1887
Volume 22 Number 4
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Numerous high‐temperature combustion metamorphic foci within brecciated mainly calcareous sedimentary rocks in the Dead Sea area (the so‐called ‘Mottled Zone’ complexes) have been interpreted as resulting from oxidation and ignition of dispersed organic matter in bituminous chalks. Geological, chemical and petrological data for the Nabi Musa dome, one of 15 Mottled Zone complexes data presented in this paper, suggest an alternative interpretation relating the Mottled Zone complexes to Pliocene–Pleistocene mud volcanism and the associated methane combustion. The geochemistry and mineralogy of sedimentary, combustion metamorphic, localized hydrothermally, altered rocks, and ignition foci marked by ultrahigh temperature (up to 1500 °C) pseudowollastonite–rankinite–nagelschmidtite‐bearing paralava, indicate that Nabi Musa is a fossil mud volcano, comprising a large diatreme edifice with brecciated sedimentary rocks in its main feeder. The mud volcanic event mobilized sediments of underlying Cretaceous strata from depths of at least 0.8 km, and the eruption was driven by hydrocarbon gases (predominantly methane), with gas flaming causing local combustion metamorphism. Besides ultrahigh temperature combustion metamorphic processes, ejected sedimentary rocks were subsequently altered by low‐temperature hydrothermal fluids from various sources, which produced specific rock compositions with local enrichments in Mg, Na, Cl and B. Later, carbonation almost completely replaced the original smectite‐bearing parent mud and preserved the edifice from erosion. The proposed mud‐volcanic origin of the Mottled Zone complexes may have implications for gas prospecting in the Levantine basin.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2010.00462.x
2010-02-26
2024-04-25
Loading full text...

Full text loading...

References

  1. Abed, A.M., Arouri, Kh.R. & Boreham, Ch.J. (2005) Source rock potential of the phosphorite–bituminous chalk–marl sequence in Jordan. Mar. Petrol. Geol., 22, 413–425.
    [Google Scholar]
  2. Arnold, R. & Anderson, R. (1907) Geology and oil resources of the Santa Maria Oil District, Santa Barbara County, California. U.S. Geol. Surv. Bull., 322, 48–52.
    [Google Scholar]
  3. Avnimelech, M. (1964) Remarks on the occurrence of unusual high‐temperature minerals in the so‐called “Mottled Zone” complex of Israel. Israel J. Earth Sci., 13, 102–110.
    [Google Scholar]
  4. Bagirov, E. & Lerche, I. (1998) Flame hazards in the South Caspian Basin. Energy Explor. Exploit., 16, 373–397.
    [Google Scholar]
  5. Bagirov, E., Nadirov, R. & Lerche, I. (1996) Flaming eruptions and ejections from mud volcanoes in Azerbaijan: statistical risk assessment from the historical records. Energy Explor. Exploit., 14, 535–583.
    [Google Scholar]
  6. Basi, M.A. & Jassim, S.Z. (1974) Baked and fused Miocene sediments from Injana area, Hemrin South, Iraq. J. Geol. Soc. Iraq, 7, 1–14.
    [Google Scholar]
  7. Berggren, W.A., Kent, D.V., Swisher, C.C. & Aubry, M.‐P.A (1995) Revised Cenozoic geochronology and chronostratigraphy. In: Geochronology, Time Scales and Global Stratigraphic Correlations: A Unified Temporal Framework for an Historical Geology (Ed. by W.A.Berggren , D.V.Kent & J.Hardenbol ), Soc. Econ. Paleontol. Mineral . 54, 129–212.
    [Google Scholar]
  8. Bentor, Y.K. (1984) Combustion metamorphic glasses. J. Non-Crystal Solids, 67, 433–448.
    [Google Scholar]
  9. Bentor, Y.K., Gross, S. & Heller, L. (1963) Some unusual minerals from the “Mottled Zone” complex, Israel. Am. Min., 48, 924–930.
