1887
Volume 23, Issue 1
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

We performed a detailed analysis of the thermal state of the Cenozoic Roer Valley Graben, the north–western branch of the European Cenozoic Rift System, based on a new set of temperature data. We developed a numerical technique for correcting bottom hole temperatures, including an evaluation of the uncertainty of thermal parameters. Comparison with drill stem test temperatures indicated that the uncertainty in corrected bottom hole temperatures using a two‐component numerical model is approximately ± 4 °C, which is much more accurate than the up to 15 °C errors encountered in often‐used line‐source or Horner correction methods. The subsurface temperatures and the derived regional heat flow estimates of 53 ± 6 to 63 ± 6 mW m−2 show no significant difference between the central rift and the adjacent structural highs. The absence of an elevated heat flow is attributed to the low amount of lithospheric thinning during the Cenozoic rifting phase (β=1.06–1.15). A local thermal anomaly exceeding +10 °C was found in five wells in the north–western part of the rift basin at depths of 1000–1500 m, and is most likely caused by the upward flow of fluids along faults, whereas lower temperatures in the upper 1500 m in the southern part of the rift basin could indicate cooling by topography‐driven groundwater flow. Conflicting ideas exist on the active or passive rifting mechanisms responsible for the formation of the different rift basins of European Cenozoic Rift System. The low spatial variation in heat flow found in this study suggests that the mechanism responsible for forming the Roer Valley Graben is passive rifting.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2010.00466.x
2011-01-19
2024-04-25
Loading full text...

Full text loading...

References

  1. Allen, P.A. & Allen, J.R. (2005) Basin Analysis: Principles and Applications. Blackwell P ublishing, Oxford.
    [Google Scholar]
  2. Andrews‐Speed, C.P., Oxburgh, E.R. & Cooper, B.A. (1984) Temperatures and depth‐dependent heat flow in Western North Sea. AAPG Bull., 68, 1764–1781.
    [Google Scholar]
  3. Anonymous.
    Anonymous. (2009) NL Olie en Gasportaal. TNO Geological Survey of the Netherlands, Utrecht. Available at http://www.nlog.nl.
    [Google Scholar]
  4. Artemieva, I.M., Thybo, H. & Kaban, M.K. (2006) Deep Europe today: geophysical synthesis of the upper mantle structure and lithospheric processes over 3.5 Ga. Geol. Soc., London, Mem., 32, 11–41.
    [Google Scholar]
  5. Babuska, V. & Plomerova, J. (1993) Lithospheric thickness and velocity anisotropy – seismological and geothermal aspects. Tectonophysics, 225, 79–89.
    [Google Scholar]
  6. Bense, V.F. & Person, M.A. (2006) Faults as conduit‐barrier systems to fluid flow in siliciclastic sedimentary aquifers. Water Resour. Res., 42, W05421.
    [Google Scholar]
  7. Bense, V.F., Person, M.A., Chaudhary, K., You, Y., Cremer, N. & Simon, S. (2008) Thermal anomalies indicate preferential flow along faults in unconsolidated sedimentary aquifers. Geophys. Res. Lett., 35, L24406.
    [Google Scholar]
  8. Bjorlykke, K., Mo, A. & Palm, E. (1988) Modelling of thermal convection in sedimentary basins and its relevance to diagenetic reactions. Mar. Petrol. Geol., 5, 338–351.
    [Google Scholar]
  9. Bredewout, J.W. (1987) The character of the Erkelenz intrusive as derived from geophysical data. Geol. Mijnb., 68, 445–454.
    [Google Scholar]
  10. Brigaud, F., Vasseur, G. & Caillet, G. (1992) Thermal state in the North Viking Graben (North Sea) determined from oil exploration well data. Geophysics, 57, 69–88.
    [Google Scholar]
  11. Bücker, C. & Rybach, L. (1996) A simple method to determine heat production from gamma‐ray logs. Mar. Petrol. Geol., 13, 373–375.
    [Google Scholar]
  12. Bullard, E.C. (1947) The time necessary for a bore hole to attain temperature equilibrium. Monthly Notices R. Astronom. Soc., 5, 127–130.
    [Google Scholar]
  13. Caine, J.S., Evans, J.P. & Forster, C.B. (1996) Fault zone architecture and permeability structure. Geology, 24, 1025–1028.
