1887
Volume 22 Number 4
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

This study documents the tectono‐stratigraphic setting and expulsion history of a major, previously undescribed mud volcano (MV) province in the Indus Submarine Fan, offshore Pakistan. A buried MV field of nine composite MVs has been recognized using two‐dimensional (2D) and 3D seismic reflection data in a confined area of 50 × 65 km2. Conduits are recognized on each of these MVs connecting the pre‐Eocene parent beds to the stacked mud cones. The buried MVs are up to 8.4 km wide (4.5 km average) with a central conduit of 1.23 km average diameter and an average mud cone thickness of 0.33 km. Three major phases of fluid and mud remobilization occurred in the Early to Middle Miocene, intra‐Middle Miocene and in the Late Miocene to Plio‐Pleistocene transition. Most of the mud source (parent beds) seems to be of pre‐Eocene origin. Geometrical information from 21 mud cones allows an estimate of the volume required to build these fluid escape features. The calculated volume of remobilized sediments is 71.5±9 km3. The location of the MV field is limited to the pre‐Eocene main depocentre, with major tectonic deformation occurring along the wrench system of the Indo–Arabian plate boundary, i.e. the southern edge of the Murray Ridge. The Indus MV field is, to our knowledge, the longest lived (∼22 Myr) remobilized, Cenozoic sedimentary system observed worldwide. No evidence of present‐day mud flow activity is seen on the seabed seismic reflection in the study area.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2009.00448.x
2009-11-10
2024-04-18
Loading full text...

Full text loading...

References

  1. Bachman, R.T. & Hamilton, E.L. (1976) Density, porosity, and grain density of samples from Deep Sea Drilling Project Site 222 (Leg 23) in the Arabian Sea. J. Sediment. Res., 46, 654–658.
    [Google Scholar]
  2. Bell, D.W. (2004) Velocity estimation for pore‐pressure prediction. In: Pressure Regimes in Sedimentary Basins and Their Prediction (Ed. by A.R.Huffman & G.L.Bowers ), AAPG Mem., 76, 177–215.
    [Google Scholar]
  3. Brown, A.R. (1996) Interpretation of Three‐Dimensional Seismic Data, AAPG Mem., 42, 4th edn., p. 541. AAPG and SEG, Tulsa, Oklahoma.
    [Google Scholar]
  4. Brown, K.M. (1990) The nature and hydrogeologic significance of mud diapirs and diatremes for accretionary systems. J. Geophys. Res., 95 (B), 8969–8982.
    [Google Scholar]
  5. Calvès, G. (2009) Tectono‐stratigraphic and climatic record of the NE Arabian Sea. PhD Thesis, University of Aberdeen, 292pp.
  6. Calvès, G., Huuse, M., Schwab, A. & Clift, P. (2008) Three‐dimensional seismic analysis of high‐amplitude anomalies in the shallow subsurface of the Northern Indus Fan: sedimentary and/or fluid origin. J. Geophys. Res., 113, B11103, 1–16.
    [Google Scholar]
  7. Cartwright, J. (2007) The impact of 3D seismic data on the understanding of compaction, fluid flow and diagenesis in sedimentary basins. J. Geol. Soc. Lond., 164, 881–893.
    [Google Scholar]
  8. Chamot‐Rooke, N., Rabaute, A. & Kreemer, C. (2005) Western Mediterranean Ridge mud belt correlates with active shear strain at the prism‐backstop geological contact. Geology, 33, 861–864.
    [Google Scholar]
  9. Clift, P.D. (2006) Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth Planet. Sci. Lett., 241, 571–580.
    [Google Scholar]
  10. Clift, P.D., Gaedicke, C., Edwards, R., Il Lee, J., Hildebrand, P., Amjad, S., White, R.S. & Schlater, H.E. (2002) The stratigraphic evolution of the Indus Fan and the history of sedimentation in the Arabian Sea. Mar. Geophys. Res., 23, 223–245.
    [Google Scholar]
  11. Clift, P.D., Shimizu, N., Layne, G.D., Blusztajn, J.S., Gaedicke, C., Schulter, H.‐U., Clark, M.K. & Amjad, S. (2001) Development of the Indus Fan and its significance for the erosional history of the Western Himalaya and Karakoram. Geol. Soc. Am. Bull., 113, 1039–1051.