    [Google Scholar]
  10. Bentor, Y.K., Kastner, M., Perlman, I. & Yellin, Y. (1981) Combustion metamorphism of bituminous sediments and the formation of melts of granitic and sedimentary composition. Geochim. Cosmochim. Acta, 45, 2229–2255.
    [Google Scholar]
  11. Bentor, Y.K. & Vroman, A. (1960) The geological map of Israel on a 1:100000 scale. Series A – The Negev, Sheet 16: Mount Sedom (with explanatory text). Geol. Surv. Israel, 117.
    [Google Scholar]
  12. Bogoch, R., Gilat, A., Yoffe, O. & Ehrlich, S. (1999) Rare earth trace element distributions in the Mottled Zone complex, Israel. Israel J. Earth Sci., 48, 225–234.
    [Google Scholar]
  13. Burg, A., Kolodny, Ye. & Lyakhovsky, V. (1999) Hatrurim‐2000: the “Mottled Zone” revisited, forty years later. Israel J. Earth Sci., 48, 209–223.
    [Google Scholar]
  14. Burg, A., Starinsky, A., Bartov, Y. & Kolodny, Y. (1991) Geology of the Hatrurim Formation (“Mottled Zone”) in the Hatrurim basin. Israel J. Earth Sci., 40, 107–124.
    [Google Scholar]
  15. Cisowski, S.M. & Fuller, M. (1987) The generation of magnetic anomalies by combustion metamorphism of sedimentary rocks, and its significance to hydrocarbon exploration. Geol Soc. Am. Bull., 99, 21–29.
    [Google Scholar]
  16. Clark, I.D., Fritz, P., Seidlitz, H.K., Trimborn, P., Milodowski, T.E., Pearce, J.M. & Khoury, H.N. (1993) Recarbonation of metamorphosed marls, Jordan. Appl. Geochem., 8, 473–481.
    [Google Scholar]
  17. Cosca, M.A., Essene, E J., Geissman, J.W., Simmons, W.B. & Coates, D.A. (1989) Pyrometamorphic rocks associated with naturally burned coal beds, Powder River Basin, Wyoming. Am. Min., 74, 85–100.
    [Google Scholar]
  18. Deer, W.A., Howie, R.A. & Zussman, J. (1963) Rock Forming Minerals, Vol. 2. Wiley, New York, 379pp.
    [Google Scholar]
  19. Dimitrov, L.I. (2002) Mud volcanoes – the most important pathway for degassing deeply buried sediments. Earth Sci. Rev., 59, 49–76.
    [Google Scholar]
  20. Eichhubl, P. & Aydin, A. (2003) Ductile opening‐mode fracture by pore growth and coalescence during combustion alteration of siliceous mudstone. J. Struct. Geol., 25, 121–134.
    [Google Scholar]
  21. Eichhubl, P., Aydin, A. & Lore, J. (2001) Opening‐mode fracture in siliceous mudstone at high homologous temperature – effect of surface forces. Geophys. Res. Lett., 28, 1299–1302.
    [Google Scholar]
  22. Feldman, V.I., Bychkov, A.M., Dikov, Yu.P. & Krivtsova, V.Ya. (1994) Tengizites – glasses from center of oil fire. Dokl. Russ. Acad. Sci., 339, 239–242.
    [Google Scholar]
  23. Fourcade, S., Trotignon, L., Boulvais, P., Techer, I., Elie, M., Vandamme, D., Salameh, E. & Khoury, H. (2007) Cementation of kerogen‐rich marls by alkaline fluids released during weathering of thermally metamorphosed marly sediments. Part I: isotopic (C, O) study of the Khushaym Matruk natural analogue (central Jordan). Appl. Geochem., 22, 1293–1310.
    [Google Scholar]
  24. Garfunkel, Z. (1981) Internal structure of the Dead Sea Leaky transform (rift) in relation to plate kinematics. Tectonophysics, 80, 81–108.
    [Google Scholar]
  25. Gardosh, M., Kashai, E., Salhov, S., Shulman, H. & Tannenbaum, E. (1996) Hydrocarbon explosion in the southern Dead Sea area. In: The Dead Sea: The Lake and its Setting (Ed. by T.N.Niemi , Z.Ben‐Avraham & L.Gat ), pp. 57–72. Oxford Press, Oxford.