    [Google Scholar]
  14. Cao, S., Lerche, I. & Hermanrud, C. (1988) Formation temperature estimation by inversion of borehole measurements. Geophysics, 53, 979–988.
    [Google Scholar]
  15. Carslaw, H.S. & Jaeger, J.C. (1959) Conduction of Heat in Solids, 2nd edn. Clarendon Press, Oxford, UK.
    [Google Scholar]
  16. Carstens, H. & Finstad, K.G. (1981) Geothermal gradients of the Northern North Sea basin, 59–62°N. In: Petroleum Geology of the Continental Shelf of North‐West Europe (Ed. by L.V.Illing & G.D.Hobson ), pp. 151–161. Institute of Petroleum, London.
    [Google Scholar]
  17. Caspers, G. & Freund, H. (2001) Vegetation and climate in the early‐ and Pleni‐Weichselian in Northern Central Europe. J. Quat. Sci., 16, 31–48.
    [Google Scholar]
  18. Clauser, C., Giese, P., Huenges, E., Kohl, T., Lehmann, H., Rybach, L., Šafanda, J., Wilhelm, H., Windloff, K. & Zoth, G. (1997) The thermal regime of the crystalline continental crust: implications from the KTB. J. Geophys. Res., 102, 18417–18442.
    [Google Scholar]
  19. Clauser, C., Grieshaber, E. & Neugaber, H.J. (2002) Decoupled thermal and Mantle Helium anomalies: implications for the transport regime in continental rift zones. J. Geophys. Res., 107, 2269.
    [Google Scholar]
  20. Clauser, C. & Villinger, H. (1990) Analysis of conductive and convective Heat transfer in a sedimentary basin, demonstrated for the Rhein Graben. Geophys. J. Int., 100, 393–414.
    [Google Scholar]
  21. Cloetingh, S., Ziegler, P., Beekman, F., Andriessen, P., Hardebol, N. & Dèzes, P. (2005a) Intraplate deformation and 3D rheological structure of the Rhine Rift system and adjacent areas of the Northern Alpine foreland. Int. J. Earth Sci., 94, 758–778.
    [Google Scholar]
  22. Cloetingh, S., Ziegler, P.A., Beekman, F., Andriessen, P.A.M., Matenco, L., Bada, G., Garcia‐Castellanos, D., Hardebol, N., Dèzes, P. & Sokoutis, D. (2005b) Lithospheric memory, state of stress and rheology: neotectonic controls on Europe's intraplate continental topography. Quat. Sci. Rev., 24, 241–304.
    [Google Scholar]
  23. Deming, D. (1989) Application of bottom‐hole temperature corrections in geothermal studies. Geothermics, 18, 775–786.
    [Google Scholar]
  24. de Rooij, R. (2000) A hydrogeological schematisation of the Roer Valley Graben. Msc Thesis, Utrecht University, Utrecht.
  25. Dèzes, P. & Ziegler, P.A. (2002). European Map of the Mohorovicic Discontinuity. 2nd EUCOR‐URGENT Workshop, Upper Rhine Graben Evolution and Neotectonics, 7–11 October 2001, Mt. St. Odile, France.
  26. Dirkzwager, J.B., Stephenson, R.A. & Legostaeva, O.V. (2000a) The pre‐permian residual gravity field for the Dutch onshore and adjacent offshore. Global Planet. Change, 27, 53–66.
    [Google Scholar]
  27. Dirkzwager, J.B., van Wees, J.D., Cloetingh, S.A.P.L., Geluk, M.C., Dost, B. & Beekman, F. (2000b) Geo‐mechanical and rheological modelling of upper crustal faults and their near‐surface expression in the Netherlands. Global Planet. Change, 27, 67–88.
    [Google Scholar]
  28. Dixon, J.E., Fitton, J.G. & Frost, R.T.C. (1981) The tectonic significance of post‐carboniferous igneous activity in the North Sea basin. In: Petroleum Geology of the Continental Shelf of North‐West Europe (Ed. by L.V.Illing & G.D.Hobson ), pp. 121–137. Heyden and Sons Ltd, London.
    [Google Scholar]
  29. Dowdle, W.L. & Cobb, M.W. (1975) Static formation temperature from well logs, an empirical method. J. Petrol. Technol., 27, 1326–1330.