    [Google Scholar]
  12. Collier, J.S. & White, R.S. (1990) Mud diapirism within Indus fan sediments: Murray Ridge, Gulf of Oman. Geophys. J. Int., 101, 345–353.
    [Google Scholar]
  13. Converse, D.R., Nicholson, P.H., Pottorf, R.J. & Miller, T.W. (2000) Controls on overpressure in rapidly subsiding basins and implications for failure of top seal. AAPG Mem., 73, 133–150.
    [Google Scholar]
  14. Cooper, C. (2001) Mud volcanoes of the South Caspian Basin – Seismic data and implications for hydrocarbon systems (extended abstract). AAPG Annual Convention, Denver, Colorado. 5 pages.
    [Google Scholar]
  15. Davies, R.J. & Stewart, S.A. (2005) Emplacement of giant mud volcanoes in the South Caspian Basin: 3D seismic reflection imaging of their root zones. J. Geol. Soc. Lond., 162, 1–4.
    [Google Scholar]
  16. Davies, R.J., Swarbrick, R.E., Evans, R.J. & Huuse, M. (2007) Birth of a mud volcano: East Java, 29 May 2006. GSA Today, 17, 4–9.
    [Google Scholar]
  17. Delisle, G. (2004) The mud volcanoes of Pakistan. Env. Geol., 46, 1024–1029.
    [Google Scholar]
  18. Delisle, G., Von Rad, U., Andruleit, H., Von Daniels, C., Tabrez, A. & Inam, A. (2002) Active mud volcanoes on‐ and offshore eastern Makran, Pakistan. Int. J. Earth Sci., 91, 93–110.
    [Google Scholar]
  19. Deptuck, M.E., Steffens, G.S., Barton, M. & Pirmez, C. (2003) Architecture and evolution of upper fan channel‐belts on the Niger Delta slope and in the Arabian Sea. Mar. Pet. Geol., 20, 649–676.
    [Google Scholar]
  20. Deville, E., Battani, A., Griboulard, R., Guerlais, S., Herbin, J.P., Houzay, J.P., Muller, C. & Prinzhofer, A. (2003) The origin and processes of mud volcanism: new insights from Trinidad. In: Subsurface Sediment Mobilization (Ed. by P.Van Rensbergen , R.R.Hillis , A.J.Maltman & C.K.Morley ), Geol. Soc. Spec. Publ., 216, 475–490.
    [Google Scholar]
  21. Deville, E., Guerlais, S.‐H., Callec, Y., Griboulard, R., Huyghe, P., Lallemant, S., Mascle, A., Noble, M. & Schmitz, J. & the collaboration of the Caramba working group (2006) Liquefied vs stratified sediment mobilization processes: insight from the South of the Barbados accretionary prism. Tectonophysics, 428, 33–47.
    [Google Scholar]
  22. Dia, A.N., Castrec‐Rouelle, M., Boulegue, J. & Comeau, P. (1999) Trinidad mud volcanoes: where do the expelled fluids come from? Geochim. Cosmochim. Acta, 63, 1023–1038.
    [Google Scholar]
  23. Dimitrov, L.I. (2002) Mud volcanoes – the most important pathway for degassing deeply buried sediments. Earth Sci. Rev., 59, 49–76.
    [Google Scholar]
  24. Droz, L. & Bellaiche, G. (1991) Seismic facies and geologic evolution of the central portion of the Indus Fan. In: Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems (Ed. by P.Weimer & M.H.Link ), pp. 383–402. Springer Verlag, Berlin.
    [Google Scholar]
  25. Ellouz‐Zimmermann, N., Deville, E., Muller, C., Lallemant, S., Subhani, A.B. & Tabreez, A.R. (2007) Impact of sedimentation on convergent margin tectonics: example of the Makran Accretionary prism, chapter 17. In: Thrust Belts and Foreland Basins From Fold Kinematics to Hydrocarbon Systems, Series: Frontiers in Earth Science, XXIV (Ed. By O.Lacombe , J.Lavé , F.Roure & J.Verges ), pp. 327–350. Springer Verlag, Berlin.
    [Google Scholar]
  26. Evans, R.J., Davies, R.J. & Stewart, S.A. (2007) Internal structure and eruptive history of a kilometre‐scale mud volcano system, South Caspian Sea. Basin Res., 19, 153–163.