    [Google Scholar]
  26. Geological Map of Israel
    Geological Map of Israel . (1965) Scale 1:250000. Northern Sheet: L.Y. Picard, U. Golani; Southern Sheet: Y.K. Bentor, A. Vroman & I. Zak. Jerusalem: Geological Survey of Israel. Sheets 1, 2.
  27. Gilat, A. (1998) Hydrothermal activity and hydro‐explosions as a cause of natural combustion and pyrolysis of bituminous rocks: the case of Pliocene metamorphism in Israel (Hatrurim Formation). Geol. Surv. Israel, Curr. Res., 11, 96–102.
    [Google Scholar]
  28. Grapes, R. (2006) Pyrometamorphism. Springer, Berlin, 276pp.
    [Google Scholar]
  29. Gross, S. (1977) The mineralogy of the Hatrurim formation, Israel. Geol. Surv. Israel Bull., 70, 80.
    [Google Scholar]
  30. Gross, S. (1984) Occurrence of ye'elimite and ellestadite in an unusual cobble from the “pseudo‐conglomerate” of the Hatrurim basin, Israel. Geol. Surv. Israel, Curr. Res., 1983–84, 1–4.
    [Google Scholar]
  31. Gross, S., Mazor, E., Sass, E. & Zak, I. (1967) The “Mottled Zone” complex of Nahal Ayalon (Central Israel). Israel J. Earth Sci., 16, 84–96.
    [Google Scholar]
  32. Gur, D., Steinitz, G., Kolodny, Y., Starinsky, A. & McWilliams, M. (1995) 40Ar/39Ar dating of combustion metamorphism (“Mottled Zone”, Israel). Chem. Geol., 122, 171–184.
    [Google Scholar]
  33. Gvirtzman, H. & Stanislavsky, E. (2000) Palaehydrology of hydrocarbon maturation, migration and accumulation in the Dead Sea Rift. Basin Res., 12, 79–93.
    [Google Scholar]
  34. Hall, J.K., Krasheninnikov, V.A., Hirsch, F., Benjamini, C. & Flexer, A.), (eds). (2005) Geological Framework of the Levant. Volume II: The Levantine Basin and Israel. Historical Productions‐Hall, Jerusalem, 826pp.
    [Google Scholar]
  35. Hadley, D. (1991) Old sandstones new horizons. Middle East Well Eval. Rev., 11, 10–26.
    [Google Scholar]
  36. Hirsch, F. (2005) Introduction to the stratigraphy of Israel. In: Geological Framework of Levant. Volume II: Levantine Basin and Israel (Ed. by J.K.Hall , V.A.Krasheninnikov , F.Hirsch , C.Benjamini & A.Flexer ), pp. 269–274. Historical Productions‐Hall, Jerusalem.
    [Google Scholar]
  37. Hull, E. (1986) The survey of Western Palestine. Memoir on the geology of Arabia, Petraea, Palestine and adjoining districts. Comm. Palestine Expl. Fund, London, 154pp.
    [Google Scholar]
  38. Jakubov, A.A., Ali‐Zade, A.A. & Zeinalov, M.M. (1971) Mud Volcanoes of the Azerbaijan SSR. Publishing House of Academy of Sciences of the Azerbaijan SSR, Baku, 257pp (in Russian).
    [Google Scholar]
  39. Johnson, P.R. (1998) Tectonic map of Saudi Arabia and adjacent areas. Saudi Arabian Deputy Ministry for Mineral Resources Technical report USGS‐TR‐98‐3 (IR‐948), scale 1:4000000, 2 pp.
  40. Jung, I.H., Decterov, S.A. & Pelton, A.D. (2005) Critical thermodynamic evaluation and optimization of the CaO–MgO–SiO2 system. J. Eur. Ceram. Soc., 25, 313–333.
    [Google Scholar]
  41. Khoury, H. & Nassir, S. (1982) High temperature mineralization in Maqarin area, North Jordan. Neues Jahrb. Miner, Abh., 144, 197–213.
