1887
Volume 22 Number 6
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

This paper presents new magnetostratigraphic results from a 1100‐m‐thick composite section across the marine to continental sediments of the central part of the SE margin of the Ebro basin (NE Spain). Integration with existing marine and continental biochronological data allows a robust correlation with the geomagnetic polarity time scale. The resulting absolute chronology ranges from 36.3 to 31.1 Ma (Priabonian to Rupelian), and yields an interpolated age of ∼36.0 Ma (within chron C16n.2n) for the youngest marine sediments of the eastern Ebro basin. This age is in concordance with a reinterpretation of earlier magnetostratigraphic data from the western South Pyrenean foreland basin, and indicates that continentalization of the basin occurred as a rapid and isochronous event. The basin continentalization, determined by the seaway closure that resulted from the uplift of the western Pyrenees, was probably coincident with a mid‐amplitude eustatic sea level low with a maximum at 36.2 Ma. The base level drop that followed the basin closure and desiccation does not appear associated to a significant sedimentary hiatus along the margins, suggesting a late Eocene shallow marine basin that rapidly refilled and raised its base level after the seaway closing. Rapid basin filling following continentalization predates the phase of rapid exhumation of the Central Pyrenean Axial Zone from 35.0 to 32.0 Ma, determined from the thermochronology data. It is possible then that sediment aggradation at the front of the fold‐and‐thrust belt could have contributed to a decrease in the taper angle, triggering growth of the inner orogenic wedge through break‐back thrusting and underplating. Contrasting sedimentation trends between the western and eastern sectors of the South Pyrenean foreland indicate that basin closing preferentially affected those areas subjected to sediment bypass towards the ocean domain. As a result, sediment ponding after basin closure is responsible for a two‐fold increase of sedimentation rates in the western sector, while changes of sedimentation rates are undetected in the more restricted scenario of the eastern Ebro basin.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2009.00452.x
2009-12-07
2024-04-25
Loading full text...

Full text loading...

