1887
Volume 22 Number 4
  • E-ISSN: 1365-2117

Abstract

Abstract

Sand‐rich injectites are a common attribute of clastic sedimentary successions, and they have received increased attention in the last decade by geoscientists and engineers dealing with shallow subsurface flow and retention of aqueous and hydrocarbon fluids. Injectites form due to fluidized flow of sediment‐entraining fluids through high‐permeability strata. Given that sediment entrainment is confined to high‐permeability sediments with low horizontal effective stress and negligible cementation, the formation of sand‐rich injectites is restricted to the first kilometre of burial, where sand‐rich sediments are prone to fluidization and clay‐rich sediments are generally more cohesive and may hydraulically fracture to allow the creation of injectites. When reviewing conditions that may lead to aqueous and hydrocarbon flow within this shallow section at velocities that may cause sand fluidization and injection, we can rule out geologic time‐scale processes (disequilibrium compaction, hydrocarbon migration, and lateral pressure transfer) as plausible causes. This emphasizes the need for high‐strain‐rate processes to cause rapid fluid overpressuring and flow associated with sand injection. Earthquake‐induced shaking, instantaneous loading and release of overpressured fluids along moving fault planes are the most likely causes of sand remobilization and injection and these processes may enforce each other during tectonic stress‐release events. An additional mechanism that may trigger sand‐rich injections is the mechanical failure of shallow oil accumulations, particularly as the fluidization velocity of sand entrained in oil can be several orders of magnitude lower than for sand entrained in aqueous fluids, particularly if the oil is biodegraded (and thus has a high dynamic viscosity). Flow of hydrocarbon gas is unlikely to cause sand injection, although gas dissolved in upward‐flowing aqueous fluids may evolve at or near the surface as pressures in the aqueous phase drop.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2010.00471.x
2010-04-01
2024-04-19
Loading full text...

Full text loading...

References

  1. Allen, J.R.L. (1982) Sedimentary Structures: Their Character and Physical Basis, Vol. II. Elsevier, Amsterdam.
    [Google Scholar]
  2. Allen, J.R.L. (1985) Principles of Physical Sedimentology. George, Allen & Unwin, London.
    [Google Scholar]
  3. Anderson, W.G. (1986) Wettability literature survey – part 1: rock/oil/brine interactions and the effects of core handling on wettability. J. Petrol. Technol., 38, 1125–1144.
    [Google Scholar]
  4. Archer, J.B. (1984) Clastic intrusions in deep‐sea fan deposits of the Rosroe formation, Lower Ordovician, Western Ireland. J. Sediment. Petrol., 54, 1197–1205.
    [Google Scholar]
  5. Athy, L.F. (1930) Density, porosity, and compaction of sedimentary rocks. AAPG Bull., 14, 1–24.
    [Google Scholar]
  6. Baldwin, B. & Butler, C.O. (1985) Compaction curves. AAPG Bull., 69, 622–626.
    [Google Scholar]
  7. Berg, R.R. (1975) Capillary pressure in stratigraphic traps. AAPG Bull., 59, 939–956.
    [Google Scholar]
  8. Blatt, H., Middleton, G.V. & Murray, R.C. (1980) Origin of Sedimentary Rocks, 2nd edn. Prentice‐Hall, Englewood Cliffs, NJ.
    [Google Scholar]
  9. Boehm, A. & Moore, J.C. (2002) Fluidized sandstone intrusions as an indicator of Paleostress orientation, Santa Cruz, California. Geofluids, 2, 147–161.
    [Google Scholar]
  10. Brami, T.R., Pirmez, C., Archie, C., Heeraldal, S. & Holman, K.L. (2000) Late Pleistocene deep‐water stratigraphy and depositional processes, offshore Trinidad and Tobago. In: Deep‐Water Reservoirs of the World: SEPM Gulf Coast (Ed. by P.Weimer , R.M.Slatt , J.Coleman , N.C.Rosen , H.Nelson , A.H.Bouma , M.J.Styzen & D.T.Lawrence ), pp. 104–115. Houston, TX.