    [Google Scholar]
  27. Evans, R.J., Stewart, S.A. & Davies, R.J. (2008) The structure and formation of mud volcano summit calderas. J. Geol. Soc. Lond., 165, 769–780.
    [Google Scholar]
  28. Fowler, S.R., Mildenhall, J., Zalova, S., Riley, G., Elsley, G., Desplanques, A. & Guliyev, F. (2000) Mud volcanoes and structural development on Shah Deniz. J. Petrol. Sci. Eng., 28, 189–206.
    [Google Scholar]
  29. Gaedicke, C., Schulter, H., Roeser, H.A., Prexl, A., Schreckenberger, B., Meyer, H., Reichert, C., Clift, P. & Amjad, S. (2002) Origin of the northern Indus Fan and Murray Ridge, Northern Arabian Sea: interpretation from seismic and magnetic imaging. Tectonophysics, 355, 127–143.
    [Google Scholar]
  30. Graue, K. (2000) Mud volcanoes in deepwater Nigeria. Mar. Pet. Geol., 17, 959–974.
    [Google Scholar]
  31. Greinert, J., Artemov, Y., Egorov, V., De Batist, M. & McGinnis, D. (2006) 1300‐m‐high rising bubbles from mud volcanoes at 2080 m in the Black Sea: hydroacoustic characteristics and temporal variability. Earth Planet. Sci. Lett., 244, 1–15.
    [Google Scholar]
  32. Griboulard, R., Bobier, C., Faugeres, J.C. & Vernette, G. (1991) Clay diapiric structures within the strike–slip margin of the southern leg of the Barbados prism. Tectonophysics, 192, 383–400.
    [Google Scholar]
  33. Gutierrez, M. & Wangen, M. (2005) Modeling of compaction and overpressuring in sedimentary basins. Mar. Pet. Geol., 22, 351–363.
    [Google Scholar]
  34. Hadler‐Jacobsen, F., Gardner, M.H. & Borer, J.M. (2007) Seismic stratigraphic and geomorphic analysis of deep‐marine deposition along the West African continental margin. In: Seismic Geomorphology (Ed. by R.J.Davies , H.W.Posamentier , L.J.Wood & J.A.Cartwright ), Geol. Soc. Spec. Publ., 277, 47–84.
    [Google Scholar]
  35. Hedberg, H.D. (1980) Methane generation and petroleum migration. In: Problems of Petroleum Migration (Ed by W.H.RobertsIII & R.J.Cordell ), Am. Assoc. Petrol. Geologists, Stud. Geol ., 10, 179–206.
    [Google Scholar]
  36. Henry, P., Le Pichon, X., Lallemant, S., Foucher, J.‐P., Westbrook, G. & Hobart, M. (1990) Mud volcano field seaward of the Barbados accretionary complex: a deep-towed side scan sonar survey. J. Geophys. Res., 95 (B), 8917–8929.
    [Google Scholar]
  37. Henry, P., Le Pichon, X., Lallemant, S., Lance, S., Martin, J.B., Foucher, J.‐P., Fiala‐Medioni, A., Rostek, F., Guilhaumou, N., Pranal, V. & Castrec, M. (1996) Fluid flow in and around a mud volcano field seaward of the Barbados accretionary wedge: results from Manon cruise. J. Geophys. Res., 101 (B), 20297–20323.
    [Google Scholar]
  38. Ivanov, M.K., Limonov, A.F. & Van Weering, T.C.E. (1996) Comparative characteristics of the Black Sea and Mediterranean Ridge mud volcanoes. Mar. Geol., 132, 253–271.
    [Google Scholar]
  39. Judd, A.G. & Hovland, H. (2007) Seabed Fluid Flow. Impact on Geology, Biology, and the Marine Environment. Cambridge University Press, Cambridge.
    [Google Scholar]
  40. Judd, A.G., Hovland, M., Dimitrov, L.I., Garcia Gil, S. & Jukes, V. (2002) The geological methane budget at continental margins and its influence on climate change. Geofluids, 2, 109–126.
    [Google Scholar]
  41. Kolla, V. & Coumes, F. (1987) Morphology, internal structure, seismic stratigraphy, and sedimentation of Indus Fan. AAPG Bull., 71, 650–677.