References

  1. Agustí, J., Anadón, P., Arbiol, S., Cabrera, L., Colombo, F. & Sáez, A. (1987) Biostratigraphical characteristics of the Oligocene sequences of North‐Eastern Spain (Ebro and Campins Basins). Münchner Geowissenschaftliche Abhandlungen, 10, 35–42.
    [Google Scholar]
  2. Anadón, P., Cabrera, L., Choi, S.J., Colombo, F., Feist, M. & Sáez, A. (1992) Biozonación del Paleógeno continental de la zona oriental de la Cuenca del Ebro mediante carófitas: implicaciones en la biozonación general de carófitas de Europa occidental. Acta Geol Hispan, 27, 69–94.
    [Google Scholar]
  3. Anadón, P., Cabrera, L., Colldeforns, B. & Sáez, A. (1989) Los sistemas lacustres del Eoceno superior y Oligoceno del sector oriental de la Cuenca del Ebro. Acta Geol Hispan, 24, 205–230.
    [Google Scholar]
  4. Anadón, P., Cabrera, L., Guimerà, J. & Santanach, P. (1985) Paleogene strike‐slip deformation and sedimentation along the southeastern margin of the Ebro Basin. In: Strike‐Slip Tectonics and Sedimentation (Ed. by K.T.Biddle & N.Christie‐Blick ), Spec. Publ. Soc. Econ. Paleont. and Min., 37, 303–318.
    [Google Scholar]
  5. Anadón, P., Vianey‐Liaud, M., Cabrera, L. & Hartenberger, J.L. (1987) Gisements à vertébrés du paléogène de la zone orientale du bassin de l'Ebre et leur apport à la stratigraphie. Paleontol Evol, 21, 117–131.
    [Google Scholar]
  6. Arbiol, S. & Sáez, A. (1988) Sobre la edad oligocénica inferior del yacimiento de Santpedor (Cuenca del Ebro, provincia de Barcelona). Acta Geol Hispan, 23, 47–50.
    [Google Scholar]
  7. Arenas, C. & Pardo, G. (1999) Latest Oligocene‐Late Miocene lacustrine systems of the north central part of the Ebro Basin (Spain): sedimentary facies model and palaeogeographic synthesis. Palaoegeogra, Palaeoclimatol, Palaeoecol, 151, 127–148.
    [Google Scholar]
  8. Ayora, C., García‐Veigas, J. & Pueyo, J.J. (1994) The chemical and hydrological evolution of an ancient potash‐forming evaporite basin as constrained by mineral sequence, fluid inclusion composition, and numerical simulation. Geochem Cosmochim Acta, 58, 3379–3394.
    [Google Scholar]
  9. Barberà, X., Cabrera, L., Marzo, M., Parés, J.M. & Agustí, J. (2001) A complete terrestrial Oligocene magnetostratigraphy from the Ebro Basin, Spain. Earth Planet Sci Lett, 187, 1–16.
    [Google Scholar]
  10. Beaumont, C. (1981) Foreland basins. J Roy Astronom Soc, 65, 291–329.
    [Google Scholar]
  11. Beaumont, C., Muñoz, J.A., Hamilton, J. & Fullsack, P. (2000) Factors controlling the Alpine evolution of Central Pyrenees inferred from the comparison of observations and geodynamical models. J Geophys Res, 105, 8121–8145.
    [Google Scholar]
  12. Bentham, P.A., Burbank, D.W. & Puigdefàbregas, C. (1992) Temporal and spatial controls on the alluvial architecture of an axial drainage system: late Eocene Escanilla Formation, southern Pyrenean foreland basin, Spain. Basin Res, 4, 335–352.
    [Google Scholar]
  13. Bera, M.K., Sarkar, A., Chakraborty, P.P., Loyal, R.S. & Sanyal, P. (2008) Marine to continental transition in Himalaya foreland. Geol Soc Am Bull, 120, 1214–1232.
    [Google Scholar]
  14. Burbank, D.W., Puigdefabregas, C. & Muñoz, J.A. (1992) The chronology of the Eocene tectonic and stratigraphic development of the eastern Pyrenean foreland basin, northeast Spain. Geol Soc Am Bull, 104, 1101–1120.
    [Google Scholar]
  15. Cascella, A. & Dinarès‐Turell, J. (2009) Integrated calcareous nannofossil biostratigraphy and magnetostratigraphy from the uppermost marine Eocene deposits of the southeastern pyrenean foreland basin: evidences for marine Priabonian deposition. Geol Acta, 7, 281–296.
    [Google Scholar]
  16. Cendón, D.I., Ayora, C., Puedo, J.J. & Taberner, C. (2003) The geochemical evolution of the Catalan potash subbasin, South Pyrenean foreland basin (Spain). Chem Geol, 200, 339–357.
    [Google Scholar]
  17. Coney, P.J., Muñoz, J.A., Mcclay, K.R. & Evenchick, C.A. (1996) Syntectonic burial and post tectonic exhumation of southern Pyrenees foreland fold‐thrust best. J Geol Soc Lond, 153, 9–16.
    [Google Scholar]
  18. Davis, D., Suppe, J. & Dahlen, F.A. (1983) Mecanics of fold‐and‐thrust belts and accretionary wedges. J Geophys Res, 88, 1153–1172.
    [Google Scholar]
  19. Decelles, P.G. & Giles, K.A. (1996) Foreland basin systems. Basin Res, 8, 105–123.
    [Google Scholar]
  20. Feist, M., Anadón, P., Cabrera, L., Choi, S.J., Colombo, F. & Sáez, A. (1994) Upper Eocene‐Lowermost Miocene charophyte succession in the Ebro Basin (Spain). Contribution to the charophyte biozonation in Western Europe. Newslett Stratigr, 30, 1–32.
    [Google Scholar]
