1887
Volume 22 Number 6
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Changes to the tectonic boundary conditions governing erosional dynamics in upland catchments have a significant effect on the nature and magnitude of sediment supply to neighbouring basins. While these links have been explored in detail by numerical models of landscape evolution, there has been relatively little work to quantify the timing, characteristics and locus of sediment release from upland catchments in response to changing tectonic boundary conditions that are well‐constrained independently.  We address this challenge by quantifying the volume and granulometric characteristics of sediment exported from modern rivers draining across active normal faults in the Central Apennines in Italy.  We demonstrate that catchments undergoing a transient response to tectonics are associated with significant volumetric export of material derived primarily from the zone upstream of the fault, producing bi‐modal grain‐size distributions with elevated values within the transient reach. This is in direct contrast to the headwaters, where the fluvial capacity to transport sediment is low and the grain‐size distribution of material in transit is fine and uni‐modal. The grain‐size response is driven by landslides feeding coarse material directly into the channel, and we show the amplitude of the signal is modulated by the degree of tectonic perturbation, once the threshold for bedrock landsliding is exceeded. Additionally, we evaluate the length‐scale over which this transient grain‐size signal propagates downstream into the basin. We show that the coarse‐fraction sediment released is retained in the proximal hanging‐wall if rates of tectonic subsidence are high and if the axial river system is small or far from the fault‐bounded mountain front. Our results therefore provide some of the first quantitative data to evaluate how transient landscape responses affect the locus, magnitude and calibre of sediment supply to basins.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2009.00447.x
2009-11-25
2024-04-20
Loading full text...

Full text loading...

References

  1. Accordi, G., Carbone, F., Civitelli, G., Corda, L., De Rita, D., Esu, D., Funicello, R., Kotsakis, T., Mariotti, G. & Sposato, A. (1986) Lithofacies Map of Latium‐Abruzzo and Neighbouring Areas. Consiglio Nazionale delle Ricerche, Italy.
    [Google Scholar]
  2. Allen, P.A. (2008) From landscapes into geological history. Nature, 451, 274–276.
    [Google Scholar]
  3. Allen, P.A. & Allen, J.R. (2005) Basin Analysis: Principles and Applications. Blackwell Publishing Oxford, ISBN: 0‐6320‐5207‐4.
    [Google Scholar]
  4. Allen, P.A. & Densmore, A.L. (2000) Sediment flux from an uplifting fault block. Basin Res., 12, 367–380.
    [Google Scholar]
  5. Attal, M. & Lavé, J. (2006) Changes of bedload characteristics along the Marsyandi River (central Nepal): implications for understanding hillslope sediment supply, sediment load evolution along fluvial networks, and denudation in active orogenic belts. In: Tectonics, Climate, and Landscape Evolution (Ed. by S.D.Willett , N.Hovius , M.T.Brandon & D.Fisher ), Geol. Soc. Am. Spec. Paper398, 143–171, doi: DOI: 10.1130/2006.2398(09).
    [Google Scholar]
  6. Attal, M., Tucker, G.E., Whittaker, A.C., Cowie, P.A. & Roberts, G.P. (2008) Modelling fluvial incision and transient landscape evolution: influence of dynamic channel adjustment. J. Geophys. Res., 113, F03013, doi:DOI: 10.1029/2007JF000893.
    [Google Scholar]
  7. Boulton, S.J. & Whittaker, A.C. (2009) Investigating active faulting in an oblique extensional graben using geomorphology, drainage patterns and river profiles: Hatay Graben, south central Turkey. Geomorphology, 104, 299–316.
    [Google Scholar]
  8. Casagli, N., Ermini, L. & Rosati, G. (2003) Determining grain size distribution of the material composing landslide dams in the Northern Apennines: sampling and processing methods. Eng. Geol., 69, 83–97.
    [Google Scholar]
  9. Castelltort, S. & Van den Driessche, J. (2003) How plausible are high‐frequency sediment supply‐driven cycles in the stratigraphic record?Sediment. Geol., 157, 3–13.