    [Google Scholar]
  30. Dufour, F.C. (2000) Groundwater in the Netherlands: Facts and Figures. Netherlands Institute of Applied Geoscience TNO‐NITG, Delft.
    [Google Scholar]
  31. Duin, E.J.T., Doornenbal, J.C., Rijkers, R.H.B., Verbeek, J.W. & Wong, T.E. (2006) Subsurface structure of the Netherlands – results of recent onshore and offshore mapping. Netherlands J. Geosci./Geol. Mijn., 85, 245–276.
    [Google Scholar]
  32. Dusar, M. & Langenaeker, V. (1992) De Oostrand Van Het Massief Van Brabant, Met Beschrijving Van De Geologische Verkenningsboring Te Martenslinde. Professional Paper No 255. Belgium Geological Survey, Brussels.
    [Google Scholar]
  33. Fisher, Q.J. & Knipe, R.J. (2001) The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian continental shelf. Mar. Petrol. Geol., 18, 1063–1081.
    [Google Scholar]
  34. Förster, A. (2001) Analysis of borehole temperature data in the Northeast German basin: continuous logs versus bottom-hole temperatures. Petrol. Geosci., 7, 241–254.
    [Google Scholar]
  35. Fowler, C.M.R. (1990) The Solid Earth: An Introduction to Global Geophysics. Cambridge University Press, Cambridge, UK.
    [Google Scholar]
  36. Funnell, R., Chapman, D., Allis, R. & Armstrong, P. (1996) Thermal state of the Taranaki Basin, New Zealand. J. Geophys. Res., 101, 25197–25216.
    [Google Scholar]
  37. Geluk, M.C., Duin, E.J.T., Dusar, M., Rijkers, R.H.B., van den Berg, M.W. & van Rooijen, P. (1994) Stratigraphy and tectonics of the Roer Valley Graben. Netherlands J. Geosci./Geol. Mijnb., 73, 129–141.
    [Google Scholar]
  38. Geluk, M.C., Dusar, M. & de Vos, W. (2007) Pre‐Silesian. In: Geology of the Netherlands (Ed. by Th.E.Wong , D.A.J.Batjes & J.D.Jager ), pp. 197–221. Royal Netherlands Academy of Arts and Sciences, Amsterdam.
    [Google Scholar]
  39. Goes, S., Govers, R. & Vacher, P. (2000) Shallow mantle temperatures under Europe from P and S wave tomography. J. Geophys. Res., 105, 11153–11170.
    [Google Scholar]
  40. Goutorbe, B., Lucazeau, F. & Bonneville, A. (2007) Comparison of several BHTCorrection methods: a case study on an Australian data set. Geophys. J. Int., 170, 913–922.
    [Google Scholar]
  41. Heederik, J.P. (1989) Geothermische Reserves Centrale Slenk, Nederland. Exploratie En Evaluatie. Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek TNO, Delft.
    [Google Scholar]
  42. Hermanrud, C. (1988) Determination of formation temperature from downhole measurements. PhD Thesis, University of South Carolina.
  43. Hermanrud, C., Cao, S. & Lerche, I. (1990) Estimates of Virgin rock temperature derived from BHT measurements: bias and error. Geophysics, 55, 924–931.
    [Google Scholar]
  44. Houtgast, R.F. & van Balen, R.T. (2000) Neotectonics of the Roer Valley Graben, the Netherlands. Global Planet. Change, 27, 131–146.
    [Google Scholar]
  45. Huijzer, B. & Vandenberghe, J. (1998) Climatic reconstruction of the Weichselian Pleniglacial in Northwestern and Central Europe. J. Quat. Sci., 13, 391–417.
    [Google Scholar]
  46. Huismans, R.S., Podladchikov, Y.Y. & Cloetingh, S. (2001) Transition from passive to active rifting: relative importance of asthenospheric doming and passive extension of the lithosphere. J. Geophys. Res., 106, 11271–11291.
    [Google Scholar]
  47. Hurter, S. & Haenel, R. (2002) Atlas of Geothermal Resources in Europe. Office for Official Publications of the European Communities, Luxemburg.
    [Google Scholar]
  48. Keen, C.E. (1985) The dynamics of rifting: deformation of the lithosphere by active and passive driving forces. Geophys. J. Int., 80, 95–120.