    [Google Scholar]
  11. Brown, K.M. & Orange, D.L. (1993) Structural aspects of diapiric melange emplacement, the Duck Creek Diapir. J. Struct. Geol., 15, 831–847.
    [Google Scholar]
  12. Bryant, W.R. (2002) Permeability of clays, silty‐clays and clayey‐silts. Gulf Coast Assoc. Geol. Soc. Trans., 52, 1069–1077.
    [Google Scholar]
  13. Byrnes, A.P. (1997) Reservoir characteristics of low‐permeability sandstones in the Rocky Mountains. Mountain Geol., 34, 39–51.
    [Google Scholar]
  14. Carruthers, D.J. (2003) Modeling of secondary petroleum migration using invasion percolation techniques. In: Multidimensional Basin Modeling (Ed. by S.Duppenbecker & R.Marzi ), AAPG/Datapages Discovery Ser. , 7, 21–37.
    [Google Scholar]
  15. Cosgrove, J.W. (2001) Hydraulic fracturing during the formation and deformation of a basin: a factor in the dewatering of low-permeability sediments. AAPG Bull., 85, 737–748.
    [Google Scholar]
  16. Davidson, J.F. & Harrison, D. (1971) Fluidization. Academic Press, London.
    [Google Scholar]
  17. De Boer, W., Rawlinson, P.B. & Hurst, A. (2007) Successful exploration of a sand injectite complex: Hamsun prospect, Norway Block 24/9. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.Cartwright ), AAPG Mem. , 87, 91–102.
    [Google Scholar]
  18. Deming, D. (1994) Factors necessary to define a pressure seal. AAPG Bull., 78, 1005–1009.
    [Google Scholar]
  19. Dewhurst, D.N., Aplin, A.C. & Sarda, J‐P. (1999) Influence of clay fraction on pore‐scale properties and hydraulic conductivity of experimentally compacted mudstones. J. Geophys. Res., 104, 29261–29274.
    [Google Scholar]
  20. Dewhurst, D.N., Aplin, A.C., Sarda, J‐P. & Yang, Y. (1998) Compaction‐driven evolution of porosity and permeability in natural mudstones: an experimental study. J. Geophys. Res., 103, 651–661.
    [Google Scholar]
  21. Dixon, R.J., Schofield, K., Anderton, R., Reynolds, A.D., Alexander, R.W.S., Williams, M.C. & Davies, K.G. (1995) Sandstone diapirism and clastic intrusion in the Tertiary Submarine fans of the Bruce‐Beryl Embayment, Quadrant 9, UKCS. In: Characterization of Deep Marine Clastic Systems (Ed. by A.J.Hartley & D.J.Prosser ), Geol. Soc. London, Spec. Publ. , 94, 77–94.
    [Google Scholar]
  22. Dugan, B. & Flemings, P.B. (2000) Overpressure and fluid flow in the New Jersey continental slope: implications for slope failure and cold seeps. Science, 289, 288–291.
    [Google Scholar]
  23. Engelhardt, W.V. & Gaida, K.H. (1963) Concentration changes of pore solutions during the compaction of clay sediments. J. Sediment. Petrol., 33, 919–930.
    [Google Scholar]
  24. England, W.A., Mackenzie, A.S., Mann, D.M. & Quigley, T.M. (1987) The movement and entrapment of petroleum fluids in the subsurface. J. Geol. Soc. London, 144, 327–347.
    [Google Scholar]
  25. Ergun, S. & Orning, A.A. (1949) Fluid flow through randomly packed columns and fluidized beds. Ind. Eng. Chem., 41, 1179–1184.
    [Google Scholar]
  26. Flemings, P.B., Long, H., Dugan, B., Germaine, J., John, C.M., Behrmann, J.H. & Sawyer, D. (2008) Pore pressure penetrometers document high overpressure near the seafloor where multiple submarine landslides have occurred on the continental slope, offshore Louisiana, Gulf of Mexico. Earth Planet. Sci. Lett., 269, 309–325.
    [Google Scholar]
  27. Fowler, S.R., White, R.S. & Louden, K.E. (1985) Sediment dewatering in the Makran accretionary prism. Earth Planet. Sci. Lett., 75, 427–438.