    [Google Scholar]
  10. Cavinato, G.P. (1993) Recent tectonic evolution of the quaternary deposits of the Rieti Basin (Central Apennines, Italy): Southern part. Geol. Romana, 29, 411–434.
    [Google Scholar]
  11. Cavinato, G.P., Carusi, C., Dall'Asta, M., Miccadei, E. & Piacentini, T. (2002) Sedimentary and tectonic evolution of Plio–Pleistocene alluvial and lacustrine deposits of Fucino Basin (central Italy). Sediment. Geol., 148, 29–59.
    [Google Scholar]
  12. Cavinato, G.P. & DeCelles, P.G. (1999) Extensional basins in tectonically bi‐modal central Apennines fold‐thrust belt, Italy: response to corner flow above a subducting slab in retrograde motion. Geology, 27, 955–958.
    [Google Scholar]
  13. Centamore, E. & Nisio, S. (2003) Effects of uplift and tilting in the Central‐Northern Apennines, Italy. Quat. Int., 101–102, 93–101.
    [Google Scholar]
  14. Cowie, P.A., Attal, M., Tucker, G.E., Whittaker, A.C., Naylor, M., Ganas, A. & Roberts, G.P. (2006) Investigating the surface process response to fault interaction and linkage using a numerical modeling approach. Basin Res., 18, 231–266.
    [Google Scholar]
  15. Cowie, P.A. & Roberts, G.P. (2001) Constraining slip rates and spacings for active normal faults. J. Struct.l Geol., 23, 1901–1915.
    [Google Scholar]
  16. Cowie, P.A., Whittaker, A.C., Attal, M., Tucker, G.E., Roberts, G.P. & Ganas, A. (2008) New constraints on sediment‐flux dependent river incision: implications for extracting tectonic signals from river profiles. Geology, 36, 535–538; doi: DOI: 10.1130/G24681A.1.
    [Google Scholar]
  17. D'Agostino, N. & McKenzie, D. (1999) Convective support of long‐wavelength topography in the central Apennines (Italy). Terra Nova, 11, 234–238.
    [Google Scholar]
  18. D'Agostino, N., Jackson, J.A., Dramis, F. & Funiciello, R. (2001) Interactions between mantle upwelling, drainage evolution and active normal faulting: an example from the central Apennines (Italy). Geophys. J. Int., 147, 475–497.
    [Google Scholar]
  19. Davis, W.M. (1899) The penelain. Am. Geol., 23, 207–239.
    [Google Scholar]
  20. Densmore, A.L., Allen, P.A. & Simpson, G. (2007) Development and response of a coupled catchment fan system under changing tectonic and climatic forcing. J. Geophys. Res., 112, F01002, doi: DOI: 10.1029/2006JF000474.
    [Google Scholar]
  21. Densmore, A.L., Ellis, M.A. & Anderson, R.S. (1998) Landsliding and the evolution of normal fault bounded mountains. J. Geophys. Res., 103 (B7), 15203–1521.
    [Google Scholar]
  22. Dietrich, W.E. & Dunne, T. (1978) Sediment budget for a small catchment in mountainous terrain. Zeit. Geomorphol. Suppl, 29, 191–206.
    [Google Scholar]
  23. Fedele, J.‐J. & Paola, C. (2007) Similarity solutions for fluvial sediment fining by selective deposition. J. Geophys. Res., 112, F02038, doi:DOI: 10.1029/2005JF000409.
    [Google Scholar]
  24. Gasparini, N.M., Bras, R.L. & Whipple, K.X. (2006) Numerical modelling of non‐steady‐state river profile evolution using a sediment‐flux‐dependent incision model. In: Tectonics, Climate and Landscape Evolution (Ed. by S.Willet , N.Hovius , M.Brandon & D.Fisher ), Geol. Soc. Am. Spec. Paper , 398, 127–141.
    [Google Scholar]
  25. Gawthorpe, R.L. & Leeder, M.R. (2000) Tectono‐sedimentary evolution of active extensional basins. Basin Res., 12, 195–218.