  21. Ferrer, J. (1971) El Paleoceno y Eoceno del borde suroriental de la Depresión del Ebro (Cataluña). Memor Suisses Paleontol, 90, 1–70.
    [Google Scholar]
  22. Fitzgerald, P.G., Muñoz, J.M., Coney, P.J. & Baldwin, S.L. (1999) Asymmetric exhumation across the Pyrenean orogen: implications for the tectonic evolution of a collisional orogen. Earth Planet Sci Lett, 173, 157–170.
    [Google Scholar]
  23. Garcia‐Castellanos, D., Vergés, J., Gaspar‐Escribano, J. & Cloetingh, S. (2003) Interplay between tectonics, climate, and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia). J Geophys Res, 108, 2347–2364.
    [Google Scholar]
  24. Gradstein, F.M., Ogg, J. & Smith, A. (2004) A Geologic Time Scale 2004. Cambridge University Press, Cambridge.
    [Google Scholar]
  25. Guimerà, J. (1984) Paleogene evolution of deformation in the northeastern Iberian Peninsula. Geol Mag, 121, 413–420.
    [Google Scholar]
  26. Haq, B.U., Hardenbol, J. & Vail, P.J. (1987) Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1167.
    [Google Scholar]
  27. Hogan, P.J. & Burbank, D.W. (1996) Evolution of the Jaca piggyback basin and emergence of the External Sierra, southern Pyrenees. In: Tertiary Basins of Spain. The Stratigraphic Record of Crustal Kinematics (Ed. by P.F.Friend & C.J.Dabrio ), pp. 153–160. Cambridge University Press, Cambridge.
    [Google Scholar]
  28. IGME.
    IGME. (1987) Contribución de la exploración petrolífera al conocimiento de la geología de España. Instituto Geológico y Minero de España, Madrid.
    [Google Scholar]
  29. Kirschvink, J.L. (1980) The least‐squares line and plane and the analysis of palaeomagnetic data. Geophys J Roy Astronom Soc, 62, 699–718.
    [Google Scholar]
  30. Larrasoaña, J.C., Parés, J.M., Millán, H., Del Valle, J. & Pueyo, E.L. (2003) Paleomagnetic, structural and stratigraphic constraints on transverse fault kinematics during basin inversion: the Pamplona Fault (Pyrenees, N Spain). Tectonics, 22, 1071.
    [Google Scholar]
  31. Lawton, T.F., Roca, E. & Guimerà, J. (1999) Kinematic‐stratigraphic evolution of growth syncline and its implications for tectonic development of the proximal foreland basin, southeastern Ebro Basin, Catalunya, Spain. Geol Soc Am Bull, 111, 412–431.
    [Google Scholar]
  32. López‐Blanco, M. (2002) Sedimentary response to thrusting and fold growing on the SE margin of the Ebro basin (Paleogene, NE Spain). Sediment Geol, 146, 133–154.
    [Google Scholar]
  33. López‐Blanco, M., Marzo, M., Burbank, D.W., Vergés, J., Roca, E., Anadón, P. & Piña, J. (2000) Tectonic and climatic controls on the development of foreland fan deltas: Montserrat and San Llorenç del Munt systems (Middle Eocene, Ebro Basin, NE Spain). Sediment Geol, 138, 17–39.
    [Google Scholar]
  34. Meulenkamp, J.E. & Sissingh, W. (2003) Tertiary palaeogeography and tectonostratigraphic evolution of the Northern and Southern Peri‐Tethys platforms and the intermediate domains of the African‐Eurasian convergent plate boundary zone. Palaeogeogr, Palaeoclimatol, Palaeoecol, 196, 209–228.
    [Google Scholar]
  35. Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie‐Blick, N. & Pekar, S.F. (2005) The Phanerozoic record of global sea‐level change. Science, 310, 1293–1298.
    [Google Scholar]
  36. Mugnier, J.L., Baby, P., Colletta, B., Vinour, P., Bale, P. & Leturmy, P. (1997) Thrust geometry controlled by erosion and sedimentation: a view from analogue models. Geology, 25, 427–430.
    [Google Scholar]
  37. Muñoz, J.A., Martínez, A. & Vergés, J. (1986) Thrust sequences in the eastern Spanish Pyrenees. J Struct Geol, 8, 399–405.
    [Google Scholar]
  38. Ori, G.G. & Friend, P.F. (1984) Sedimentary basins formed and carried piggyback on active thrust sheets. Geology, 12, 475–478.
    [Google Scholar]
  39. Ortí, F., Salvany, J.M., Rosell, L., Pueyo, J.J. & Inglés, M. (1986) evaporitas antiguas (Navarra) y actuales (Los Monearos) de la Cuenca del Ebro. In: Guía de las Excursiones del XI Congreso Español de Sedimentologia (Ed. by P.Anadón & L.Cabrera ), pp. 2.1–2.40. Generalitat de Catalunya, Comissió Interdepartamental de Recerca i Innovació Tecnològica (CIRIT), Barcelona.
    [Google Scholar]
  40. Pallí, L. (1972) Estratigrafía del Paleógeno del Empordà y zonas limítrofes. PhD Thesis, Universitat Autònoma de Barcelona.
  41. Payros, A., Astibia, H., Cearreta, A., Pereda‐Suberbiola, X., Muelaga, X. & Badiola, A. (2000) The Upper Eocene South Pyrenean coastal deposits (Liedena Sandstone, Navarre): sedimentary facies, benthic foraminifera and avian ichnology. Facies, 42, 19–23.
    [Google Scholar]