    [Google Scholar]
  49. Kohl, T. (1998) Palaeoclimatic temperature signals – can they be washed out?Tectonophysics, 291, 225–234.
    [Google Scholar]
  50. Kukkonen, I.T. & Jõeleht, A. (2003) Weichselian temperatures from geothermal heat flow data. J. Geophys. Res., 108, 2163.
    [Google Scholar]
  51. Lampe, C. & Person, M. (2002) Advective cooling within sedimentary rift basins – application to the Upper Rhine Graben (Germany). Mar. Petrol. Geol., 19, 361–375.
    [Google Scholar]
  52. Lampe, C., Person, M., Noth, S. & Ricken, W. (2001) Episodic fluid flow within continental rift basins: some insights from field data and mathematical models of the Rhine Graben. Geofluids, 1, 42–52.
    [Google Scholar]
  53. Langenaeker, V. (2000) The Campine Basin – Stratigraphy, Structural Geology, Coalification and Hydrocarbon Potential for the Devonian to Jurassic. Leuven University Press, Leuven.
    [Google Scholar]
  54. Lucazeau, F. & Le Douaran, S. (1985) The blanketing effect of sediments in basins formed by extension: a numerical model. Application to the Gulf of Lion and Viking Graben. Earth Planet. Sci. Lett., 74, 92–102.
    [Google Scholar]
  55. Lucazeau, F., Vasseur, G. & Bayer, R. (1984) Interpretation of heat flow data in the French Massif Central. Tectonophysics, 103, 99–119.
    [Google Scholar]
  56. Luheshi, M.N. (1983) Estimation of formation temperature from borehole measurements. Geophys. J. R. Astron. Soc., 74, 747–776.
    [Google Scholar]
  57. Mack Kennedy, B. & van Soest, M.C. (2007) Flow of mantle fluids through a ductile lower crust: helium isotope trends. Science, 318, 1433–1436.
    [Google Scholar]
  58. Michon, L. & van Balen, R.T. (2005) Characterization and quantification of active faulting in the Roer Valley Graben based on high precision digital elevation models. Quat. Sci. Rev., 24, 455–472.
    [Google Scholar]
  59. Michon, L., van Balen, R.T., Merle, O. & Pagnier, H. (2003) The Cenozoic evolution of the Roer Valley Graben integrated at a European Scale. Tectonophysics, 367, 101–126.
    [Google Scholar]
  60. Middleton, M.F. (1982) Bottom‐hole temperature stabilization with continued circulation of drilling mud. Geophysics, 47, 1716–1723.
    [Google Scholar]
  61. Morgan, P. & Baker, B.H. (1983) Introduction – processes of continental rifting. Tectonophysics, 94, 1–10.
    [Google Scholar]
  62. Panza, G.F., Mueller, S. & Calcagnile, G. (1980) The gross features of the lithosphere–asthenosphere system in Europe from seismic surface waves and body waves. Pure Appl. Geophys., 118, 1209–1213.
    [Google Scholar]
  63. Pawlewicz, M.J., Steinshower, D.W. & Gautier, D.L. (1997) Map showing geology, oil and gas fields, and geologic provinces of Europe including Turkey. U.S. Geological Survey Open File Report 97–470–I. U.S. Geological Survey, Denver.
    [Google Scholar]
  64. Pedersen, T. & Bjorlykke, K. (1994) Fluid flow in sedimentary basins: model of pore water flow in a vertical fracture. Basin Res., 6, 1–16.
    [Google Scholar]
  65. Peelcommissie.
    Peelcommissie. (1963) Rapport Van De Peelcommissie, Deel II: Verslag van het Geologisch Mijnbouwkundig Onderzoek. Staatsdrukkerij en Uitgeversbedrijf, Den Haag.
    [Google Scholar]
  66. Person, M. & Garven, G. (1994) A sensitivity study of the driving forces on fluid flow during continental‐rift basin evolution. Geol. Soc. Am. Bull., 106, 461–475.
    [Google Scholar]
  67. Plenefisch, T. & Bonjer, K.P. (1997) The stress field in the Rhine Graben area inferred from earthquake focal mechanisms and estimation of frictional parameters. Tectonophysics, 275, 71–97.