    [Google Scholar]
  42. Kolodny, Y., Bar, M. & Sass, E. (1971) Fission track age of the “Mottled Zone Event” in Israel. Earth Planet. Sci. Lett., 11, 629–272.
    [Google Scholar]
  43. Kolodny, Y. & Gross, S. (1974) Thermal metamorphism by combustion of organic matter: isotopic and petrological evidence. J. Geol., 82, 489–506.
    [Google Scholar]
  44. Kopf, A.J. (2002) Significance of mud volcanism. Rev. Geophys., 40 (2), 1005, doi: DOI: 10.1029/2000RG000093.
    [Google Scholar]
  45. Kovalevsky, S.A. (1940) Mud Volcanoes of the South Caspian Area. Azgostoptekhizdat, Baku, 200pp (in Russian).
    [Google Scholar]
  46. Levorsen, A.I. (1954) Geology of Petroleum. W.H. Freeman, San Francisco, 703pp.
    [Google Scholar]
  47. Lore, J., Eichhubl, P. & Aydin, A. (2002) Alteration and fracturing of siliceous mudstone during in situ combustion, Orcutt field, California. J. Petrol. Sci. Eng., 36, 169–182.
    [Google Scholar]
  48. Mäder, U.K., Adler, M., Langer, V., Degman, P., Milodowski, A.E., Smellie, J.A.T., Salameh, E., Khoury, H.N., Griffault, L.Y. & Trotignon, L. (2001) The Maqarin natural analogue study of cement‐buffered hyperalkaline groundwater plume: structural model and flow systems. In: Water‐Rock Interaction (Ed. by R.Cidi‐Lisse ), pp. 185–188. Swets and Zeitinger, Lisse, The Netherlands.
    [Google Scholar]
  49. Matthews, A. & Gross, S. (1980) Petrologic evolution of the “Mottled Zone” (Hatrurim) metamorphic complex of Israel. Israel J. Earth Sci., 40, 107–124.
    [Google Scholar]
  50. McLintock, W.F.P. (1932) On the metamorphism produced by the combustion of hydrocarbons in the tertiary sediments of south‐west Persia. Mineral. Mag., 29, 93–106.
    [Google Scholar]
  51. Möller, P., Rosenthal, E., Geyer, S., Guttman, J., Dulski, P., Rybakov, M., Zilberbrand, M., Jahnke, C. & Flexer, A. (2007) Hydrochemical processes in the lower Jordan valley and in the Dead Sea area. Chem. Geol., 239, 27–49.
    [Google Scholar]
  52. Műntener, O. & Hermann, J. (1994) Titanian andradite in a metapyroxenite layer from the Malenco ultramafics (Itally): implication for Ti-mobility and low oxygen fugacity. Contrib. Min. Petrol., 116, 156–168.
    [Google Scholar]
  53. Osborn, E.F. & Muan, A. (1960) Phase Equilibrium Diagrams of Oxide Systems, Plate 1. The System CaO–Al2O3–SiO2 . American Ceramic Society and the Edward Orton, Ir., Ceramic Foundation, Columbus, OH.
    [Google Scholar]
  54. Picard, L. (1931) Geological Research in the Judean Desert. Goldberg Press, Jerusalem, 108pp.
    [Google Scholar]
  55. Planke, S., Svensen, H., Hovland, M., Banks, DA. & Jamtveit, B. (2003) Mud and fluid migration in active mud volcanoes in Azerbaijan. Geol.Mar. Lett., 23, 258–268.
    [Google Scholar]
  56. Qudairah, M.A. (1994) Geological Map of Jordan. Scale 1: 50000. Wadi Attarat Umm Ghudgan, 3252‐I, 1 sheet.
  57. Rivenet, M., Cousin, O., Boivin, J.C., Abraham, F., Ruchaud, N. & Hubert, P. (2000) A study of the Na2O–CaO–P2O5–SiO2 system with respect to the behaviour of phosphate bonded basic refractories at high temperature. J. Eur. Ceram. Soc., 20, 1169–1178.