  42. Plaziat, J.C. (1981) Late Cretaceous to Late Eocene palaeogeographic evolution of southwest Europe. Palaeogeogr, Palaeoclimatol, Palaeoecol, 36, 263–320.
    [Google Scholar]
  43. Puigdefàbregas, C., Muñoz, J.A. & Vergés, J. (1992) Thrusting and foreland basin evolution in the Southern Pyrenees. In: Thrust Tectonics (Ed. by K.R.McClay ), pp. 247–254. Chapman & Hall, London.
    [Google Scholar]
  44. Riba, O., Reguant, S. & Villena, J. (1983) Ensayo de síntesis estratigráfica y evolutiva de la cuenca terciaria del Ebro. In: Geología de España. Libro Jubilar J.M. Ríos, vol. II (Ed. by IGME. ), pp. 131–159. Instituto Geológico y Minero de España, Madrid.
    [Google Scholar]
  45. Rosell, L. & Pueyo, J.J. (1997) Second marine evaporitic phase in the South Pyrenean foredeep: The Priabonian Potash Basin (Late Eocene: autochthonous‐allochthonous zone). In: Sedimentary Deposition in Rift and Foreland Basins in France and Spain. (Paleogene and Lower Neogene) (Ed. by G.Busson & B.C.Schreiber ), pp. 358–387. Columbia University Press, New York.
    [Google Scholar]
  46. Rosenbaum, G., Lister, G.S. & Duboz, C. (2002) Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics, 359, 117–129.
    [Google Scholar]
  47. Sáez, A. (1987) Estratigrafía y sedimentología de las formaciones lacustres del tránsito Eoceno‐Oligoceno del noreste de la cuenca del Ebro. PhD thesis, Universitat de Barcelona, Barcelona.
  48. Serra‐Kiel, J., Hottinger, L., Caus, E., Drobne, K., Ferràndez, C., Jauhri, A.K., Less, G., Pavlovec, R., Pignatti, J., Samsó, J.M., Schaub, H., Sirel, E., Strougo, A., Tambareau, Y., Tosquella, J. & Zakrevskaya, E. (1998) Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bull Soc Geol France, 169, 281–299.
    [Google Scholar]
  49. Serra‐Kiel, J., Mató, E., Saula, E., Travé, A., Ferràndez‐Cañadell, C., Àlvarez‐Pérez, G., Busquets, P., Samsó, J.M., Tosquella, J., Franquès, J., Romero, J. & Barnolas, A. (2003a) An inventory of the marine and transitional middle/upper Eocene deposits of the Southeastern Pyrenean foreland basin (NE Spain). Geol Acta, 1, 201–229.
    [Google Scholar]
  50. Serra‐Kiel, J., Travé, A., Mató, E., Saula, E., Ferràndez‐Cañadell, C., Busquets, P., Tosquella, J. & Vergés, J. (2003b) Marine and transitional Middle/Upper Eocene units of the southeastern Pyrenean foreland basin (NE Spain). Geol Acta, 1, 177–200.
    [Google Scholar]
  51. Sinclair, H.D. (1997) Tectonostratigraphic model for underfilled peripheral foreland basins: an Alpine perspective. Geol Soc Am Bull, 109, 324–346.
    [Google Scholar]
  52. Sinclair, H.D., Gibson, M., Naylor, M. & Morris, R.G. (2005) Asymmetric growth of the Pyrenees revealed through measurement and modelling of orogènic fluxes. Am J Sci, 305, 369–406.
    [Google Scholar]
  53. Stori, F. & Mcclay, K.R. (1995) Influence of syntectonic sedimentation on thrust wedges in analogue models. Geology, 23, 999–1002.
    [Google Scholar]
  54. Taberner, C., Dinarès‐Turell, J., Giménez, J. & Docherty, C. (1999) Basin infill architecture and evolution from magnetostratigraphic cross‐basin correlations in the southeastern Pyrenean foreland basin. Geol Soc Am Bull, 111, 1155–1174.
    [Google Scholar]
  55. Tauxe, L. (2009) Essentials of Paleomagnetism. University of California Press, La Jolla, CA.
    [Google Scholar]
  56. Tauxe, L. & Kent, D.V. (2004) A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: was the ancient magnetic field dipolar? In: Timescales of the Paleomagnetic Field (Ed. by J.E.T.Channell , D.V.Kent , W.Lowrie & J.Meert ), pp. 101–116. American Geophysical Union, Washington, DC.
    [Google Scholar]
  57. Travé, A. (1992) Sedimentologia, petrologia i geoquímica (elements traça i isòtops) dels estromatòlits de la Conca Eocena Sudpirinenca. PhD Thesis, Universitat de Barcelona.
  58. Vergés, J. & Burbank, D.W. (1996) Eocene‐Oligocene thrusting and basin configuration in the eastern and central Pyrenees (Spain). In: Tertiary Basins of Spain. The Stratigraphic Record of Crustal Kinematics (Ed. by P.F.Friend & C.J.Dabrio ), pp. 120–133. Cambridge University Press, Cambridge.
    [Google Scholar]
  59. Vergés, J., Fernàndez, M. & Martínez, A. (2002) The Pyrenean orogen: pre‐, syn‐, and post‐collisional evolution. In: Reconstruction of the Evolution of the Alpine‐Himalayan Orogen (Ed. by G.Rousenbaum & G.S.Lister ), Journal of the Virtual Explorer, pp. 55–74.
    [Google Scholar]
  60. Zoetemeijer, R., Desegaulx, P., Cloetingh, S., Roure, F. & Moretti, I. (1990) Lithospheric dynamics and tectonic‐stratigraphic evolution of the Ebro Basin. J Geophys Res, 95, 2701–2711.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2009.00452.x
Loading
/content/journals/10.1111/j.1365-2117.2009.00452.x
Loading

