3D seismic depth cubes: the importance of overpressured fluid and gas instead on non‐existent diapirs. In: Proceedings of EAGE Conference: Subsurface Sediment Mobilization, Vol. 71, 71. Ghent, Belgium.
    [Google Scholar]
  10. Davies, R.J. & Stewart, S.A. (2005) Emplacement of giant mud volcanoes in the South Caspian Basin: 3D seismic reflection imaging of their root zones. J. Geol. Soc. Lond., 162, 1–4.
    [Google Scholar]
  11. Devlin, W.L., Gogswell, J., Gaskins, G., Isaksen, G., Pitcher, D., Puls, D., Stanley, K. & Wall, G. (1999) South Caspian Basin: young, cool, and full of promise. GSA Today, 9, 1–9.
    [Google Scholar]
  12. Evans, R.J., Stewart, S.A. & Davies, R.J. (2008) The structure and formation of mud volcano summit calderas. J. Geol. Soc., 165, 769–780.
    [Google Scholar]
  13. Geshi, N., Shimano, T., Chiba, T. & Nakada, S. (2002) Caldera collapse during the 2000 eruption of Miyakejima Volcano, Japan. Bull. Volcanol., 64, 55–68.
    [Google Scholar]
  14. Graue, K. (2000) Mud volcanoes in deep water Nigeria. Mar. Petrol. Geol., 17, 959–974.
    [Google Scholar]
  15. Guliyev, I.S., Feizullayev, A.A. & Belov, I.S. (2000) All About Mud Volcanoes. Geology Institute, Azerbaijan Academy of Sciences, Azerbaijan.
    [Google Scholar]
  16. Guliyev, I.S., Feizullayev, A.A., Nadirov, R.S., Rakhmanov, R.R., Aliev, A.D.A., Bagirov, E.B., Mukhtarov, A.S.H., Tagiev, M.F., Magerramova, F.S., Murtazaev, I.R., Archer, R., Casey, D.M., Gronlie, A., Huntley, A., Mitchell, G. & Simmons, M.D. (1994) Mud volcanoes of Azerbaijan: Report of the GIA, BP and Statoil joint study.
  17. Hovland, M., Hill, A. & Stokes, D. (1997) The structure and geomorphology of the Dashgil mud volcano, Azerbaijan. Geomorphology, 21, 1–15.
    [Google Scholar]
  18. Hovland, M., Nygaard, E. & Thorbjørnsen, S. (1998) Piercement shale diapirism in the deep‐water Vema Dome Area, Vøring Basin, Offshore Norway. Mar. Petrol. Geol., 15, 191–201.
    [Google Scholar]
  19. Hudson, S.M., Johnson, C.L., Efendiyeva, M.A., Rowe, H.D., Feyzullayev, A.A. & Aliyev, C.S. (2008) Stratigraphy and geochemical characterization of the Oligocene–Miocene Maikop Series: implications for the paleogeography of Eastern Azerbaijan. Tectonophysics, 451, 40–55.
    [Google Scholar]
  20. Iverson, R.M. (1997) The physics of debris flows. Rev. Geophys., 35 (3), 245–296.
    [Google Scholar]
  21. Jackson, J., Priestley, K., Allen, M.B. & Berberian, M. (2002) Active tectonics of the South Caspian Basin. Geophys. J. Int., 148, 214–245.
    [Google Scholar]
  22. Jolly, R. & Lonergan, L. (2002) Mechanisms and controls on the formation of sand intrusions. Geol. Soc Lond., 159, 605–617.
    [Google Scholar]
  23. Kopf, A. (2002) Significance of mud volcanism. Rev. Geophys., 40, 1005.
    [Google Scholar]
  24. Kopf, A. & Behrmann, J.H. (2000) Extrusion dynamics of mud volcanoes on the Mediterranean Ridge accretionary complex (2000). Geol. Soc. Lond. Spec. Publ., 174, 169–204.
    [Google Scholar]
  25. Kroonenberg, S.B., Badyukova, E.N., Storms, J.E.A., Ignatov, E.I. & Kasimov, N.S. (2000) A full sea‐level cycle in 65 years: barrier dynamics along Caspian shores. Sediment. Geol., 134, 257–274.