    [Google Scholar]
  58. Reverdatto, V.V. (1973) The Facies of Metamorphism. Translated by D.A. Brown, pp. 262. Australian National University, Canberra, ACT.
    [Google Scholar]
  59. Robertson, A.H.F. (1996) Mud volcanism on the Mediterranean Ridge: initial results of Ocean Drilling Program Leg 160. Geology, 24, 239–242.
    [Google Scholar]
  60. Shaliv, G. & Steinitz, G. (1988) K–Ar ages of Lover Basalt, Intermediate Basalt and base of Cover Basalt in Northen Israel. Israel Geol. Surv., Curr. Res., 6, 22–28.
    [Google Scholar]
  61. Sharygin, V.V., Sokol, E.V. & Vapnik, Ye. (2008) Minerals of the pseudobinary perovskite–brownmillerite series from combustion metamorphic larnite rocks of the Hatrurim Formation (Israel). Russ. Geol. Geophys., 10, 709–726.
    [Google Scholar]
  62. Shaw, S., Henderson, C.M.B. & Komanschek, B.U. (2000) Dehydration/recrystallization mechanisms, energetics, and kinetics of hydrated calcium silicate minerals: an in situ TGA/DSC and synchrotron radiation SAXS/WAXS study. Chem. Geol., 167, 141–159.
    [Google Scholar]
  63. Shnyukov, E.F., Sheremet'ev, V.M., Maslakov, N.A., Kutniy, V.A., Gusakov, I.N. & Trofimov, V.V. (2005) Mud Volcanoes of Kerch‐Taman Region. GlavMedia Publishing House, Krasnodar, 184pp (in Russian).
    [Google Scholar]
  64. Sneh, A.
    , Bartov, Y. & Rosensalf, M. (eds) (1998) Geological Map of Israel 1:200000. Geological Survey of Israel, Jerusalem, 4pp.
    [Google Scholar]
  65. Segev, A. (2005) Phanerozoic magmatic activity associated with vertical motions in Israel and the adjacent countries. In: Geological Framework of the Levant. Volume II: The Levantine Basin and Israel (Ed. by J.K.Hall , V.A.Krasheninnikov , F.Hirsch , C.Benjamini & A.Flexer ), pp. 553–577. Historical Productions‐Hall, Jerusalem.
    [Google Scholar]
  66. Sokol, E.V., Novikov, I.S., Vapnik, Ye. & Sharygin, V.V. (2007) Gas fire from mud volcanoes as a trigger for the appearance of high temperature pyrometamorphic rocks of the Hatrurim Formation (Dead Sea area). Dokl. Earth Sci., 413A, 474–480.
    [Google Scholar]
  67. Sokol, E.V., Novikov, I.S., Zateeva, S.N., Sharygin, V.V. & Vapnik, Ye. (2008) Pyrometamorphic rocks of the spurrite–merwinite facies as indicators of discharge zones of hydrocarbons (the Hatrurim Formation, Israel). Doklady Earth Sci., 420, 608–614.
    [Google Scholar]
  68. Sokol, E.V. & Volkova, N.I. (2007) Combustion metamorphic events resulting from natural coal fires. In: GSA Reviews in Engineering Geology XVIII: Geology of Coal Fires: Case Studies from Around the World (Ed. by G.B.Stracher ), pp. 97–115. The Geological Society of America, Boulder, CO.
    [Google Scholar]
  69. Steinitz, G. & Bartov, Y. (1991) The Miocene–Pleistocene history of Dead Sea segment of the rift in light of K–Ar ages basalts. Israel J. Earth Sci., 40, 199–208.
    [Google Scholar]
  70. Stracher, G.B.
    (ed.) (2007) GSA Reviews in Engineering Geology XVIII: Geology of Coal Fires: Case Studies from Around the World. The Geological Society of America, Boulder, CO, 284pp.