    [Google Scholar]
  26. Gayer, G., Mukhopadhyay, S. & Meade, B.J. (2008) Spatial variability of erosion rates inferred from the frequency distribution of cosmogenic 3He in olivines from Hawaiian river sediments. Earth Planet. Sci. Lett., 266, 303–315, doi: DOI: 10.1016/j.epsl.2007.11.019.
    [Google Scholar]
  27. Gilbert, G.K. (1877) Geology of the Henry Mountains, Utah. In: U.S. Geographical and Geological Survey of the Rocky Mountains. U.S. Government Printing Office, Washington, DC.
    [Google Scholar]
  28. Hardy, S. & Gawthorpe, R. (2002) Normal fault control on bedrock channel incision and sediment supply: insights from numerical modelling. J. Geophys. Res., 107 (B10), 2246, doi: DOI: 10.1029/2001JB000166.
    [Google Scholar]
  29. Heller, P.L. & Paola, C. (1992) The large scale dynamics of grain‐size variation in alluvial basins, 2: application to syntectonic conglomerate. Basin Res., 4, 91–102.
    [Google Scholar]
  30. Horton, B.K., Constenius, K.N. & DeCelles, P.G. (2004) Tectonic control on coarse grained foreland‐basin sequences: an example from the Cordilleran foreland basin, Utah. Geology, 32, 637–640.
    [Google Scholar]
  31. Hovius, N. & Leeder, M. (1998) Clastic sediment supply to basins. Basin Res., 10, 1–5.
    [Google Scholar]
  32. Hovius, N., Stark, C.P., Hao‐Tsu, C. & Jiun‐Chuan, L. (2000) Supply and removal of sediment in a landslide‐dominated mountain belt: Central Range, Taiwan. J. Geol., 108, 73–89.
    [Google Scholar]
  33. Humphrey, N.F. & Heller, P.L. (1995) Natural oscillations in coupled geomorphic systems: an alternative origin for cyclic sedimentation. Geology, 23, 499–502.
    [Google Scholar]
  34. Hunstad, I., Selvaggi, G., D'Agostino, N., England, P., Clarke, P. & Pierozzi, M. (2003) Geodetic strain in peninsular Italy between 1875 and 2001. Geophysical Research Letters, 30 (4), 1181, doi: DOI: 10.1029/2002GL016447.
    [Google Scholar]
  35. Kellerhals, R. & Bray, D.I. (1971) Sampling procedures for coarse fluvial sediments. Proceedings of the American Society of Civil Engineers, Journal of the Hydraulics Division, 97, 1165–1179.
    [Google Scholar]
  36. Kondolf, G.M. (1997) Application of the pebble count: notes on purpose, method, and variants. J. Am. Water Resources Assoc., 33, 79–87.
    [Google Scholar]
  37. Korup, O. & Schlunegger, F. (2007) Bedrock landsliding, river incision, and transience of geomorphic hillslope‐channel coupling: evidence from inner gorges of the Swiss Alps. J. Geophys. Res., 112, F03027, doi: DOI: 10.1029/2006JF000710.
    [Google Scholar]
  38. Kuenen, P.H. (1956) Experimental erosion of pebbles: 2. Rolling by current. J. of Geol., 64, 336–368.
    [Google Scholar]
  39. Lavé, J. & Burbank, D. (2004) Denudation processes and rates in the Transverse Ranges, southern California: erosional response of a transitional landscape to external and anthropogenic forcing. J. Geophys. Res., 109, F01006, doi: DOI: 10.1029/2003JF000023.
    [Google Scholar]
  40. Lavecchia, G., Brozzetti, F., Barchi, M., Menichetti, M. & Keller, J.V.A. (1994) Seismotectonic zoning in east‐central Italy deduced from an analysis of the Neogene to present deformations and related stress fields. Geol. Soc. Am. Bull., 106, 1107–1120.
    [Google Scholar]
  41. Leeder, M.R., Harris, T. & Kirkby, M.J. (1998) Sediment supply and climate change, implications for basin stratigraphy. Basin Res., 10, 7–18.
    [Google Scholar]
  42. Mackin, J.H. (1948) Concept of the graded river. Geol. Soc. Am. Bull., 59, 463–512.
    [Google Scholar]
  43. Milliman, J.D. & Syvitski, J.P. (1992) Geomorphic control of sediment discharge to the ocean: the importance of small mountain rivers. Journal of Geology, 100, 525–544.