    [Google Scholar]
  42. Kopf, A. & Behrmann, J.H. (2000) Extrusion dynamics of mud volcanoes on the Mediterranean Ridge accretionary complex. In: Salt, Shale and Igneous Diapirs in and Around Europe (Ed. by B.C.Vendeville , Y.Mart & J.‐L.Vigneresse ), Geol. Soc. Spec. Publ., 174, 169–204.
    [Google Scholar]
  43. Kopf, A., Klaeschen, D. & Mascle, J. (2001) Extreme efficiency of mud volcanism in dewatering accretionary prisms. Earth Planet. Sci. Lett., 189, 295–313.
    [Google Scholar]
  44. Kopf, A.J. (2002) Significance of mud volcanism. Rev. Geophys., 40, 1005,1–52.
    [Google Scholar]
  45. Kopf, A.J. (2003) Global methane emission through mud volcanoes and its past and present impact on the Earth's climate. Int. J. Earth Sci., 92, 806–816.
    [Google Scholar]
  46. Leifer, I., Luyendyk, B.P., Boles, J. & Clark, J.F. (2006) Natural marine seepage blowout: contribution to atmospheric methane. Global Biogeochem. Cycles, 20, 1–9.
    [Google Scholar]
  47. Løseth, H., Wensaas, Arntsen, B., Hanken, N., Basire, C. & Graue, K. (2001) 1000 m long gas blow‐out pipes. Extended Abstract Volume 63rd EAGE Conference & Exhibition, Amsterdam.
  48. Maltman, A.J. & Bolton, A. (2003) How sediments become mobilized. In: Subsurface Sediment Mobilization (Ed. by P.Van Rensbergen , R.R.Hillis , A.J.Maltman & C.K.Morley ), Geol. Soc. Spec. Publ., 216, 9–20.
    [Google Scholar]
  49. McHargue, T.R. & Webb, J.E. (1986) Internal geometry, seismic facies, and petroleum potential of canyons and inner fan channels of the Indus Submarine Fan. AAPG Bull., 70, 161–180.
    [Google Scholar]
  50. Métivier, F., Gaudemer, Y., Tapponnier, P. & Klein, M. (1999) Mass accumulation rates in Asia during the Cenozoic. Geophys. J. Int., 137, 280–318.
    [Google Scholar]
  51. Milkov, A.V. (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol., 167, 29–42.
    [Google Scholar]
  52. Milkov, A.V., Sassen, R., Apanasovich, T.V. & Dadashev, F.G. (2003) Global gas flux from mud volcanoes: a significant source of fossil methane in the atmosphere and the ocean. Geophys. Res. Lett., 30, 1–9.
    [Google Scholar]
  53. Naudts, L., Greinert, J., Artemov, Y., Staelens, P., Poort, J., Van Rensbergen, P. & De Batist, M. (2006) Geological and morphological setting of 2778 methane seeps in the Dnepr paleo‐delta, northwestern Black Sea. Mar. Geol., 227, 177–199.
    [Google Scholar]
  54. Newton, R.S., Cunningham, R.C. & Schubert, C.E. (1980) Mud volcanoes and pockmarks: seafloor engineering hazards or geological curiosities? Offshore Tech. Conf., 12, 425–435.
    [Google Scholar]
  55. Osborne, M.J. & Swarbrick, R.E. (1997) Mechanisms for generating overpressure in sedimentary basins: a reevaluation. AAPG Bull., 81, 1023–1041.
    [Google Scholar]
  56. Revil, A. (2002) Genesis of mud volcanoes in sedimentary basins: a solitary wave-based mechanism. Geophys. Res. Lett., 29, 15–1.
    [Google Scholar]
  57. Robertson, A.H.F. & Kopf, A. (1998) Tectonic setting and processes of mud volcanism on the Mediterranean Ridge accretionary complex: evidence from Leg 160. In: Proceedings of ODP, Science Results, 160 (Ed. by A.H.F.Robertson , K.‐C.Emeis , C.Richter & A.Camerlenghi ), pp. 665–680. Ocean Drilling Program, College Station, TX.