    [Google Scholar]
  26. Marsh, B.D. (1982) On the mechanisms of igneous diapirism, stoping, and zone melting. Am. J. Sci., 282, 808–855.
    [Google Scholar]
  27. Mazzini, A., Svensen, H., Akhmanov, G.G., Aloisi, G., Planke, S., Malthe‐Sørenssen, A. & Istadi, B. (2007) Triggering and dynamic evolution of the LUSI mud volcano, Indonesia. Earth Planet. Sci. Lett., 261, 375–388.
    [Google Scholar]
  28. Milkov, A.V. (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol., 167 (1), 29–42.
    [Google Scholar]
  29. Moores, E.M. & Vine, F.J. (1971) Troodos Massif, Cyprus and other ophiolites as ocean crust: evaluations and implications. Philos. Transact. Roy. Soc. Lond. Serial A, 268, 443–446.
    [Google Scholar]
  30. Morley, C.K. (2002) Structural Geology of the Berakas Syncline Regional‐Reservoir Scale Perspectives. Universiti Brunei Darussalam, Department of Petroleum Geosciences. Fieldtrip for Brunei Shell, Brunei.
    [Google Scholar]
  31. Morley, C.K. (2003) Outcrop examples of mudstone intrusions from the Jerudong Anticline. In: Subsurface Sediment Remobilizatio (Ed. by P.Vanrensenbergen , R.R.Hillis , A.J.Maltman & C.K.Morley ), Geol. Soc. Lond. Spec. Publ., 216, 381–394.
    [Google Scholar]
  32. Morley, C.K., Crevello, P. & Ahmad, Z.H. (1998) Shale tectonics associated with active diapirism; The Jerudong Anticline, Brunei Darussalam. J. Geol. Soc. Lond., 155 (3), 475–490.
    [Google Scholar]
  33. Morley, C.K. & Guerin, G. (1996) Comparison of gravity‐driven deformation styles and behaviour associated with mobile shales and salt. Tectonics, 15 (6), 1154–1170.
    [Google Scholar]
  34. Planke, S., Svensen, H., Hovland, M. & Banks, D.A. (2003) Mud and fluid migration in active mud volcanoes in Azerbaijan. Geo Mar. Lett., 23, 258–268.
    [Google Scholar]
  35. Pinotti, L.P., Coniglio, J.E., Esparza, A.M., Eramo, F.J. & Llambías, E.J. (2002) Nearly circular plutons emplaced by stoping at shallow crustal levels, Cerro Aspero Batholith, Sierras Pampeanas de Córdoba, Argentina. J. South Am. Earth Sci., 15, 251–265.
    [Google Scholar]
  36. Ramsay, J.G., Huber, M.I. & Lisle, R. (1987) The Techniques of Modern Structural Geology: Folds and Fractures. Academic Press, London.
    [Google Scholar]
  37. Reading, H.G. (1996) Sedimentary environments: processes, facies and stratigraphy (Ed. by H.G.Reading ), 3rd ed., Blackwell Science, Oxford.
    [Google Scholar]
  38. Reynolds, A.D., Simmons, M.D., Bowman, B.J., Henton, J., Brayshaw, A.C., Ali‐Zade, A.A., Guliyev, I.S., Suleymanova, S.F., Ataeva, E.Z., Mamedova, D.N. & Koshkarly, R.O. (1998) Implications of outcrop geology for reservoirs in the Neogene productive series: Apsheron peninsula, Azerbaijan. AAPG Bull., 82, 25–47.
    [Google Scholar]
  39. Robertson, A.H.F. & Kopf, A. (1998) Tectonic setting and processes of mud volcanism on the Mediterranean Ridge accretionary complex: evidence from Leg 160. In: A.H.F.Robertson , K.–C.Emeis , C.Richter & A.Camerlengthi , (eds), Proceedings of the Ocean Drilling Program, Scientific Results, 160. Ocean Drilling Program, College Station, TX, 665–680.
    [Google Scholar]
  40. Stewart, S.A. & Davies, R.J. (2006) Structure and emplacement of mud volcano systems in the South Caspian Basin. AAPG Bull., 90 (5), 771–786.
    [Google Scholar]
  41. Yusifov, M. & Rabinowitz, P.D. (2004) Classification of mud volcanoes in the South Caspian Basin, offshore Azerbaijan. Mar. Petrol. Geol., 21 (8), 965–975.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2009.00441.x
Loading
/content/journals/10.1111/j.1365-2117.2009.00441.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error