    [Google Scholar]
  44. Molnar, P. (2001) Climate change, flooding in arid environments and erosion rates. Geology, 29, 1071–1074.
    [Google Scholar]
  45. Montgomery, D.R. & Stolar, D.B. (2006) Reconsidering Himalayan anticlines. Geomorphology, 86, 4–15.
    [Google Scholar]
  46. Morewood, N.C. & Roberts, G.P. (2002) Surface observations of active normal fault propagation: implications for growth. J. Geol. Soc., Lond., 159, 263–272.
    [Google Scholar]
  47. Mudd, S.M. & Furbish, D.J. (2007) Responses of soil‐mantled hillslopes to transient channel incision rates. J. Geophys. Res., 112, F03S18, doi: DOI: 10.1029,2006JF000516.
    [Google Scholar]
  48. Ouimet, W.B., Whipple, K.X., Royden, L.H., Sun, Z. & Chen, Z. (2007) The influence of large landslides on river incision in a transient landscape: Eastern margin of the Tibetan Plateau (Sichuan, China). Geol. Soc. Am. Bull., 119, 1462–1476, doi: DOI: 10.1130/B26136.1.
    [Google Scholar]
  49. Palumbo, L., Benedetti, L., Bourles, D., Cinque, A. & Finkel, R. (2004) Slip history of the Magnola fault (Apennines, Central Italy) from Cl‐36 surface exposure dating: evidence for strong earthquakes over the Holocene. Earth Planet. Sci. Lett., 225, 163–176.
    [Google Scholar]
  50. Paola, C., Heller, P.L. & Angevine, C.L. (1992) The large‐scale dynamics of grain‐sizevariation in alluvial basins. I: theory. Basin Res., 4, 73–90.
    [Google Scholar]
  51. Paola, C. & Swenson, J.B. (1998) Geometric constraints on composition of sediment derived from erosional landscapes. Basin Res., 10, 37–47.
    [Google Scholar]
  52. Pizzi, A.2003Plio‐quaternary uplift rates in the outer zone of the central Apennines fold and thrust belt, Italy. Quat. Int., 101–102, 229–237.
    [Google Scholar]
  53. Radoane, M., Radoane, R., Dumitriu, D. & Miclaus, C. (2007) Downstream variation in bed sediment size along the East Carpathian rivers: evidence of the role of sediment sources. Earth Surface Process. Landforms, 33, 674–694, doi: DOI: 10.1002/esp.1568.
    [Google Scholar]
  54. Roberts, G.P. & Michetti, A.M. (2004) Spatial and temporal variations in growth rates along active normal fault systems: an example from Lazio-Abruzzo, central Italy. J. Struct. Geol., 26, 339–376.
    [Google Scholar]
  55. Robinson, R.A.J. & Slingerland, R.L. (1998) Grain‐size trends, basin subsidence and sediment supply in the Campanian Castlegate Sandstone, and equivalent conglomerates of central Utah. Basin Res., 10, 109–127.
    [Google Scholar]
  56. Roering, J.J., Kirchner, J.W. & Dietrich, W.E. (1999) Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology. Water Resources Res., 35, 853–870.
    [Google Scholar]
  57. Roering, J.J., Kirchner, J.W., Sklar, L.S. & Dietrich, W.E. (2001) Hillslope evolution by nonlinear creep and landsliding: an experimental study. Geology, 29, 143–146.
    [Google Scholar]
  58. Schlunegger, F. (2002) Impact of hill‐slope derived sediment supply on drainage basin development in small watersheds at the northern border of the central Alps of Switzerland. Geomorphology, 46, 285–305.
    [Google Scholar]
  59. Schuerch, P., Densmore, A.L., McArdell, B.W. & Molnar, P. (2006) The influence of landsliding on sediment supply in a steep mountain catchment. Geomorphology, 78, 222–235.
    [Google Scholar]
  60. Simpson, G.D.H. (2006) Modelling interactions between fold‐thrust belt deformation, foreland flexure and surface mass transport. Basin Res., 18, 125–143.