    [Google Scholar]
  28. Gibilaro, L.G. (2001) Fluidization Dynamics. Butterworth‐Heinemann, London.
    [Google Scholar]
  29. Gill, W.D. & Kuenen, P.H. (1957) Sand volcanoes on slumps in the carboniferous of County Clare, Ireland. Quat. J. Geol. Soc. London, 113, 441–460.
    [Google Scholar]
  30. Goulty, N.R. (1998) Relationships between porosity and effective stress in shales. First Break, 16, 413–419.
    [Google Scholar]
  31. Greensmith, J.T. (1957) A sandstone Dyke near Queensferry, West Lothian. Transactions of the Edinburgh Geological Society, 17, 54–59.
    [Google Scholar]
  32. Hansen, S. (1996) A compaction trend for Cretaceous and Tertiary shales on the Norwegian shelf based on sonic transit times. Petrol. Geosci., 2, 159–166.
    [Google Scholar]
  33. Hildenbrand, A., Schlomer, S. & Krooss, B.M. (2002) Gas breakthrough experiments on fine‐grained sedimentary rocks. Geofluids, 2, 3–23.
    [Google Scholar]
  34. Hildenbrand, A., Schomer, S., Krooss, B.M. & Littke, R. (2004) Gas breakthrough experiments on pelitic rocks: comparative study with N2, CO2 and CH4. Geofluids, 4, 61–80.
    [Google Scholar]
  35. Honarpour, M., Koederitz, L. & Herbert Harvey, A. (1986) Relative Permeability of Petroleum Reservoirs. CRC Press Inc., Boca Raton, FL.
    [Google Scholar]
  36. Hurst, A. & Cartwright, J. (2007a) Sand injectites: implications for hydrocarbon exploration and production. AAPG Mem., 87.
    [Google Scholar]
  37. Hurst, A. & Cartwright, J. (2007b) Relevance of sand injectites to hydrocarbon exploration and production. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.Cartwright ), AAPG Mem. , 87, 1–20.
    [Google Scholar]
  38. Hurst, A., Cartwright, J.A., Huuse, M. & Duranti, D. (2006) Extrusive sandstones (extrudites): a new class of stratigraphic trap? In: The Deliberate Search for the Stratigraphic Trap (Ed. by M.R.Allen , G.P.Goffey , R.K.Morgan & I.M.Walker ), Geol. Soc., London, Spec. Publ. , 254, 289–300.
    [Google Scholar]
  39. Huuse, M., Cartwright, J., Hurst, A. & Steinsland, N. (2007) Seismic characterization of large‐scale sandstone intrusions. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.Cartwright ), AAPG Mem. , 87, 21–36.
    [Google Scholar]
  40. Huuse, M., Cartwright, J.A., Gras, R. & Hurst, A. (2005) Kilometre‐scale sandstone intrusions in the Eocene of the Outer Moray Firth (UK North Sea): migration paths, reservoirs and potential drilling hazards. Geol. Soc., Lond., Petrol. Geol. Conf. Ser., 6, 1577–1594.
    [Google Scholar]
  41. Huuse, M. & Mickelson, M. (2004) Eocene sandstone intrusions in the Tampen Spur area (Norwegian North Sea Quad 34) imaged by 3D seismic data. Mar. Petrol. Geol., 21, 141–155.
    [Google Scholar]
  42. Ibrahim, M.A., Tek, M.R. & Katz, D.L. (1970) Threshold Pressure in Gas Storage. Pipeline Research Committee, American Gas Association at the University of Michigan, Michigan.
    [Google Scholar]
  43. James, D.M.D. (2003) Discussion on mechanisms and controls on the formation of sand intrusions. J. Geol. Soc., Lond., 160, 495–496.
    [Google Scholar]
  44. Jenssen, A.I., Bergslien, D., Rye‐Larsen, M. & Lindholm, R.M. (1993) Origin of complex mound geometry of Palaeocene submarine‐fan sandstone reservoirs, Balder Field, Norway. In: Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference (Ed. by J.R.Parker ), pp. 135–143. Geological Society, London.