    [Google Scholar]
  68. Plomerova, J., Kouba, D. & Babuska, V. (2002) Mapping the lithosphere–asthenosphere boundary through changes in surface‐wave anisotropy. Tectonophysics, 358, 175–185.
    [Google Scholar]
  69. Pollack, H.N., Hurter, S.J. & Johnson, J.R. (1993) Heat flow form the earth's interior: analysis of the global data set. Rev. Geophys., 31, 267–280.
    [Google Scholar]
  70. Poort, J. & Polyansky, O. (2002) Heat transport by groundwater flow during the Baikal rift evolution. Tectonophysics, 351, 75–89.
    [Google Scholar]
  71. Reinecker, J., Heidbach, O., Tingay, M., Sperner, B. & Mü, B. (2005) The 2005 release of the World Stress Map. GFZ‐Potsdam, Potsdam, Germany. Available at http://www.world‐stress‐map.org
  72. Remmelts, G. & Duin, E.J.T. (1991) Results of a regional deep seismic survey in the Netherlands. In: The Potential of Deep Seismic Profiling for Hydrocarbon Exploration (Ed. by B. Pinet & C. Bois ), pp. 335–343. Technip, Paris.
    [Google Scholar]
  73. Sadee, C.P.M. (1975) An interpretation of South‐Limburg subsurface temperature data. Geol. Mijnb., 54, 184–194.
    [Google Scholar]
  74. Sandiford, M., Mclaren, S. & Neumann, N. (2002) Long‐term thermal consequences of the redistribution of heat‐producing elements associated with large‐scale granitic complexes. J. Metamor. Geol., 20, 87–98.
    [Google Scholar]
  75. Schlumberger, Ltd. (1989) Log Interpretation Principles/Applications. Schlumberger Educational Services, Houston.
    [Google Scholar]
  76. Sclater, J. & Christie, P. (1980) Continental stretching: an explanation of the post-mid-cretaceous subsidence of the Central North Sea basin. J. Geophys. Res., 85, 3711–3739.
    [Google Scholar]
  77. Sengör, A.M.C. & Burke, K. (1978) Relative timing of rifting and volcanism on earth and its tectonic implications. Geophys. Res. Lett., 5, 419–422.
    [Google Scholar]
  78. Shen, P.Y. & Beck, A.E. (1986) Stabilization of bottom hole temperature with finite circulation time and fluid flow. Geophys. J. R. Astron. Soc., 86, 63–90.
    [Google Scholar]
  79. Simmons, C.T., Sharp, J.M.Jr & Nield, D.A. (2008) Modes of free convection in fractured low‐permeability media. Water Resour. Res., 44, 1–8.
    [Google Scholar]
  80. Simms, M.A. & Garven, G. (2004) Thermal convection in faulted extensional sedimentary basins: theoretical results from finite-element modeling. Geofluids, 4, 109–130.
    [Google Scholar]
  81. Smith, L. & Chapman, D. (1983) On the thermal effects of groundwater flow. 1. Regional scale systems. Journal of Geophysical Research, 88 (B1), 593–608.
    [Google Scholar]
  82. Somerton, W.H. (1992) Thermal Properties and Temperature‐Related Behavior of Rock/Fluid Systems. Elsevier, Amsterdam.
    [Google Scholar]
  83. Steffensen, R.J. & Smith, R.C. (1973). Importance of Joule–Thomson heating (or cooling) in temperature log interpretation. Fall Meeting of the Society of Petroleum Engineers of AIME, September 30–October 3, 1973, Las Vegas, NV.
  84. ter Voorde, M. & Bertotti, G. (1994) Thermal effects of normal faulting during rifted basin formation, 1. A finite difference model. Tectonophysics, 240, 133–144.
    [Google Scholar]
  85. van Adrichem Boogaert, H.A. & Kouwe, W.F.P. (1997) Stratigraphic Nomenclature of the Netherlands, Revision and Update by RGD and NOGEPA. Mededelingen Rijks Geologische Dienst, Vol. 50. Nederlands Instituut voor Toegepaste Geowetenschappen TNO‐NITG, Haarlem.