    [Google Scholar]
  61. Sklar, L. & Dietrich, W.E. (2004) A mechanistic model for river incision into bedrock by saltating bed load. Water Resources Res., 40, W06301, doi: DOI: 10.1029/2003WR002496.
    [Google Scholar]
  62. Snyder, N.P., Whipple, K.X., Tucker, G.E. & Merrits, D.J. (2000) Landscape response to tectonic forcing: digital elevation model analysis of stream profiles in the Mendocino triple junction region, Northern California. Geol. Soc. Am. Bull., 112, 1250–1263.
    [Google Scholar]
  63. Stock, G.M., Ehlers, T.A. & Farley, K.A. (2006) Where does sediment come from? Quantifying catchment erosion with detrital apatite (U‐Th)/He thermochronometry. Geology, 34, 725–728.
    [Google Scholar]
  64. Talling, P.J. & Sowter, M.J. (1998) Erosion, deposition and basin‐wide variations in stream power and bed shear stress. Basin Res., 10, 87–108.
    [Google Scholar]
  65. Tucker, G.E. & Slingerland, R. (1996) Predicting sediment flux from fold and thrust belts. Basin Res., 8, 329–349.
    [Google Scholar]
  66. Tucker, G.E. & Slingerland, R. (1997) Drainage basin response to climate change. Water Resources Research, 33, 2031–2047.
    [Google Scholar]
  67. Tucker, G.E. & Whipple, K.X. (2002) Topographic outcomes predicted by stream erosion models: sensitivity analysis and inter-model comparison. J. Geophys. Res., 107, 2179, doi: DOI: 10.129/2001JB000162.
    [Google Scholar]
  68. Weltje, G.J., Meijer, X.D. & De Boer, P.L. (1998) Stratigraphic inversion of siliciclastic basin fills: a note on the distinction between supply signals resulting from tectonic and climatic forcing. Basin Res., 10, 129–153.
    [Google Scholar]
  69. Whipple, K.X. (2004) Bedrock rivers and the geomorphology of active orogens. Ann. Rev. Earth Planet. Sci., 32, 151–185.
    [Google Scholar]
  70. Whipple, K.X. & Tucker, G.E. (1999) Dynamics of the stream power incision model: implications for the height limits of mountain ranges, landscape response timescales and research needs. J. Geophys. Res., 104, 17,661–17,674.
    [Google Scholar]
  71. Whipple, K.X. & Tucker, G.E. (2002) Implications of sediment‐flux dependent river incision models for landscape evolution. J. Geophys. Res., 107 (B2), doi: DOI: 10.1029/2000JB000044.
    [Google Scholar]
  72. Whittaker, A.C., Attal, M., Cowie, P.A., Tucker, G.E. & Roberts, G. (2008) Decoding temporal and spatial patterns of fault uplift using transient river long‐profiles. Geomorphology, 100, 506–526, doi: DOI: 10.1016/j.geomorph.2008.01.018.
    [Google Scholar]
  73. Whittaker, A.C., Cowie, P.A., Attal, M., Tucker, G.E. & Roberts, G. (2007a) Bedrock channel adjustment to tectonic forcing: implications for predicting river incision rates. Geology, 35, 103–106.
    [Google Scholar]
  74. Whittaker, A.C., Cowie, P.A., Attal, M., Tucker, G.E. & Roberts, G. (2007b) Characterizing the transient response of rivers crossing active normal faults: new field observations from Italy. Basin Res., 19, 529–556, doi: DOI: 10.1111/j.1365-2117.2007.00337.
    [Google Scholar]
  75. Willgoose, G., Bras, R.L. & Rodriguez‐Iturbe, I. (1991) A coupled channel network growth and hillslope evolution model; 1, Theory. Water Resources Research, 27, 1671–1684.
    [Google Scholar]
  76. Wolman, M.G. (1954) A method of sampling coarse river‐bed material. Transactions of American Geophysical Union, 35, 951–956.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2009.00447.x
Loading
/content/journals/10.1111/j.1365-2117.2009.00447.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error