    [Google Scholar]
  45. Jolly, R.J.H. & Lonergan, L. (2002) Mechanisms and controls on the formation of sand intrusions. J. Geol. Soc., Lond., 159, 605–617.
    [Google Scholar]
  46. Jonk, R. (2003). The origin and diagenesis of intruded sandstones. Unpublished PhD Thesis, 2 volumes, University of Aberdeen.
  47. Jonk, R., Cronin, B.T. & Hurst, A. (2007a) Variations in sediment extrusion in basin‐floor, slope and delta‐frond settings: sand volcanoes and extruded sand sheets from the Namurian of County Clare, Ireland. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.Cartwright ), AAPG Mem. , 87, 221–226.
    [Google Scholar]
  48. Jonk, R., Duranti, D., Hurst, A., Parnell, J. & Fallick, A.E. (2007b) Aqueous and petroleum fluids associated with sand injectites hosted by lacustrine shales from the oil‐shale group (Dinantian), Midland Valley, Scotland. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.Cartwright ), AAPG Mem. , 87, 265–274.
    [Google Scholar]
  49. Jonk, R., Duranti, D., Parnell, J., Hurst, A. & Fallick, A.E. (2003) The structural and diagenetic evolution of injected sandstones: examples from the Kimmeridgian of NE Scotland. J. Geol. Soc., Lond., 160, 881–894.
    [Google Scholar]
  50. Jonk, R., Hurst, A., Duranti, D., Parnell, J., Mazzini, A. & Fallick, A.E. (2005b) Origin and timing of sand injection, petroleum migration, and diagenesis in Tertiary reservoirs, south Viking Graben, North Sea. AAPG Bull., 89, 329–357.
    [Google Scholar]
  51. Jonk, R., Parnell, J. & Hurst, A. (2005a) Aqueous and petroleum fluid flow associated with sand injectites. Basin Res., 17, 241–257.
    [Google Scholar]
  52. Jonk, R., Parnell, J. & Whitham, A. (2005c) Fluid inclusion evidence for a Cretaceous‐Palaeogene petroleum system, Kangerlussuaq Basin, East Greenland. Mar. Petrol. Geol., 22, 319–330.
    [Google Scholar]
  53. Katsube, T.J. & Williamson, M.A. (1994) Effects of diagenesis on the nano‐pore structure and implications for sealing capacity. Clay Miner., 29, 451–461.
    [Google Scholar]
  54. Krushin, J.T. (1997) Seal capacity of nonsmectite shale. In: Seals, Traps and the Petroleum System (Ed. by R.C.Surdam ), AAPG Mem. , 67, 31–47.
    [Google Scholar]
  55. Larsen, G. & Chilingar, G.V. (1983) Introduction. In: Diagensis in Sediments and Sedimentary Rocks (Ed. by G.Larsen & G.V.Chilingar ). Vol. 2 (pp. 1–15. Elsevier, New York.
    [Google Scholar]
  56. Lonergan, L. & Cartwright, J.A. (1999) Polygonal faults and their influence on deep‐water sandstone reservoir geometries, Alba Field, United Kingdom Central North Sea. AAPG Bull., 83, 410–432.
    [Google Scholar]
  57. Lowe, D.R. (1975) Water escape structures in coarse‐grained sediments. Sedimentology, 22, 157–204.
    [Google Scholar]
  58. Maltman, A.J. & Bolton, A. (2003) How sediments become mobilized. In: Subsurface Sediment Mobilization (Ed. by P.Van Rensbergen , R.R.Hillis , A.J.Maltman & C.K.Morley ), Geol. Soc., London, Spec. Publ. , 216, 9–20.
    [Google Scholar]
  59. Mandl, G. (1999) Faulting in Brittle Rocks: An Introduction to the Mechanics of Tectonic Faults. Springer Verlag, Berlin.
    [Google Scholar]
  60. Mann, D.M. & Mackenzie, A.S. (1990) Prediction of pore fluid pressures in sedimentary basins. Mar. Petrol. Geol., 7, 55–65.