    [Google Scholar]
  58. Sauter, E.J., Muyakshin, S.I., Charlou, J., Schulter, M., Boetius, A., Jerosch, K., Damm, E., Foucher, J. & Klages, M. (2006) Methane discharge from a deep‐sea submarine mud volcano into the upper water column by gas hydrate‐coated methane bubbles. Earth Planet. Sci. Lett., 243, 354–365.
    [Google Scholar]
  59. Sclater, J.G. & Christie, P.A.F. (1980) Continental stretching: an explanation of the post-mid-Cretaceous subsidence of the Central North Sea basin. J. Geophys. Res., 85 (B), 3711–3739.
    [Google Scholar]
  60. Somoza, L., Gardner, J.M., Diaz‐Del‐Rio, V., Vazquez, J.T., Pinheiro, L.M. & Hernandez‐Molina, F.J. (2002) Numerous methane gas‐related sea floor structures identified in Gulf of Cadiz. Eos Trans. AGU, 83 (47), 541.
    [Google Scholar]
  61. Stewart, S.A. & Davies, R.J. (2006) Structure and emplacement of mud volcano systems in the South Caspian Basin. AAPG Bull., 90, 771–786.
    [Google Scholar]
  62. Stiffe, A.W. (1874) On the Mud‐craters and Geological Structure of the Mekran Coast. Q. J. Geol. Soc. Lond., 30, 50–53.
    [Google Scholar]
  63. Sykes, L.R. & Landisman, M. (1964) Seismicity of East Africa, the Gulf of Aden and Arabian and Red Sea. Bull. Seismol. Soc. Am., 54, 1927–1940.
    [Google Scholar]
  64. Vail, P.R., Mitchum, R.M. & Thompson, S. (1977) Seismic stratigraphy and global changes of sea‐level, part 3: relative changes of sea level from coastal onlap. In: Seismic Stratigraphy‐Applications to Hydrocarbon Exploration (Ed. by C.E.Payton ), AAPG Mem., 26, 63–81.
    [Google Scholar]
  65. Van Rensbergen, P., Depreiter, D., Pannemans, B. & Henriet, J.‐P. (2005) Seafloor expression of sediment extrusion and intrusion at the El Arraiche mud volcano field, Gulf of Cadiz. J. Geophys. Res., 110 (F), 1–13.
    [Google Scholar]
  66. Van Rensbergen, P., Morley, C.K., Ang, D.W., Hoan, T.Q. & Lam, N.T. (1999) Structural evolution of shale diapirs from reactive rise to mud volcanism: 3D seismic data from the Baram delta, offshore Brunei Darussalam. J. Geol. Soc. Lond., 156, 633–650.
    [Google Scholar]
  67. Velde, B. (1996) Compaction trends of clay‐rich deep sea sediments. Mar. Geol., 133, 193–201.
    [Google Scholar]
  68. Von Rad, U., Schulz, H., Riech, V., Den Dulk, M., Berner, U. & Sirocko, F. (1999) Multiple monsoon‐controlled breakdown of oxygen‐minimum conditions during the past 30,000 years documented in laminated sediments off Pakistan. Palaeogeogr. Palaeoclimatol. Palaeoecol., 152, 129–161.
    [Google Scholar]
  69. White, R.S. (1983) The Little Murray Ridge. In: Seismic Expression of Structural Styles (Ed. by A.W.Bally ), Am. Assoc. Petrol. Geol. Stud. Geol ., 15 (Chapter 15, 19–23.
    [Google Scholar]
  70. White, R.S. & Louden, K.E. (1982) The Makran continental margin: structure of a thickly sedimented convergent plate boundary. In: Studies in Continental Margin Geology (Ed. by J.S.Watkins & C.L.Drake ), AAPG Mem., 34, 499–518.
    [Google Scholar]
  71. Yeilding, C.A. & Travis, C.J. (1997) Nature and significance of irregular geometries at the salt‐sediment interface: examples from the deepwater Gulf of Mexico (abs). AAPG Annual Convention Official Program, 6, A128.
    [Google Scholar]
  72. Yusifov, M. & Rabinowitz, P.D. (2004) Classification of mud volcanoes in the South Caspian Basin, offshore Azerbaijan. Mar. Pet. Geol., 21, 965–975.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2009.00448.x
Loading
/content/journals/10.1111/j.1365-2117.2009.00448.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error