Data & Media loading...

Supplements

Location of palaeomagnetic sites along the Maians section. Normal (reverse) polarity of the palaeomagnetic sites are indicated by a solid (open) circles. The Castellfollit del Boix hydrocarbone borehole is located 0.5 km north from the top of the Maians section. The conglomerate strata used to correlate Maians with Rubió sections (Fig. S4) is also shown. Location of palaeomagnetic sites along the Rubió section. Normal (reverse) polarity of the palaeomagnetic sites are indicated by a solid (open) circles. The conglomerate strata used to correlate Maians with Rubió sections is also shown (Fig. S4). Equal area plots of the unflattened directions of the Maians‐Rubió composite section. Red circles (white squares) indicates northern (southern) directions. Fisher statistics are listed in the table below. Elongation vs. inclination as a function of increasing unflattening (). Green line is elongation vs. inclination trend from the model TK03.GDA (Tauxe ., 2008). Red line is evolution of directional data from a) when unflattened with ranging from 1 (no correction) to 0.6. Yellow lines show behaviour of 25 representative bootstrap samples. When the yellow curve crosses the green line, the elongation vs. inclination pair is consistent with the TK03 paleosecular variation model and the inclination is taken as the “correct inclination”. Cummulative distribution of corrected inclinations from 5000 bootstrapped samples. Dashed blue lines are the confidence bounds containing the central 95% of the “corrected inclinations” from 5000 curves like those yellow shown in b). The crossing of the original data (red line in b)) is shown as the solid line. (PmagPy software package kindly provided by Dr. Lisa Tauxe can be found at: http://magician.ucsd.edu/~ltauxe) Correlation of Maians and Rubió sections. The conglomerate strata used to correlate the Maians (Fig. S1) and Rubió (Fig. S2) sections constitute a regional reference level that can be traced tens of kilometres along the central SE margin of the Ebro basin. This competent layer is well depicted in the topography by a change of gradient from the steep slopes of the “Solella de Can Vila” to the flattened area surrounding the Castellfollit del Boix village. Moreover, these conglomerate strata can be physically traced on the field into the Rubió section, resulting in a composite stratigraphy (Fig. 5). The distance between sections is 7 km. Magnetostratigraphy of the Vic section after Burbank . (1992) and alternate correlation assumed an age of the marine‐continental transition in the eastern Ebro Basin at 36.0 Ma (this paper). Magnetostratigraphy of the Oliana section (eastern Ebro Basin) after Vergés & Burbank (1996) and alternate correlation assumed an age of the marine‐continental transition in the eastern Ebro Basin at 36.0 Ma (this study). ChRM directions of the Maians and Rubió magnetostratigraphic sections. Site No., name and number of paleomagnetic site; Strat. level, stratigraphic position of the paleomagnetic site in the Mains‐Rubió composite section; Dec. and Inc., declination and inclination in geographic (in situ) and stratigraphic coordinates (after bedding correction); Dip. Az. and Dip., azimuth of down dip direction of local bedding and angle of dip of local bedding; VGP Lat., latitude of the Virtual Geomagnetic Pole used to build the local magnetostratigraphy of Mains and Rubió sections (see Fig. 5).Please note: Wiley‐Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Supporting info item

Supporting info item

Supporting info item

Supporting info item

Supporting info item

Supporting info item

Supporting info item

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error