    [Google Scholar]
  61. McCabe, W.L., Smith, J.C. & Harriott, P. (2001) Unit Operations of Chemical Engineering. McGraw‐Hill, New York.
    [Google Scholar]
  62. Minisini, D. & Schwartz, H. (2007) An early Paleocene cold seep system in the Panoche and Tumey Hills, Central California (United States). In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.Cartwright ), AAPG Mem., 87, 185–198.
    [Google Scholar]
  63. Mondol, N.H., Bjorlykke, K., Jahren, J. & Hoeg, K. (2007) Experimental mechanical compaction of clay mineral aggregates ‐ changes in physical properties of mudstones during burial. Mar. Petrol. Geol., 24, 289–311.
    [Google Scholar]
  64. Mulder, T. & Alexander, J. (2001) The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 48, 269–299.
    [Google Scholar]
  65. Mulder, T. & Cochonat, P. (1996) Classification of offshore mass movements. J. Sediment. Res., 66, 43–57.
    [Google Scholar]
  66. Murchison, R.I. (1827) Supplementary remarks on the Oolitic Series in the Counties of Sutherland and Ross, and in the Hebrides. Trans. Geol. Soc., 2, ii.
    [Google Scholar]
  67. Nemec, W. (1990) Aspects of sediment movement on steep delta slopes. In: Coarse‐Grained Deltas (Ed. by A.Colella & D.B.Prior ), IAS Spec. Publ., 10, 29–73.
    [Google Scholar]
  68. Newsom, J.F. (1903) Clastic dikes. Geol. Soc. Am. Bull., 14, 227–268.
    [Google Scholar]
  69. Nygard, R., Gutierrez, M., Gautam, R. & Hoeg, K. (2004) Compaction behavior of argillaceous sediments as function of diagenesis. Mar. Petrol. Geol., 21, 349–362.
    [Google Scholar]
  70. Obermeier, S. (1996) Use of liquefaction‐induced features for paleoseismic analysis – an overview of how seismic liquefaction features can be distinguished from other features and how their regional response distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo‐earthquakes. Eng. Geol., 44, 1–76.
    [Google Scholar]
  71. Osborne, M.J. & Swarbrick, R.E. (1997) Mechanisms for generating overpressure in sedimentary basins: a re-evaluation. AAPG Bull., 81, 1023–1041.
    [Google Scholar]
  72. Parnell, J., Honghan, C., Middleton, D., Haggan, T. & Carey, P. (2000) Significance of fibrous mineral veins in hydrocarbon migration: fluid inclusion studies. J. Geochem. Explor., 69–70, 623–627.
    [Google Scholar]
  73. Peterson, G.L. (1966) Structural interpretation of sandstone dikes, Northwest Sacramento Valley, California. Geol. Soc. Am. Bull., 77, 833–842.
    [Google Scholar]
  74. Posamentier, H.W. & Kolla, V. (2003) Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. J. Sediment. Res., 73, 367–388.
    [Google Scholar]
  75. Revil, A. & Cathles, L.M. (1999) Permeability of shaly sands. Water Resour. Res., 35, 651–662.
    [Google Scholar]
  76. Richardson, J.F. & Zaki, W.N. (1954) Sedimentation and fluidisation. Part 1. Trans. Inst. Chem. Eng., 32, 35–53.
    [Google Scholar]
  77. Sawyer, D.E., Flemings, P.B., Dugan, B. & Germaine, J.T. (2009) Retrogressive failures recorded in mass transport deposits in the Ursa Basin, Northern Gulf of Mexico. J. Geophys. Res., 114, B10102.
    [Google Scholar]
  78. Schlomer, S. & Kroos, B.M. (1997) Experimental characterisation of the hydrocarbon sealing efficiency of cap rocks. Mar. Petrol. Geol., 14, 565–580.
    [Google Scholar]
  79. Schowalter, T.T. (1979) Mechanics of secondary hydrocarbon migration and entrapment. AAPG Bull., 63, 723–760.
    [Google Scholar]
  80. Sclater, J.G. & Christie, P.A.F. (1980) Continental stretching: an explanation of the post-Mid-Cretaceous subsidence of the central North Sea basin. J. Geophys. Res., 85, 3711–3739.