    [Google Scholar]
  86. van Balen, R.T., Verweij, J.M., van Wees, J.D., Simmelink, H., Bergen, F.V. & Pagnier, H. (2001) Deep subsurface temperatures in the Roer Valley Graben and the Peelblock, the Netherlands – new results. Geol. Mijnb., 81, 19–26.
    [Google Scholar]
  87. van Bergen, M.J. & Sissingh, W. (2007) Magmatism in the Netherlands: expression of the North‐West European rifting history. In: Geology of the Netherlands (Ed. by Th.E.Wong , D.A.J.Batjes & J.D.Jager ), pp. 197–221. Royal Netherlands Academy of Arts and Sciences, Amsterdam.
    [Google Scholar]
  88. Vandenberghe, N., Dusar, M., Boonen, P., Fan, L.S., Voets, R. & Bouckaert, J. (2000) The Merksplas‐Beerse Geothermal Well (17w265) and the Dinantian Reservoir. Geol. Belg., 3, 349–367.
    [Google Scholar]
  89. Vandenberghe, N., Dusar, M., Laga, P. & Bouckaert, J. (1988) The Meer Well in North Belgium. Toelichtende verhandelingen voor de geologische en mijnkaarten van Belgie, Belgische Geologische Dienst, Brussels.
    [Google Scholar]
  90. Vandenberghe, N. & Fock, W. (1989) Temperature data in the subsurface of Belgium. Tectonophysics, 164, 237–250.
    [Google Scholar]
  91. van Gijssel, K. (1995) A hydrogeological and paleoenvironmental data set for large‐scale groundwater flow simulations in the Northeastern Netherlands. Meded. Rijks Geol. Dien., 52, 105–134.
    [Google Scholar]
  92. Verweij, H. (2003) Fluid flow systems analysis on geological timescales in onshore and offshore Netherlands, with special reference to the Broad Fourteens Basin. PhD Thesis, Vrije Universiteit, Amsterdam.
  93. Visser, W.A. (1978) Early subsurface temperature measurements in the Netherlands. Geol. Mijnb., 57, 1–10.
    [Google Scholar]
  94. Waples, D. & Waples, J. (2004a) A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: minerals and nonporous rocks. Nat. Resour. Res., 13, 97–122.
    [Google Scholar]
  95. Waples, D. & Waples, J. (2004b) A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 2: fluids and porous rocks. Nat. Resour. Res., 13, 123–130.
    [Google Scholar]
  96. Watcharanantakul, R. & Morley, C.K. (2000) Syn‐rift and post‐rift modelling of the Pattani Basin, Thailand: evidence for a ramp-flat detachment. Mar. Petrol. Geol., 17, 937–958.
    [Google Scholar]
  97. Wheeler, D., Guyer, J. & Warren, J.A. (2009) FiPy: A Finite Volume PDE Solver Using Python. National Institute of Standards and Technology, Gaithersburg, MD, USA. Available at http://www.ctcms.nist.gov/fipy/.
    [Google Scholar]
  98. Wiers, J (2001) A hydrogeological characterization and 3D groundwaterflow model of the Roer Valley Graben. Msc Thesis, Utrecht University, Utrecht.
  99. Worum, G., Michon, L., van Balen, R.T., van Wees, J.D., Cloetingh, S. & Pagnier, H. (2005) Pre‐Neogene controls on present‐day fault activity in the West Netherlands Basin and Roer Valley Graben (Southern Netherlands): role of variations in fault orientation in a uniform low-stress regime. Quat. Sci. Rev., 24, 473–488.
    [Google Scholar]
  100. Yielding, G., Freeman, B. & Needham, D.T. (1997) Quantitative fault seal prediction. AAPG Bull., 81, 897–917.
    [Google Scholar]
  101. Zagwijn, W.H. (1996) An analysis of Eemian climate in Western and Central Europe. Quat. Sci. Rev., 15, 451–469.
    [Google Scholar]
  102. Ziegler, P.A. (1992) European Cenozoic Rift system. Tectonophysics, 208, 91–111.
    [Google Scholar]
  103. Zijerveld, L., Stephenson, R.A., Cloetingh, S.A.P.L., Duin, E. & van den Berg, M. (1992) Subsidence analysis and modelling of the Roer Valley Graben (SE Netherlands). Tectonophysics, 208, 159–171.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2010.00466.x
Loading
/content/journals/10.1111/j.1365-2117.2010.00466.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error