    [Google Scholar]
  71. Svensen, H., Dysthe, D.K., Bandlien, E.H., Sacko, S., Coulibaly, H. & Planke, S. (2003) Subsurface fires in Mali: refutation of the active volcanism hypothesis in West Africa. Geology, 31, 581–584.
    [Google Scholar]
  72. Svensen, H., Jamtveit, B., Planke, S. & Chevallier, L. (2006) Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa. J. Geol. Soc. Lond., 163, 671–682.
    [Google Scholar]
  73. Svensen, H., Planke, S., Chevallier, L., Malthe‐Sorenssen, A., Corfu, B. & Jamtveit, B. (2007) Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth Planet. Sci. Lett., 256, 554–566.
    [Google Scholar]
  74. Svensen, H., Planke, S., Malthe‐Sorenssen, A., Jamtveit, B., Myklebust, R., Eidem, T. & Rey, S.S. (2004) Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429, 542–545.
    [Google Scholar]
  75. Svensen, H., Planke, S., Polozov, A., Schmidbauer, N., Corfu, F., Podladschikov, Y. & Jamtveit, B. (2009) Siberian gas venting and the end‐Permian environmental crisis. Earth Planet. Sci. Lett., 277, 490–500.
    [Google Scholar]
  76. Taylor, S.R. & McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell, Oxford 312pp.
    [Google Scholar]
  77. Techer, I., Khoury, H.N., Salameh, E., Rassineux, F., Claude, C., Clauer, N., Pagel, M., Lancelot, J., Hamelin, B. & Jacquot, E. (2006) Propagation of high‐alkaline fluids in an argillaceous formation: case study of the Khushaym Matruk natural analogue (Central Jordan). J. Geochem. Explor., 90, 53–67.
    [Google Scholar]
  78. Tristam, H.B. (1865) The Land of Israel. A journal of travels in Palestine, undertaken with special reference to its physical character. Soc. Promotion Christian Knowledge, London, 651pp.
    [Google Scholar]
  79. Vapnik, Y. & Sokol, E. (2006) Explosion breccias and diatremes as key structures in the formation of the Hatrurim Formation: Abstract. Israel Geological Society Annual Meeting, Bet‐Shean, 131.
  80. Vapnik, Ye., Khesin, B. & Itkis, S. (2010) Geophysical prospecting over burnt rocks of a fossil mud volcano in the vicinity of the Dead Sea Rift, Nabi Musa, Israel. In: The World Atlas of Coal Fires and Combustion Metamorphism (Ed. by G.B.Stracher , E.V.Sokol & A.Prakash ) Elsevier, Amsterdam (in press).
    [Google Scholar]
  81. Vapnik, Ye., Sharygin, V., Sokol, E. & Shagam, R. (2007) Paralavas in a combustion metamorphic complex, Hatrurim Basin, Israel. In: GSA Reviews in Engineering Geology XVIII: Geology of Coal Fires: Case Studies from Around the World (Ed. by G.B.Stracher ), pp. 133–153. The Geological Society of America, Boulder, CO.
    [Google Scholar]
  82. Von der Flaass, G.S. (1997) Structural and genetic model of an ore field of the Angaro‐Ilim type (Siberian Platform). Geol. Ore Depos., 39, 461–473.
    [Google Scholar]
  83. Von der Flaass, G.S. & Naumov, V.A. (1995) Cup‐shaped structures of iron ore deposits in the South of the Siberian Platform (Russia). Geol. Ore Depos., 37, 340–350.
    [Google Scholar]
  84. West, I.M. (2007) Kimmeridge field guide – blackstone, oil shale: geology of the Wessex Coast. Available at: http://www.soton.ac.uk/~imw/kimblack.htm.
  85. Yoffe, O., Nathan, Y., Wolfarth, A., Cohen, S. & Shoval, S. (2002) The chemistry and mineralogy of the Negev oil shale ashes. Fuel, 81, 1101–1117.
    [Google Scholar]
  86. Zeuner, F.E. (1959) The Pleistocene Period. Hutchinson, London, 447pp.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2010.00462.x
Loading
/content/journals/10.1111/j.1365-2117.2010.00462.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error