    [Google Scholar]
  81. Shanley, K.W., Cluff, R.M. & Robinson, J.W. (2004) Factors controlling prolific gas production from low‐permeability sandstone reservoirs: implications for resource assessment, prospect development, and risk analysis. AAPG Bull., 88, 1083–1121.
    [Google Scholar]
  82. Sibson, R.H. (1992) Implications of fault‐valve behavior for rupture nucleation and recurrence. Tectonophysics, 211, 283–293.
    [Google Scholar]
  83. Sibson, R.H. (2000) Fluid involvement in normal faulting. J. Geodynam., 29, 469–499.
    [Google Scholar]
  84. Silva, A.J., Hetherman, J.R. & Calnan, D.I. (1981) Low‐gradient permeability testing of fine‐grained marine sediments. In: Permeability and Groundwater Contaminant Transport (Ed. by T.F.Zimmie & C.O.Riggs ), pp. 121–136. American Society for Testing and Materials, Philadelphia.
    [Google Scholar]
  85. Tavenas, F., Leblond, P.J.P. & Leroueil, S. (1983) The permeability of natural soft clays. Part II: permeability characteristics. Can. Geotech. J., 20, 645–660.
    [Google Scholar]
  86. Terzaghi, K. (1925) Principles of soil mechanics IV, settlement and consolidation of clay. Eng. News-Rec., 95, 874–878.
    [Google Scholar]
  87. Thompson, B.J., Garrison, R.E. & Moore, C.J. (2007) A reservoir‐scale Miocene injectite near Santa Cruz, California. In: Sand Injectites: Implications for Hydrocarbon Exploration and Production (Ed. by A.Hurst & J.Cartwright ), AAPG Mem . 87, 151–162.
    [Google Scholar]
  88. Tingay, M.R.P., Hillis, R.R., Swarbrick, R.E., Morley, C.K. & Damit, A.R. (2009) Origin of overpressure and pore‐pressure prediction in the Baram province, Brunei. AAPG Bull., 93, 51–74.
    [Google Scholar]
  89. Truswell, J.F. (1972) Sandstone sheets and related intrusions from Coffee Bay, South Africa. J. Sediment. Petrol., 42, 578–583.
    [Google Scholar]
  90. Van Rensbergen, P., Hillis, R.R., Maltman, A.J. & Morley, C.K. (2003) Subsurface sediment mobilization. Geol. Soc., London, Spec. Publ., 216, 522pp.
    [Google Scholar]
  91. Velde, B. (1996) Compaction trends of clay‐rich deep sea sediments. Mar. Geol., 133, 193–201.
    [Google Scholar]
  92. Vigorito, M., Hurst, A., Cartwright, J. & Scott, A. (2008) Regional‐scale subsurface sand remobilization: geometry and architecture. J. Geol. Soc., Lond., 165, 609–612.
    [Google Scholar]
  93. Walter, M.R. (1972) Tectonically deformed sand volcanoes in a Precambrian greywacke, Northern Territory of Australia. J. Geol. Soc., Australia, 18, 395–399.
    [Google Scholar]
  94. Waterston, C.D. (1950) Note on the sandstone injections of Eathie Haven, Cromarty. Geol. Mag., 87, 133–139.
    [Google Scholar]
  95. Winslow, M.A. (1983) Clastic dike swarms and the structural evolution of the foreland fold and thrust belt of the southern Andes. Geol. Soc. Am. Bull., 94, 1073–1080.
    [Google Scholar]
  96. Yang, Y.L. & Aplin, A.C. (2007) Permeability and petrophysical properties of 30 natural mudstones. J. Geophys. Res., 112, B03206.
    [Google Scholar]
  97. Yardley, G.S. & Swarbrick, R.E. (2000) Lateral transfer: a source of additional overpressure? Mar. Petrol. Geol., 17, 523–537.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2010.00471.x
Loading
/content/journals/10.1111/j.1365-2117.2010.00471.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error